mirror of
https://github.com/microsoft/autogen.git
synced 2025-08-04 23:02:09 +00:00

* Re-added missing notebook * Test installing postgres * Error handle the connection. * Fixed import. * Fixed import. * Fixed creation of collection without client. * PGVector portion working. OpenAI untested. * Fixed prints. * Added output. * Fixed pre-commits. * Run pgvector notebook * Improve efficiency of get_collection * Fix delete_collection * Fixed issues with pytests and validated functions. * Validated pytests. * Fixed pre-commits * Separated extra_requires to allow more logic. Retrieve_chat base dependencies included on pgvector and qdrant. * Fixed extra newline. * Added username and password fields. * URL Encode the connection string parameters to support symbols like % * Fixed pre-commits. * Added pgvector service * pgvector doesn't have health intervals. * Switched to colon based key values. * Run on Ubuntu only. Linux is only option with container service support. * Using default credentials instead. * Fix postgres setup * Fix postgres setup * Don't skip tests on win and mac * Fix command error * Try apt install postgresql * Assert table does not exist when deleted. * Raise value error on a empty list or None value provided for IDs * pre-commit * Add install pgvector * Add install pgvector * Reorg test files, create a separate job for test pgvector * Fix format * Fix env format * Simplify job name, enable test_retrieve_config * Fix test_retrieve_config * Corrected behavior for get_docs_by_ids with no ids returning all docs. * Corrected behavior for get_docs_by_ids with no ids returning all docs. * Fixed pre-commits. * Added return values for all functions. * Validated distance search is implemented correctly. * Validated all pytests * Removed print. * Added default clause. * Make ids optional * Fix test, make it more robust * Bump version of openai for the vector_store support * Added support for choosing the sentence transformer model. * Added error handling for model name entered. * Updated model info. * Added model_name db_config param. * pre-commit fixes and last link fix. * Use secrets password. * fix: link fixed * updated tests * Updated config_list. * pre-commit fix. * Added chat_result to all output. Unable to re-run notebooks. * Pre-commit fix detected this requirement. * Fix python 3.8 and 3.9 not supported for macos * Fix python 3.8 and 3.9 not supported for macos * Fix format * Reran notebook with MetaLlama3Instruct7BQ4_k_M * added gpt model. * Reran notebook --------- Co-authored-by: Li Jiang <bnujli@gmail.com> Co-authored-by: Hk669 <hrushi669@gmail.com>
104 lines
2.8 KiB
Python
Executable File
104 lines
2.8 KiB
Python
Executable File
#!/usr/bin/env python3 -m pytest
|
|
|
|
import os
|
|
import sys
|
|
|
|
import pytest
|
|
|
|
import autogen
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), "../../.."))
|
|
from conftest import reason, skip_openai # noqa: E402
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), "../.."))
|
|
from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402
|
|
|
|
try:
|
|
import chromadb
|
|
import openai
|
|
from chromadb.utils import embedding_functions as ef
|
|
|
|
from autogen.agentchat.contrib.retrieve_assistant_agent import (
|
|
RetrieveAssistantAgent,
|
|
)
|
|
from autogen.agentchat.contrib.retrieve_user_proxy_agent import (
|
|
RetrieveUserProxyAgent,
|
|
)
|
|
except ImportError:
|
|
skip = True
|
|
else:
|
|
skip = False
|
|
|
|
reason = "do not run on MacOS or windows OR dependency is not installed OR " + reason
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
sys.platform in ["darwin", "win32"] or skip or skip_openai,
|
|
reason=reason,
|
|
)
|
|
def test_retrievechat():
|
|
conversations = {}
|
|
# autogen.ChatCompletion.start_logging(conversations) # deprecated in v0.2
|
|
|
|
config_list = autogen.config_list_from_json(
|
|
OAI_CONFIG_LIST,
|
|
file_location=KEY_LOC,
|
|
)
|
|
|
|
assistant = RetrieveAssistantAgent(
|
|
name="assistant",
|
|
system_message="You are a helpful assistant.",
|
|
llm_config={
|
|
"timeout": 600,
|
|
"seed": 42,
|
|
"config_list": config_list,
|
|
},
|
|
)
|
|
|
|
sentence_transformer_ef = ef.SentenceTransformerEmbeddingFunction()
|
|
ragproxyagent = RetrieveUserProxyAgent(
|
|
name="ragproxyagent",
|
|
human_input_mode="NEVER",
|
|
max_consecutive_auto_reply=2,
|
|
retrieve_config={
|
|
"docs_path": "./website/docs",
|
|
"chunk_token_size": 2000,
|
|
"model": config_list[0]["model"],
|
|
"client": chromadb.PersistentClient(path="/tmp/chromadb"),
|
|
"embedding_function": sentence_transformer_ef,
|
|
"get_or_create": True,
|
|
},
|
|
)
|
|
|
|
assistant.reset()
|
|
|
|
code_problem = "How can I use FLAML to perform a classification task, set use_spark=True, train 30 seconds and force cancel jobs if time limit is reached."
|
|
ragproxyagent.initiate_chat(
|
|
assistant, message=ragproxyagent.message_generator, problem=code_problem, search_string="spark", silent=True
|
|
)
|
|
|
|
print(conversations)
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
sys.platform in ["darwin", "win32"] or skip,
|
|
reason=reason,
|
|
)
|
|
def test_retrieve_config():
|
|
# test warning message when no docs_path is provided
|
|
ragproxyagent = RetrieveUserProxyAgent(
|
|
name="ragproxyagent",
|
|
human_input_mode="NEVER",
|
|
max_consecutive_auto_reply=2,
|
|
retrieve_config={
|
|
"chunk_token_size": 2000,
|
|
"get_or_create": True,
|
|
},
|
|
)
|
|
assert ragproxyagent._docs_path is None
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# test_retrievechat()
|
|
test_retrieve_config()
|