autogen/test/test_retrieve_utils.py
Chi Wang c4f8b1c761
Dev/v0.2 (#393)
* api_base -> base_url (#383)

* InvalidRequestError -> BadRequestError (#389)

* remove api_key_path; close #388

* close #402 (#403)

* openai client (#419)

* openai client

* client test

* _client -> client

* _client -> client

* extra kwargs

* Completion -> client (#426)

* Completion -> client

* Completion -> client

* Completion -> client

* Completion -> client

* support aoai

* fix test error

* remove commented code

* support aoai

* annotations

* import

* reduce test

* skip test

* skip test

* skip test

* debug test

* rename test

* update workflow

* update workflow

* env

* py version

* doc improvement

* docstr update

* openai<1

* add tiktoken to dependency

* filter_func

* async test

* dependency

* migration guide (#477)

* migration guide

* change in kwargs

* simplify header

* update optigude description

* deal with azure gpt-3.5

* add back test_eval_math_responses

* timeout

* Add back tests for RetrieveChat (#480)

* Add back tests for RetrieveChat

* Fix format

* Update dependencies order

* Fix path

* Fix path

* Fix path

* Fix tests

* Add not run openai on MacOS or Win

* Update skip openai tests

* Remove unnecessary dependencies, improve format

* Add py3.8 for testing qdrant

* Fix multiline error of windows

* Add openai tests

* Add dependency mathchat, remove unused envs

* retrieve chat is tested

* bump version to 0.2.0b1

---------

Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-11-04 04:01:49 +00:00

192 lines
7.6 KiB
Python

"""
Unit test for retrieve_utils.py
"""
try:
import chromadb
from autogen.retrieve_utils import (
split_text_to_chunks,
extract_text_from_pdf,
split_files_to_chunks,
get_files_from_dir,
is_url,
create_vector_db_from_dir,
query_vector_db,
)
from autogen.token_count_utils import count_token
except ImportError:
skip = True
else:
skip = False
import os
import pytest
test_dir = os.path.join(os.path.dirname(__file__), "test_files")
expected_text = """AutoGen is an advanced tool designed to assist developers in harnessing the capabilities
of Large Language Models (LLMs) for various applications. The primary purpose of AutoGen is to automate and
simplify the process of building applications that leverage the power of LLMs, allowing for seamless
integration, testing, and deployment."""
@pytest.mark.skipif(skip, reason="dependency is not installed")
class TestRetrieveUtils:
def test_split_text_to_chunks(self):
long_text = "A" * 10000
chunks = split_text_to_chunks(long_text, max_tokens=1000)
assert all(count_token(chunk) <= 1000 for chunk in chunks)
def test_split_text_to_chunks_raises_on_invalid_chunk_mode(self):
with pytest.raises(AssertionError):
split_text_to_chunks("A" * 10000, chunk_mode="bogus_chunk_mode")
def test_extract_text_from_pdf(self):
pdf_file_path = os.path.join(test_dir, "example.pdf")
assert "".join(expected_text.split()) == "".join(extract_text_from_pdf(pdf_file_path).strip().split())
def test_split_files_to_chunks(self):
pdf_file_path = os.path.join(test_dir, "example.pdf")
txt_file_path = os.path.join(test_dir, "example.txt")
chunks = split_files_to_chunks([pdf_file_path, txt_file_path])
assert all(isinstance(chunk, str) and chunk.strip() for chunk in chunks)
def test_get_files_from_dir(self):
files = get_files_from_dir(test_dir)
assert all(os.path.isfile(file) for file in files)
pdf_file_path = os.path.join(test_dir, "example.pdf")
txt_file_path = os.path.join(test_dir, "example.txt")
files = get_files_from_dir([pdf_file_path, txt_file_path])
assert all(os.path.isfile(file) for file in files)
def test_is_url(self):
assert is_url("https://www.example.com")
assert not is_url("not_a_url")
def test_create_vector_db_from_dir(self):
db_path = "/tmp/test_retrieve_utils_chromadb.db"
if os.path.exists(db_path):
client = chromadb.PersistentClient(path=db_path)
else:
