# AutoML - Classification ### A basic classification example ```python from flaml import AutoML from sklearn.datasets import load_iris # Initialize an AutoML instance automl = AutoML() # Specify automl goal and constraint automl_settings = { "time_budget": 1, # in seconds "metric": 'accuracy', "task": 'classification', "log_file_name": "iris.log", } X_train, y_train = load_iris(return_X_y=True) # Train with labeled input data automl.fit(X_train=X_train, y_train=y_train, **automl_settings) # Predict print(automl.predict_proba(X_train)) # Print the best model print(automl.model.estimator) ``` #### Sample of output ``` [flaml.automl: 11-12 18:21:44] {1485} INFO - Data split method: stratified [flaml.automl: 11-12 18:21:44] {1489} INFO - Evaluation method: cv [flaml.automl: 11-12 18:21:44] {1540} INFO - Minimizing error metric: 1-accuracy [flaml.automl: 11-12 18:21:44] {1577} INFO - List of ML learners in AutoML Run: ['lgbm', 'rf', 'catboost', 'xgboost', 'extra_tree', 'lrl1'] [flaml.automl: 11-12 18:21:44] {1826} INFO - iteration 0, current learner lgbm [flaml.automl: 11-12 18:21:44] {1944} INFO - Estimated sufficient time budget=1285s. Estimated necessary time budget=23s. [flaml.automl: 11-12 18:21:44] {2029} INFO - at 0.2s, estimator lgbm's best error=0.0733, best estimator lgbm's best error=0.0733 [flaml.automl: 11-12 18:21:44] {1826} INFO - iteration 1, current learner lgbm [flaml.automl: 11-12 18:21:44] {2029} INFO - at 0.3s, estimator lgbm's best error=0.0733, best estimator lgbm's best error=0.0733 [flaml.automl: 11-12 18:21:44] {1826} INFO - iteration 2, current learner lgbm [flaml.automl: 11-12 18:21:44] {2029} INFO - at 0.4s, estimator lgbm's best error=0.0533, best estimator lgbm's best error=0.0533 [flaml.automl: 11-12 18:21:44] {1826} INFO - iteration 3, current learner lgbm [flaml.automl: 11-12 18:21:44] {2029} INFO - at 0.6s, estimator lgbm's best error=0.0533, best estimator lgbm's best error=0.0533 [flaml.automl: 11-12 18:21:44] {1826} INFO - iteration 4, current learner lgbm [flaml.automl: 11-12 18:21:44] {2029} INFO - at 0.6s, estimator lgbm's best error=0.0533, best estimator lgbm's best error=0.0533 [flaml.automl: 11-12 18:21:44] {1826} INFO - iteration 5, current learner xgboost [flaml.automl: 11-12 18:21:45] {2029} INFO - at 0.9s, estimator xgboost's best error=0.0600, best estimator lgbm's best error=0.0533 [flaml.automl: 11-12 18:21:45] {1826} INFO - iteration 6, current learner lgbm [flaml.automl: 11-12 18:21:45] {2029} INFO - at 1.0s, estimator lgbm's best error=0.0533, best estimator lgbm's best error=0.0533 [flaml.automl: 11-12 18:21:45] {1826} INFO - iteration 7, current learner extra_tree [flaml.automl: 11-12 18:21:45] {2029} INFO - at 1.1s, estimator extra_tree's best error=0.0667, best estimator lgbm's best error=0.0533 [flaml.automl: 11-12 18:21:45] {2242} INFO - retrain lgbm for 0.0s [flaml.automl: 11-12 18:21:45] {2247} INFO - retrained model: LGBMClassifier(learning_rate=0.2677050123105203, max_bin=127, min_child_samples=12, n_estimators=4, num_leaves=4, reg_alpha=0.001348364934537134, reg_lambda=1.4442580148221913, verbose=-1) [flaml.automl: 11-12 18:21:45] {1608} INFO - fit succeeded [flaml.automl: 11-12 18:21:45] {1610} INFO - Time taken to find the best model: 0.3756711483001709 ``` ### A more advanced example including custom learner and metric [Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_classification.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_classification.ipynb)