autogen/autogen/agentchat/contrib/qdrant_retrieve_user_proxy_agent.py
Li Jiang 08fa1b6d08
Remove dependency on RetrieveAssistantAgent for RetrieveChat (#3320)
* Remove deps on RetrieveAssistantAgent for getting human input

* Terminate when no more context

* Add deprecation warning message

* Clean up RetrieveAssistantAgent, part 1

* Update version

* Clean up docs and notebooks
2024-08-15 16:03:06 +00:00

320 lines
19 KiB
Python

import warnings
from typing import Callable, Dict, List, Literal, Optional
from autogen.agentchat.contrib.retrieve_user_proxy_agent import RetrieveUserProxyAgent
from autogen.agentchat.contrib.vectordb.utils import (
chroma_results_to_query_results,
filter_results_by_distance,
get_logger,
)
from autogen.retrieve_utils import TEXT_FORMATS, get_files_from_dir, split_files_to_chunks
logger = get_logger(__name__)
try:
import fastembed
from qdrant_client import QdrantClient, models
from qdrant_client.fastembed_common import QueryResponse
except ImportError as e:
logger.fatal("Failed to import qdrant_client with fastembed. Try running 'pip install qdrant_client[fastembed]'")
raise e
class QdrantRetrieveUserProxyAgent(RetrieveUserProxyAgent):
def __init__(
self,
name="RetrieveChatAgent", # default set to RetrieveChatAgent
human_input_mode: Literal["ALWAYS", "NEVER", "TERMINATE"] = "ALWAYS",
is_termination_msg: Optional[Callable[[Dict], bool]] = None,
retrieve_config: Optional[Dict] = None, # config for the retrieve agent
**kwargs,
):
"""
Args:
name (str): name of the agent.
human_input_mode (str): whether to ask for human inputs every time a message is received.
Possible values are "ALWAYS", "TERMINATE", "NEVER".
1. When "ALWAYS", the agent prompts for human input every time a message is received.
Under this mode, the conversation stops when the human input is "exit",
or when is_termination_msg is True and there is no human input.
2. When "TERMINATE", the agent only prompts for human input only when a termination message is received or
the number of auto reply reaches the max_consecutive_auto_reply.
3. When "NEVER", the agent will never prompt for human input. Under this mode, the conversation stops
when the number of auto reply reaches the max_consecutive_auto_reply or when is_termination_msg is True.
is_termination_msg (function): a function that takes a message in the form of a dictionary
and returns a boolean value indicating if this received message is a termination message.
The dict can contain the following keys: "content", "role", "name", "function_call".
retrieve_config (dict or None): config for the retrieve agent.
To use default config, set to None. Otherwise, set to a dictionary with the following keys:
- task (Optional, str): the task of the retrieve chat. Possible values are "code", "qa" and "default". System
prompt will be different for different tasks. The default value is `default`, which supports both code and qa.
- client (Optional, qdrant_client.QdrantClient(":memory:")): A QdrantClient instance. If not provided, an in-memory instance will be assigned. Not recommended for production.
will be used. If you want to use other vector db, extend this class and override the `retrieve_docs` function.
- docs_path (Optional, Union[str, List[str]]): the path to the docs directory. It can also be the path to a single file,
the url to a single file or a list of directories, files and urls. Default is None, which works only if the collection is already created.
- extra_docs (Optional, bool): when true, allows adding documents with unique IDs without overwriting existing ones; when false, it replaces existing documents using default IDs, risking collection overwrite.,
when set to true it enables the system to assign unique IDs starting from "length+i" for new document chunks, preventing the replacement of existing documents and facilitating the addition of more content to the collection..
By default, "extra_docs" is set to false, starting document IDs from zero. This poses a risk as new documents might overwrite existing ones, potentially causing unintended loss or alteration of data in the collection.
- collection_name (Optional, str): the name of the collection.
