autogen/python/packages/autogen-ext/tests/models/test_anthropic_model_client.py
Eric Zhu 615882ccc8 Use SecretStr type for api key (#5939)
To prevent accidental export of API keys
2025-03-13 21:48:09 -07:00

337 lines
11 KiB
Python

import asyncio
import logging
import os
from typing import List, Sequence
import pytest
from autogen_core import CancellationToken, FunctionCall
from autogen_core.models import (
AssistantMessage,
CreateResult,
FunctionExecutionResult,
FunctionExecutionResultMessage,
SystemMessage,
UserMessage,
)
from autogen_core.models._types import LLMMessage
from autogen_core.tools import FunctionTool
from autogen_ext.models.anthropic import AnthropicChatCompletionClient
def _pass_function(input: str) -> str:
"""Simple passthrough function."""
return f"Processed: {input}"
def _add_numbers(a: int, b: int) -> int:
"""Add two numbers together."""
return a + b
@pytest.mark.asyncio
async def test_anthropic_serialization_api_key() -> None:
client = AnthropicChatCompletionClient(
model="claude-3-haiku-20240307", # Use haiku for faster/cheaper testing
api_key="sk-password",
temperature=0.0, # Added temperature param to test
stop_sequences=["STOP"], # Added stop sequence
)
assert client
config = client.dump_component()
assert config
assert "sk-password" not in str(config)
serialized_config = config.model_dump_json()
assert serialized_config
assert "sk-password" not in serialized_config
client2 = AnthropicChatCompletionClient.load_component(config)
assert client2
@pytest.mark.asyncio
async def test_anthropic_basic_completion(caplog: pytest.LogCaptureFixture) -> None:
"""Test basic message completion with Claude."""
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
client = AnthropicChatCompletionClient(
model="claude-3-haiku-20240307", # Use haiku for faster/cheaper testing
api_key=api_key,
temperature=0.0, # Added temperature param to test
stop_sequences=["STOP"], # Added stop sequence
)
# Test basic completion
with caplog.at_level(logging.INFO):
result = await client.create(
messages=[
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="What's 2+2? Answer with just the number.", source="user"),
]
)
assert isinstance(result.content, str)
assert "4" in result.content
assert result.finish_reason == "stop"
assert "LLMCall" in caplog.text and result.content in caplog.text
# Test JSON output - add to existing test
json_result = await client.create(
messages=[
UserMessage(content="Return a JSON with key 'value' set to 42", source="user"),
],
json_output=True,
)
assert isinstance(json_result.content, str)
assert "42" in json_result.content
# Check usage tracking
usage = client.total_usage()
assert usage.prompt_tokens > 0
assert usage.completion_tokens > 0
@pytest.mark.asyncio
async def test_anthropic_streaming(caplog: pytest.LogCaptureFixture) -> None:
"""Test streaming capabilities with Claude."""
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
client = AnthropicChatCompletionClient(
model="claude-3-haiku-20240307",
api_key=api_key,
)
# Test streaming completion
chunks: List[str | CreateResult] = []
prompt = "Count from 1 to 5. Each number on its own line."
with caplog.at_level(logging.INFO):
async for chunk in client.create_stream(
messages=[
UserMessage(content=prompt, source="user"),
]
):
chunks.append(chunk)
# Verify we got multiple chunks
assert len(chunks) > 1
# Check final result
final_result = chunks[-1]
assert isinstance(final_result, CreateResult)
assert final_result.finish_reason == "stop"
assert "LLMStreamStart" in caplog.text
assert "LLMStreamEnd" in caplog.text
assert isinstance(final_result.content, str)
for i in range(1, 6):
assert str(i) in caplog.text
assert prompt in caplog.text
# Check content contains numbers 1-5
assert isinstance(final_result.content, str)
combined_content = final_result.content
for i in range(1, 6):
assert str(i) in combined_content
@pytest.mark.asyncio
async def test_anthropic_tool_calling() -> None:
"""Test tool calling capabilities with Claude."""
