autogen/test/agentchat/contrib/retrievechat/test_qdrant_retrievechat.py
Audel Rouhi 1b8d65df0a
2447 fix pgvector tests and notebook (#2455)
* Re-added missing notebook

* Test installing postgres

* Error handle the connection.

* Fixed import.

* Fixed import.

* Fixed creation of collection without client.

* PGVector portion working. OpenAI untested.

* Fixed prints.

* Added output.

* Fixed pre-commits.

* Run pgvector notebook

* Improve efficiency of get_collection

* Fix delete_collection

* Fixed issues with pytests and validated functions.

* Validated pytests.

* Fixed pre-commits

* Separated extra_requires to allow more logic. Retrieve_chat base dependencies included on pgvector and qdrant.

* Fixed extra newline.

* Added username and password fields.

* URL Encode the connection string parameters to support symbols like %

* Fixed pre-commits.

* Added pgvector service

* pgvector doesn't have health intervals.

* Switched to colon based key values.

* Run on Ubuntu only. Linux is only option with container service support.

* Using default credentials instead.

* Fix postgres setup

* Fix postgres setup

* Don't skip tests on win and mac

* Fix command error

* Try apt install postgresql

* Assert table does not exist when deleted.

* Raise value error on a empty list or None value provided for IDs

* pre-commit

* Add install pgvector

* Add install pgvector

* Reorg test files, create a separate job for test pgvector

* Fix format

* Fix env format

* Simplify job name, enable test_retrieve_config

* Fix test_retrieve_config

* Corrected behavior for get_docs_by_ids with no ids returning all docs.

* Corrected behavior for get_docs_by_ids with no ids returning all docs.

* Fixed pre-commits.

* Added return values for all functions.

* Validated distance search is implemented correctly.

* Validated all pytests

* Removed print.

* Added default clause.

* Make ids optional

* Fix test, make it more robust

* Bump version of openai for the vector_store support

* Added support for choosing the sentence transformer model.

* Added error handling for model name entered.

* Updated model info.

* Added model_name db_config param.

* pre-commit fixes and last link fix.

* Use secrets password.

* fix: link fixed

* updated tests

* Updated config_list.

* pre-commit fix.

* Added chat_result to all output.
Unable to re-run notebooks.

* Pre-commit fix detected this requirement.

* Fix python 3.8 and 3.9 not supported for macos

* Fix python 3.8 and 3.9 not supported for macos

* Fix format

* Reran notebook with MetaLlama3Instruct7BQ4_k_M

* added gpt model.

* Reran notebook

---------

Co-authored-by: Li Jiang <bnujli@gmail.com>
Co-authored-by: Hk669 <hrushi669@gmail.com>
2024-04-28 13:43:02 +00:00

114 lines
3.4 KiB
Python
Executable File

#!/usr/bin/env python3 -m pytest
import os
import sys
import pytest
from autogen import config_list_from_json
from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent
sys.path.append(os.path.join(os.path.dirname(__file__), "../../.."))
from conftest import skip_openai # noqa: E402
sys.path.append(os.path.join(os.path.dirname(__file__), "../.."))
from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402
try:
import fastembed
from qdrant_client import QdrantClient
from autogen.agentchat.contrib.qdrant_retrieve_user_proxy_agent import (
QdrantRetrieveUserProxyAgent,
create_qdrant_from_dir,
query_qdrant,
)
QDRANT_INSTALLED = True
except ImportError:
QDRANT_INSTALLED = False
try:
import openai
except ImportError:
skip = True
else:
skip = False or skip_openai
test_dir = os.path.join(os.path.dirname(__file__), "../../..", "test_files")
@pytest.mark.skipif(
sys.platform in ["darwin", "win32"] or not QDRANT_INSTALLED or skip,
reason="do not run on MacOS or windows OR dependency is not installed OR requested to skip",
)
def test_retrievechat():
conversations = {}
# ChatCompletion.start_logging(conversations) # deprecated in v0.2
config_list = config_list_from_json(
OAI_CONFIG_LIST,
file_location=KEY_LOC,
)
assistant = RetrieveAssistantAgent(
name="assistant",
system_message="You are a helpful assistant.",
llm_config={
"timeout": 600,
"seed": 42,
"config_list": config_list,
},
)
client = QdrantClient(":memory:")
ragproxyagent = QdrantRetrieveUserProxyAgent(
name="ragproxyagent",
human_input_mode="NEVER",
max_consecutive_auto_reply=2,
retrieve_config={
"client": client,
"docs_path": "./website/docs",
"chunk_token_size": 2000,
},
)
assistant.reset()
code_problem = "How can I use FLAML to perform a classification task, set use_spark=True, train 30 seconds and force cancel jobs if time limit is reached."
ragproxyagent.initiate_chat(assistant, message=ragproxyagent.message_generator, problem=code_problem, silent=True)
print(conversations)
@pytest.mark.skipif(not QDRANT_INSTALLED, reason="qdrant_client is not installed")
def test_qdrant_filter():
client = QdrantClient(":memory:")
create_qdrant_from_dir(dir_path="./website/docs", client=client, collection_name="autogen-docs")
results = query_qdrant(
query_texts=["How can I use AutoGen UserProxyAgent and AssistantAgent to do code generation?"],
n_results=4,
client=client,
collection_name="autogen-docs",
# Return only documents with "AutoGen" in the string
search_string="AutoGen",
)
assert len(results["ids"][0]) == 4
@pytest.mark.skipif(not QDRANT_INSTALLED, reason="qdrant_client is not installed")
def test_qdrant_search():
client = QdrantClient(":memory:")
create_qdrant_from_dir(test_dir, client=client)
assert client.get_collection("all-my-documents")
# Perform a semantic search without any filter
results = query_qdrant(["autogen"], client=client)
assert isinstance(results, dict) and any("autogen" in res[0].lower() for res in results.get("documents", []))
if __name__ == "__main__":
test_retrievechat()
test_qdrant_filter()
test_qdrant_search()