If key not provided, a default name `autogen-docs` will be used.
- model (Optional, str): the model to use for the retrieve chat.
If key not provided, a default model `gpt-4` will be used.
- chunk_token_size (Optional, int): the chunk token size for the retrieve chat.
If key not provided, a default size `max_tokens * 0.4` will be used.
- context_max_tokens (Optional, int): the context max token size for the retrieve chat.
If key not provided, a default size `max_tokens * 0.8` will be used.
- chunk_mode (Optional, str): the chunk mode for the retrieve chat. Possible values are
"multi_lines" and "one_line". If key not provided, a default mode `multi_lines` will be used.
- must_break_at_empty_line (Optional, bool): chunk will only break at empty line if True. Default is True.
If chunk_mode is "one_line", this parameter will be ignored.
- embedding_model (Optional, str): the embedding model to use for the retrieve chat.
If key not provided, a default model `BAAI/bge-small-en-v1.5` will be used. All available models
can be found at `https://qdrant.github.io/fastembed/examples/Supported_Models/`.
- customized_prompt (Optional, str): the customized prompt for the retrieve chat. Default is None.
- customized_answer_prefix (Optional, str): the customized answer prefix for the retrieve chat. Default is "".
If not "" and the customized_answer_prefix is not in the answer, `Update Context` will be triggered.
- update_context (Optional, bool): if False, will not apply `Update Context` for interactive retrieval. Default is True.
- custom_token_count_function (Optional, Callable): a custom function to count the number of tokens in a string.
The function should take a string as input and return three integers (token_count, tokens_per_message, tokens_per_name).
Default is None, tiktoken will be used and may not be accurate for non-OpenAI models.
- custom_text_split_function (Optional, Callable): a custom function to split a string into a list of strings.
Default is None, will use the default function in `autogen.retrieve_utils.split_text_to_chunks`.
- custom_text_types (Optional, List[str]): a list of file types to be processed. Default is `autogen.retrieve_utils.TEXT_FORMATS`.
This only applies to files under the directories in `docs_path`. Explicitly included files and urls will be chunked regardless of their types.
- recursive (Optional, bool): whether to search documents recursively in the docs_path. Default is True.
- parallel (Optional, int): How many parallel workers to use for embedding. Defaults to the number of CPU cores.
- on_disk (Optional, bool): Whether to store the collection on disk. Default is False.
- quantization_config: Quantization configuration. If None, quantization will be disabled.
- hnsw_config: HNSW configuration. If None, default configuration will be used.
You can find more info about the hnsw configuration options at https://qdrant.tech/documentation/concepts/indexing/#vector-index.
API Reference: https://qdrant.github.io/qdrant/redoc/index.html#tag/collections/operation/create_collection
- payload_indexing: Whether to create a payload index for the document field. Default is False.
You can find more info about the payload indexing options at https://qdrant.tech/documentation/concepts/indexing/#payload-index
API Reference: https://qdrant.github.io/qdrant/redoc/index.html#tag/collections/operation/create_field_index
**kwargs (dict): other kwargs in [UserProxyAgent](../user_proxy_agent#__init__).
"""
warnings.warn(
"The QdrantRetrieveUserProxyAgent is deprecated. Please use the RetrieveUserProxyAgent instead, set `vector_db` to `qdrant`.",
DeprecationWarning,
stacklevel=2,
)
super().__init__(name, human_input_mode, is_termination_msg, retrieve_config, **kwargs)
self._client = self._retrieve_config.get("client", QdrantClient(":memory:"))
self._embedding_model = self._retrieve_config.get("embedding_model", "BAAI/bge-small-en-v1.5")
# Uses all available CPU cores to encode data when set to 0
self._parallel = self._retrieve_config.get("parallel", 0)
self._on_disk = self._retrieve_config.get("on_disk", False)