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
client = AnthropicChatCompletionClient(
model="claude-3-haiku-20240307",
api_key=api_key,
)
# Define tools
pass_tool = FunctionTool(_pass_function, description="Process input text", name="process_text")
add_tool = FunctionTool(_add_numbers, description="Add two numbers together", name="add_numbers")
# Test tool calling with instruction to use specific tool
messages: List[LLMMessage] = [
SystemMessage(content="Use the tools available to help the user."),
UserMessage(content="Process the text 'hello world' using the process_text tool.", source="user"),
]
result = await client.create(messages=messages, tools=[pass_tool, add_tool])
# Check that we got a tool call
assert isinstance(result.content, list)
assert len(result.content) >= 1
assert isinstance(result.content[0], FunctionCall)
# Check that the correct tool was called
function_call = result.content[0]
assert function_call.name == "process_text"
# Test tool response handling
messages.append(AssistantMessage(content=result.content, source="assistant"))
messages.append(
FunctionExecutionResultMessage(
content=[
FunctionExecutionResult(
content="Processed: hello world",
call_id=result.content[0].id,
is_error=False,
name=result.content[0].name,
)
]
)
)
# Get response after tool execution
after_tool_result = await client.create(messages=messages)
# Check we got a text response
assert isinstance(after_tool_result.content, str)
# Test multiple tool use
multi_tool_prompt: List[LLMMessage] = [
SystemMessage(content="Use the tools as needed to help the user."),
UserMessage(content="First process the text 'test' and then add 2 and 3.", source="user"),
]
multi_tool_result = await client.create(messages=multi_tool_prompt, tools=[pass_tool, add_tool])
# We just need to verify we get at least one tool call
assert isinstance(multi_tool_result.content, list)
assert len(multi_tool_result.content) > 0
assert isinstance(multi_tool_result.content[0], FunctionCall)
@pytest.mark.asyncio
async def test_anthropic_token_counting() -> None:
"""Test token counting functionality."""
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
client = AnthropicChatCompletionClient(
model="claude-3-haiku-20240307",
api_key=api_key,
)
messages: Sequence[LLMMessage] = [
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="Hello, how are you?", source="user"),
]
# Test token counting
num_tokens = client.count_tokens(messages)
assert num_tokens > 0
# Test remaining token calculation
remaining = client.remaining_tokens(messages)
assert remaining > 0
assert remaining < 200000 # Claude's max context
# Test token counting with tools
tools = [
FunctionTool(_pass_function, description="Process input text", name="process_text"),
FunctionTool(_add_numbers, description="Add two numbers together", name="add_numbers"),
]
tokens_with_tools = client.count_tokens(messages, tools=tools)
assert tokens_with_tools > num_tokens # Should be more tokens with tools
@pytest.mark.asyncio
async def test_anthropic_cancellation() -> None:
"""Test cancellation of requests."""
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
client = AnthropicChatCompletionClient(
model="claude-3-haiku-20240307",
api_key=api_key,
)
# Create a cancellation token
cancellation_token = CancellationToken()
# Schedule cancellation after a short delay
async def cancel_after_delay() -> None:
await asyncio.sleep(0.5) # Short delay
cancellation_token.cancel()
# Start task to cancel request
asyncio.create_task(cancel_after_delay())
# Create a request with long output
with pytest.raises(asyncio.CancelledError):
await client.create(
messages=[
UserMessage(content="Write a detailed 5-page essay on the history of computing.", source="user"),
],
cancellation_token=cancellation_token,
)
@pytest.mark.asyncio
async def test_anthropic_multimodal() -> None:
"""Test multimodal capabilities with Claude."""
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
# Skip if PIL is not available
try:
from autogen_core import Image
from PIL import Image as PILImage
except ImportError:
pytest.skip("PIL or other dependencies not installed")
client = AnthropicChatCompletionClient(
model="claude-3-5-sonnet-latest", # Use a model that supports vision
api_key=api_key,
)
# Use a simple test image that's reliable
# 1. Create a simple colored square image
width, height = 100, 100
color = (255, 0, 0) # Red
pil_image = PILImage.new("RGB", (width, height), color)
# 2. Convert to autogen_core Image format
img = Image(pil_image)
# Test multimodal message
result = await client.create(
messages=[
UserMessage(content=["What color is this square? Answer in one word.", img], source="user"),
]
)
# Verify we got a response describing the image
assert isinstance(result.content, str)
assert len(result.content) > 0
assert "red" in result.content.lower()
assert result.finish_reason == "stop"
@pytest.mark.asyncio
async def test_anthropic_serialization() -> None:
"""Test serialization and deserialization of component."""
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
pytest.skip("ANTHROPIC_API_KEY not found in environment variables")
client = AnthropicChatCompletionClient(
model="claude-3-haiku-20240307",
api_key=api_key,
)
# Serialize and deserialize
model_client_config = client.dump_component()
assert model_client_config is not None
assert model_client_config.config is not None
loaded_model_client = AnthropicChatCompletionClient.load_component(model_client_config)
assert loaded_model_client is not None
assert isinstance(loaded_model_client, AnthropicChatCompletionClient)