autogen/test/test_automl.py
Chi Wang 776aa55189
V0.2.2 (#19)
* v0.2.2

separate the HPO part into the module flaml.tune
enhanced implementation of FLOW^2, CFO and BlendSearch
support parallel tuning using ray tune
add support for sample_weight and generic fit arguments
enable mlflow logging

Co-authored-by: Chi Wang (MSR) <chiw@microsoft.com>
Co-authored-by: qingyun-wu <qw2ky@virginia.edu>
2021-02-05 21:41:14 -08:00

344 lines
13 KiB
Python

import unittest
import numpy as np
import scipy.sparse
from sklearn.datasets import load_boston, load_iris, load_wine
from flaml import AutoML
from flaml.data import get_output_from_log
from flaml.model import SKLearnEstimator
from rgf.sklearn import RGFClassifier, RGFRegressor
from flaml import tune
class MyRegularizedGreedyForest(SKLearnEstimator):
def __init__(self, task = 'binary:logistic', n_jobs = 1, max_leaf = 4,
n_iter = 1, n_tree_search = 1, opt_interval = 1, learning_rate = 1.0,
min_samples_leaf = 1, **params):
super().__init__(task, **params)
if 'regression' in task:
self.estimator_class = RGFRegressor
else:
self.estimator_class = RGFClassifier
# round integer hyperparameters
self.params = {
"n_jobs": n_jobs,
'max_leaf': int(round(max_leaf)),
'n_iter': int(round(n_iter)),
'n_tree_search': int(round(n_tree_search)),
'opt_interval': int(round(opt_interval)),
'learning_rate': learning_rate,
'min_samples_leaf':int(round(min_samples_leaf))
}
@classmethod
def search_space(cls, data_size, task):
space = {
'max_leaf': {'domain': tune.qloguniform(
lower = 4, upper = data_size, q = 1), 'init_value': 4},
'n_iter': {'domain': tune.qloguniform(
lower = 1, upper = data_size, q = 1), 'init_value': 1},
'n_tree_search': {'domain': tune.qloguniform(
lower = 1, upper = 32768, q = 1), 'init_value': 1},
'opt_interval': {'domain': tune.qloguniform(
lower = 1, upper = 10000, q = 1), 'init_value': 100},
'learning_rate': {'domain': tune.loguniform(
lower = 0.01, upper = 20.0)},
'min_samples_leaf': {'domain': tune.qloguniform(
lower = 1, upper = 20, q = 1), 'init_value': 20},
}
return space
@classmethod
def size(cls, config):
max_leaves = int(round(config['max_leaf']))
n_estimators = int(round(config['n_iter']))
return (max_leaves*3 + (max_leaves-1)*4 + 1.0)*n_estimators*8
@classmethod
def cost_relative2lgbm(cls):
return 1.0
def custom_metric(X_test, y_test, estimator, labels, X_train, y_train,
weight_test=None, weight_train=None):
from sklearn.metrics import log_loss
y_pred = estimator.predict_proba(X_test)
test_loss = log_loss(y_test, y_pred, labels=labels,
sample_weight=weight_test)
y_pred = estimator.predict_proba(X_train)
train_loss = log_loss(y_train, y_pred, labels=labels,
sample_weight=weight_train)
alpha = 0.5
return test_loss * (1 + alpha) - alpha * train_loss, [test_loss, train_loss]
class TestAutoML(unittest.TestCase):
def test_custom_learner(self):
automl = AutoML()
automl.add_learner(learner_name = 'RGF',
learner_class = MyRegularizedGreedyForest)
X_train, y_train = load_wine(return_X_y=True)
settings = {
"time_budget": 10, # total running time in seconds
"estimator_list": ['RGF', 'lgbm', 'rf', 'xgboost'],
"task": 'classification', # task type
"sample": True, # whether to subsample training data
"log_file_name": "test/wine.log",
"log_training_metric": True, # whether to log training metric
"n_jobs": 1,
}
'''The main flaml automl API'''
automl.fit(X_train = X_train, y_train = y_train, **settings)
def test_ensemble(self):
automl = AutoML()
automl.add_learner(learner_name = 'RGF',
learner_class = MyRegularizedGreedyForest)
X_train, y_train = load_wine(return_X_y=True)
settings = {
"time_budget": 10, # total running time in seconds
# "estimator_list": ['lgbm', 'xgboost'],
"estimator_list": ['RGF', 'lgbm', 'rf', 'xgboost'],
"task": 'classification', # task type
"sample": True, # whether to subsample training data
"log_file_name": "test/wine.log",
"log_training_metric": True, # whether to log training metric
"ensemble": True,
"n_jobs": 1,
}
'''The main flaml automl API'''
automl.fit(X_train = X_train, y_train = y_train, **settings)
def test_dataframe(self):
self.test_classification(True)
def test_custom_metric(self):
X_train, y_train = load_iris(return_X_y=True)
automl_experiment = AutoML()
automl_settings = {
"time_budget": 10,
'eval_method': 'holdout',
"metric": custom_metric,
"task": 'classification',
"log_file_name": "test/iris_custom.log",
"log_training_metric": True,
'log_type': 'all',
"n_jobs": 1,
"model_history": True,
"sample_weight": np.ones(len(y_train)),
}
automl_experiment.fit(X_train=X_train, y_train=y_train,
**automl_settings)
print(automl_experiment.classes_)
print(automl_experiment.predict_proba(X_train))
print(automl_experiment.model)
print(automl_experiment.config_history)
print(automl_experiment.model_history)
print(automl_experiment.best_iteration)
print(automl_experiment.best_estimator)
automl_experiment = AutoML()
estimator = automl_experiment.get_estimator_from_log(
automl_settings["log_file_name"], record_id=0,
task='multi')
print(estimator)
time_history, best_valid_loss_history, valid_loss_history, \
config_history, train_loss_history = get_output_from_log(
filename=automl_settings['log_file_name'], time_budget=6)
print(train_loss_history)
def test_classification(self, as_frame=False):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 4,
