afourney af5dcc7fdf
Significant updates to agbench. (#5313)
- Updated HumanEval template to use AgentChat
- Update templates to use config.yaml for model and other configuration
- Read environment from ENV.yaml (ENV.json still supported but
deprecated)
- Temporarily removed WebArena and AssistantBench. Neither had viable
Templates after `autogen_magentic_one` was removed. Templates need to be
update to AgentChat (in a future PR, but this PR is getting big enough
already)
2025-02-07 18:01:44 +00:00

125 lines
3.6 KiB
Python

#
# Run this file to download the human_eval dataset, and create a corresponding testbed scenario:
# (default: ../scenarios/human_eval_two_agents_gpt4.jsonl and ./scenarios/human_eval_two_agents_gpt35.jsonl)
#
import base64
import gzip
import io
import json
import os
import re
import requests
URL = "https://github.com/openai/human-eval/raw/master/data/HumanEval.jsonl.gz"
SCRIPT_PATH = os.path.realpath(__file__)
SCRIPT_NAME = os.path.basename(SCRIPT_PATH)
SCRIPT_DIR = os.path.dirname(SCRIPT_PATH)
SCENARIO_DIR = os.path.realpath(os.path.join(SCRIPT_DIR, os.path.pardir))
TEMPLATES_DIR = os.path.join(SCENARIO_DIR, "Templates")
TASKS_DIR = os.path.join(SCENARIO_DIR, "Tasks")
# A selected subset of HumanEval problems to work with during development
# Deprecated 2/5/2024 -- Use subsample instead
REDUCED_SET = [
"HumanEval/2",
"HumanEval/26",
"HumanEval/32",
"HumanEval/33",
"HumanEval/36",
"HumanEval/38",
"HumanEval/41",
"HumanEval/50",
"HumanEval/56",
"HumanEval/65",
"HumanEval/67",
"HumanEval/84",
"HumanEval/85",
"HumanEval/86",
"HumanEval/89",
"HumanEval/99",
"HumanEval/104",
"HumanEval/113",
"HumanEval/115",
"HumanEval/120",
"HumanEval/124",
"HumanEval/126",
"HumanEval/132",
"HumanEval/135",
"HumanEval/140",
"HumanEval/146",
]
def download_human_eval():
"""Download the HumanEval dataset, un-gzips it, and returns a list of its parsed JSON objects."""
# Send a HTTP request to the URL of the file
response = requests.get(URL)
# Ensure we raise an error if the download failed
response.raise_for_status()
# Create a BytesIO object from the response content
buffer = io.BytesIO(response.content)
# Read the file, line by line, populating a list of parsed JSON objects
results = []
with gzip.GzipFile(fileobj=buffer) as f_in:
for line in f_in:
# Parse each line as JSON
results.append(json.loads(line))
return results
def create_jsonl(name, tasks, template):
"""Creates a JSONL scenario file with a given name, list of HumanEval tasks, and template path."""
# Create a task directory if it doesn't exist
if not os.path.isdir(TASKS_DIR):
os.mkdir(TASKS_DIR)
# Create the jsonl file
with open(os.path.join(TASKS_DIR, name + ".jsonl"), "wt") as fh:
for task in tasks:
print(f"Converting: [{name}] {task['task_id']}")
record = {
"id": task["task_id"].replace("/", "_"),
"template": template,
"substitutions": {
"prompt.txt": {"__PROMPT__": task["prompt"]},
"test.txt": {"__TEST__": task["test"]},
"custom_code_executor.py": {"__ENTRY_POINT__": task["entry_point"]},
},
}
fh.write(json.dumps(record).strip() + "\n")
###############################################################################
def main():
human_eval = download_human_eval()
# Deprecated: reduced_human_eval = [t for t in human_eval if t["task_id"] in REDUCED_SET]
# list all directories in the Templates directory
# and populate a dictionary with the name and path
templates = {}
for entry in os.scandir(TEMPLATES_DIR):
if entry.is_dir():
templates[re.sub(r"\s", "", entry.name)] = entry.path
# Create the various combinations of [models] x [templates]
for t in templates.items():
create_jsonl(f"human_eval_{t[0]}", human_eval, t[1])
# Deprecated: create_jsonl(f"r_human_eval_{t[0]}", reduced_human_eval, t[1])
if __name__ == "__main__" and __package__ is None:
main()