client = chromadb.PersistentClient(path=db_path)
create_vector_db_from_dir(test_dir, client=client)
assert client.get_collection("all-my-documents")
def test_query_vector_db(self):
db_path = "/tmp/test_retrieve_utils_chromadb.db"
if os.path.exists(db_path):
client = chromadb.PersistentClient(path=db_path)
else: # If the database does not exist, create it first
client = chromadb.PersistentClient(path=db_path)
create_vector_db_from_dir(test_dir, client=client)
results = query_vector_db(["autogen"], client=client)
assert isinstance(results, dict) and any("autogen" in res[0].lower() for res in results.get("documents", []))
def test_custom_vector_db(self):
try:
import lancedb
except ImportError:
return
from autogen.agentchat.contrib.retrieve_user_proxy_agent import RetrieveUserProxyAgent
db_path = "/tmp/lancedb"
def create_lancedb():
db = lancedb.connect(db_path)
data = [
{"vector": [1.1, 1.2], "id": 1, "documents": "This is a test document spark"},
{"vector": [0.2, 1.8], "id": 2, "documents": "This is another test document"},
{"vector": [0.1, 0.3], "id": 3, "documents": "This is a third test document spark"},
{"vector": [0.5, 0.7], "id": 4, "documents": "This is a fourth test document"},
{"vector": [2.1, 1.3], "id": 5, "documents": "This is a fifth test document spark"},
{"vector": [5.1, 8.3], "id": 6, "documents": "This is a sixth test document"},
]
try:
db.create_table("my_table", data)
except OSError:
pass
class MyRetrieveUserProxyAgent(RetrieveUserProxyAgent):
def query_vector_db(
self,
query_texts,
n_results=10,
search_string="",
):
if query_texts:
vector = [0.1, 0.3]
db = lancedb.connect(db_path)
table = db.open_table("my_table")
query = table.search(vector).where(f"documents LIKE '%{search_string}%'").limit(n_results).to_df()
return {"ids": [query["id"].tolist()], "documents": [query["documents"].tolist()]}
def retrieve_docs(self, problem: str, n_results: int = 20, search_string: str = ""):
results = self.query_vector_db(
query_texts=[problem],
n_results=n_results,
search_string=search_string,
)
self._results = results
print("doc_ids: ", results["ids"])
ragragproxyagent = MyRetrieveUserProxyAgent(
name="ragproxyagent",
human_input_mode="NEVER",
max_consecutive_auto_reply=2,
retrieve_config={
"task": "qa",
"chunk_token_size": 2000,
"client": "__",
"embedding_model": "all-mpnet-base-v2",
},
)
create_lancedb()
ragragproxyagent.retrieve_docs("This is a test document spark", n_results=10, search_string="spark")
assert ragragproxyagent._results["ids"] == [[3, 1, 5]]
def test_custom_text_split_function(self):
def custom_text_split_function(text):
return [text[: len(text) // 2], text[len(text) // 2 :]]
db_path = "/tmp/test_retrieve_utils_chromadb.db"
client = chromadb.PersistentClient(path=db_path)
create_vector_db_from_dir(
os.path.join(test_dir, "example.txt"),
client=client,
collection_name="mytestcollection",
custom_text_split_function=custom_text_split_function,
get_or_create=True,
)
results = query_vector_db(["autogen"], client=client, collection_name="mytestcollection", n_results=1)
assert (
results.get("documents")[0][0]
== "AutoGen is an advanced tool designed to assist developers in harnessing the capabilities\nof Large Language Models (LLMs) for various applications. The primary purpose o"
)
def test_retrieve_utils(self):
client = chromadb.PersistentClient(path="/tmp/chromadb")
create_vector_db_from_dir(
dir_path="./website/docs", client=client, collection_name="autogen-docs", get_or_create=True
)
results = query_vector_db(
query_texts=[
"How can I use AutoGen UserProxyAgent and AssistantAgent to do code generation?",
],
n_results=4,
client=client,
collection_name="autogen-docs",
search_string="AutoGen",
)
print(results["ids"][0])
assert len(results["ids"][0]) == 4
if __name__ == "__main__":
pytest.main()
db_path = "/tmp/test_retrieve_utils_chromadb.db"
if os.path.exists(db_path):
os.remove(db_path) # Delete the database file after tests are finished