"metric": 'accuracy',
"task": 'classification',
"log_file_name": "test/iris.log",
"log_training_metric": True,
"n_jobs": 1,
"model_history": True
}
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
automl_experiment.fit(X_train=X_train, y_train=y_train,
**automl_settings)
print(automl_experiment.classes_)
print(automl_experiment.predict_proba(X_train)[:5])
print(automl_experiment.model)
print(automl_experiment.config_history)
print(automl_experiment.model_history)
print(automl_experiment.best_iteration)
print(automl_experiment.best_estimator)
del automl_settings["metric"]
del automl_settings["model_history"]
del automl_settings["log_training_metric"]
automl_experiment = AutoML()
duration = automl_experiment.retrain_from_log(
log_file_name=automl_settings["log_file_name"],
X_train=X_train, y_train=y_train,
train_full=True, record_id=0)
print(duration)
print(automl_experiment.model)
print(automl_experiment.predict_proba(X_train)[:5])
def test_regression(self):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 2,
"metric": 'mse',
"task": 'regression',
"log_file_name": "test/boston.log",
"log_training_metric": True,
"n_jobs": 1,
"model_history": True
}
X_train, y_train = load_boston(return_X_y=True)
n = int(len(y_train)*9//10)
automl_experiment.fit(X_train=X_train[:n], y_train=y_train[:n],
X_val=X_train[n:], y_val=y_train[n:],
**automl_settings)
assert automl_experiment._state.eval_method == 'holdout'
print(automl_experiment.predict(X_train))
print(automl_experiment.model)
print(automl_experiment.config_history)
print(automl_experiment.model_history)
print(automl_experiment.best_iteration)
print(automl_experiment.best_estimator)
print(get_output_from_log(automl_settings["log_file_name"], 1))
def test_sparse_matrix_classification(self):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 2,
"metric": 'auto',
"task": 'classification',
"log_file_name": "test/sparse_classification.log",
"split_type": "uniform",
"n_jobs": 1,
"model_history": True
}
X_train = scipy.sparse.random(1554, 21, dtype=int)
y_train = np.random.randint(3, size=1554)
automl_experiment.fit(X_train=X_train, y_train=y_train,
**automl_settings)
print(automl_experiment.classes_)
print(automl_experiment.predict_proba(X_train))
print(automl_experiment.model)
print(automl_experiment.config_history)
print(automl_experiment.model_history)
print(automl_experiment.best_iteration)
print(automl_experiment.best_estimator)
def test_sparse_matrix_regression(self):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 2,
"metric": 'mae',
"task": 'regression',
"log_file_name": "test/sparse_regression.log",
"n_jobs": 1,
"model_history": True
}
X_train = scipy.sparse.random(300, 900, density=0.0001)
y_train = np.random.uniform(size=300)
X_val = scipy.sparse.random(100, 900, density=0.0001)
y_val = np.random.uniform(size=100)
automl_experiment.fit(X_train=X_train, y_train=y_train,
X_val=X_val, y_val=y_val,
**automl_settings)
assert automl_experiment._state.X_val.shape == X_val.shape
print(automl_experiment.predict(X_train))
print(automl_experiment.model)
print(automl_experiment.config_history)
print(automl_experiment.model_history)
print(automl_experiment.best_iteration)
print(automl_experiment.best_estimator)
print(automl_experiment.best_config)
print(automl_experiment.best_loss)
print(automl_experiment.best_config_train_time)
def test_sparse_matrix_xgboost(self):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 2,
"metric": 'ap',
"task": 'classification',
"log_file_name": "test/sparse_classification.log",
"estimator_list": ["xgboost"],
"log_type": "all",
"n_jobs": 1,
}
X_train = scipy.sparse.eye(900000)
y_train = np.random.randint(2, size=900000)
automl_experiment.fit(X_train=X_train, y_train=y_train,
**automl_settings)
print(automl_experiment.predict(X_train))
print(automl_experiment.model)
print(automl_experiment.config_history)
print(automl_experiment.model_history)
print(automl_experiment.best_iteration)
print(automl_experiment.best_estimator)
def test_sparse_matrix_lr(self):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 2,
"metric": 'f1',
"task": 'classification',
"log_file_name": "test/sparse_classification.log",
"estimator_list": ["lrl1", "lrl2"],
"log_type": "all",
"n_jobs": 1,
}
X_train = scipy.sparse.random(3000, 900, density=0.1)
y_train = np.random.randint(2, size=3000)
automl_experiment.fit(X_train=X_train, y_train=y_train,
**automl_settings)
print(automl_experiment.predict(X_train))
print(automl_experiment.model)
print(automl_experiment.config_history)
print(automl_experiment.model_history)
print(automl_experiment.best_iteration)
print(automl_experiment.best_estimator)
def test_sparse_matrix_regression_cv(self):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 2,
'eval_method': 'cv',
"task": 'regression',
"log_file_name": "test/sparse_regression.log",
"n_jobs": 1,
"model_history": True
}
X_train = scipy.sparse.random(100, 100)
y_train = np.random.uniform(size=100)
automl_experiment.fit(X_train=X_train, y_train=y_train,
**automl_settings)
print(automl_experiment.predict(X_train))
print(automl_experiment.model)
print(automl_experiment.config_history)
print(automl_experiment.model_history)
print(automl_experiment.best_iteration)
print(automl_experiment.best_estimator)
if __name__ == "__main__":
unittest.main()