self._quantization_config = self._retrieve_config.get("quantization_config", None)
self._hnsw_config = self._retrieve_config.get("hnsw_config", None)
self._payload_indexing = self._retrieve_config.get("payload_indexing", False)
def retrieve_docs(self, problem: str, n_results: int = 20, search_string: str = ""):
"""
Args:
problem (str): the problem to be solved.
n_results (int): the number of results to be retrieved. Default is 20.
search_string (str): only docs that contain an exact match of this string will be retrieved. Default is "".
"""
if not self._collection:
print("Trying to create collection.")
create_qdrant_from_dir(
dir_path=self._docs_path,
max_tokens=self._chunk_token_size,
client=self._client,
collection_name=self._collection_name,
chunk_mode=self._chunk_mode,
must_break_at_empty_line=self._must_break_at_empty_line,
embedding_model=self._embedding_model,
custom_text_split_function=self.custom_text_split_function,
custom_text_types=self._custom_text_types,
recursive=self._recursive,
extra_docs=self._extra_docs,
parallel=self._parallel,
on_disk=self._on_disk,
quantization_config=self._quantization_config,
hnsw_config=self._hnsw_config,
payload_indexing=self._payload_indexing,
)
self._collection = True
results = query_qdrant(
query_texts=problem,
n_results=n_results,
search_string=search_string,
client=self._client,
collection_name=self._collection_name,
embedding_model=self._embedding_model,
)
results["contents"] = results.pop("documents")
results = chroma_results_to_query_results(results, "distances")
results = filter_results_by_distance(results, self._distance_threshold)
self._search_string = search_string
self._results = results
def create_qdrant_from_dir(
dir_path: str,
max_tokens: int = 4000,
client: QdrantClient = None,
collection_name: str = "all-my-documents",
chunk_mode: str = "multi_lines",
must_break_at_empty_line: bool = True,
embedding_model: str = "BAAI/bge-small-en-v1.5",
custom_text_split_function: Callable = None,
custom_text_types: List[str] = TEXT_FORMATS,
recursive: bool = True,
extra_docs: bool = False,
parallel: int = 0,
on_disk: bool = False,
quantization_config: Optional[models.QuantizationConfig] = None,
hnsw_config: Optional[models.HnswConfigDiff] = None,
payload_indexing: bool = False,
qdrant_client_options: Optional[Dict] = {},
):
"""Create a Qdrant collection from all the files in a given directory, the directory can also be a single file or a
url to a single file.
Args:
dir_path (str): the path to the directory, file or url.
max_tokens (Optional, int): the maximum number of tokens per chunk. Default is 4000.
client (Optional, QdrantClient): the QdrantClient instance. Default is None.
collection_name (Optional, str): the name of the collection. Default is "all-my-documents".
chunk_mode (Optional, str): the chunk mode. Default is "multi_lines".
must_break_at_empty_line (Optional, bool): Whether to break at empty line. Default is True.
embedding_model (Optional, str): the embedding model to use. Default is "BAAI/bge-small-en-v1.5".
The list of all the available models can be at https://qdrant.github.io/fastembed/examples/Supported_Models/.
custom_text_split_function (Optional, Callable): a custom function to split a string into a list of strings.
Default is None, will use the default function in `autogen.retrieve_utils.split_text_to_chunks`.
custom_text_types (Optional, List[str]): a list of file types to be processed. Default is TEXT_FORMATS.
recursive (Optional, bool): whether to search documents recursively in the dir_path. Default is True.
extra_docs (Optional, bool): whether to add more documents in the collection. Default is False
parallel (Optional, int): How many parallel workers to use for embedding. Defaults to the number of CPU cores
on_disk (Optional, bool): Whether to store the collection on disk. Default is False.
quantization_config: Quantization configuration. If None, quantization will be disabled.
Ref: https://qdrant.github.io/qdrant/redoc/index.html#tag/collections/operation/create_collection
hnsw_config: HNSW configuration. If None, default configuration will be used.
Ref: https://qdrant.github.io/qdrant/redoc/index.html#tag/collections/operation/create_collection
payload_indexing: Whether to create a payload index for the document field. Default is False.
qdrant_client_options: (Optional, dict): the options for instantiating the qdrant client.
Ref: https://github.com/qdrant/qdrant-client/blob/master/qdrant_client/qdrant_client.py#L36-L58.
"""
if client is None:
client = QdrantClient(**qdrant_client_options)
client.set_model(embedding_model)
if custom_text_split_function is not None:
chunks, sources = split_files_to_chunks(
get_files_from_dir(dir_path, custom_text_types, recursive),
custom_text_split_function=custom_text_split_function,
)
else:
chunks, sources = split_files_to_chunks(
get_files_from_dir(dir_path, custom_text_types, recursive), max_tokens, chunk_mode, must_break_at_empty_line
)
logger.info(f"Found {len(chunks)} chunks.")
collection = None
# Check if collection by same name exists, if not, create it with custom options
try:
collection = client.get_collection(collection_name=collection_name)
except Exception:
client.create_collection(
collection_name=collection_name,
vectors_config=client.get_fastembed_vector_params(
on_disk=on_disk, quantization_config=quantization_config, hnsw_config=hnsw_config
),
)
collection = client.get_collection(collection_name=collection_name)
length = 0
if extra_docs:
length = len(collection.get()["ids"])
# Upsert in batch of 100 or less if the total number of chunks is less than 100
for i in range(0, len(chunks), min(100, len(chunks))):
end_idx = i + min(100, len(chunks) - i)
client.add(
collection_name,
documents=chunks[i:end_idx],
ids=[(j + length) for j in range(i, end_idx)],
parallel=parallel,
)
# Create a payload index for the document field
# Enables highly efficient payload filtering. Reference: https://qdrant.tech/documentation/concepts/indexing/#indexing
# Creating an index requires additional computational resources and memory.
# If filtering performance is critical, we can consider creating an index.
if payload_indexing:
client.create_payload_index(
collection_name=collection_name,
field_name="document",
field_schema=models.TextIndexParams(
type="text",
tokenizer=models.TokenizerType.WORD,
min_token_len=2,
max_token_len=15,
),
)
def query_qdrant(
query_texts: List[str],
n_results: int = 10,
client: QdrantClient = None,
collection_name: str = "all-my-documents",
search_string: str = "",
embedding_model: str = "BAAI/bge-small-en-v1.5",
qdrant_client_options: Optional[Dict] = {},
) -> List[List[QueryResponse]]:
"""Perform a similarity search with filters on a Qdrant collection
Args:
query_texts (List[str]): the query texts.
n_results (Optional, int): the number of results to return. Default is 10.
client (Optional, API): the QdrantClient instance. A default in-memory client will be instantiated if None.
collection_name (Optional, str): the name of the collection. Default is "all-my-documents".
search_string (Optional, str): the search string. Default is "".
embedding_model (Optional, str): the embedding model to use. Default is "all-MiniLM-L6-v2". Will be ignored if embedding_function is not None.
qdrant_client_options: (Optional, dict): the options for instantiating the qdrant client. Reference: https://github.com/qdrant/qdrant-client/blob/master/qdrant_client/qdrant_client.py#L36-L58.
Returns:
List[List[QueryResponse]]: the query result. The format is:
class QueryResponse(BaseModel, extra="forbid"): # type: ignore
id: Union[str, int]
embedding: Optional[List[float]]
metadata: Dict[str, Any]
document: str
score: float
"""
if client is None:
client = QdrantClient(**qdrant_client_options)
client.set_model(embedding_model)
results = client.query_batch(
collection_name,
query_texts,
limit=n_results,
query_filter=(
models.Filter(
must=[
models.FieldCondition(
key="document",
match=models.MatchText(text=search_string),
)
]
)
if search_string
else None
),
)
data = {
"ids": [[result.id for result in sublist] for sublist in results],
"documents": [[result.document for result in sublist] for sublist in results],
"distances": [[result.score for result in sublist] for sublist in results],
"metadatas": [[result.metadata for result in sublist] for sublist in results],
}
return data