mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-23 08:52:56 +00:00

* simplify the initiation of chat * version update * include openai * completion * load config list from json * initiate_chat * oai config list * oai config list * config list * config_list * raise_error * retry_time * raise condition * oai config list * catch file not found * catch openml error * handle openml error * handle openml error * handle openml error * handle openml error * handle openml error * handle openml error * close #1139 * use property * termination msg * AIUserProxyAgent * smaller dev container * update notebooks * match * document code execution and AIUserProxyAgent * gpt 3.5 config list * rate limit * variable visibility * remove unnecessary import * quote * notebook comments * remove mathchat from init import * two users * import location * expose config * return str not tuple * rate limit * ipython user proxy * message * None result * rate limit * rate limit * rate limit * rate limit
1071 lines
303 KiB
Plaintext
1071 lines
303 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"<a href=\"https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/autogen_agent_auto_feedback_from_code_execution.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "slide"
|
||
}
|
||
},
|
||
"source": [
|
||
"# Interactive LLM Agent with Auto Feedback from Code Execution\n",
|
||
"\n",
|
||
"FLAML offers an experimental feature of interactive LLM agents, which can be used to solve various tasks with human or automatic feedback, including tasks that require using tools via code.\n",
|
||
"Please find documentation about this feature [here](https://microsoft.github.io/FLAML/docs/Use-Cases/Auto-Generation#agents-experimental).\n",
|
||
"\n",
|
||
"In this notebook, we demonstrate how to use `AssistantAgent` and `UserProxyAgent` to write code and execute the code. Here `AssistantAgent` is an LLM-based agent that can write Python code (in a Python coding block) for a user to execute for a given task. `UserProxyAgent` is an agent which serves as a proxy for the human user to execute the code written by `AssistantAgent`, or automatically execute the code. Depending on the setting of `human_input_mode` and `max_consecutive_auto_reply`, the `UserProxyAgent` either solicits feedback from the human user or uses auto-feedback based on the result of code execution. For example, when `human_input_mode` is set to \"ALWAYS\", the `UserProxyAgent` will always prompt the user for feedback. When user feedback is provided, the `UserProxyAgent` will directly pass the feedback to `AssistantAgent` without doing any additional steps. When no user feedback is provided, the `UserProxyAgent` will execute the code written by `AssistantAgent` directly and return the execution results (success or failure and corresponding outputs) to `AssistantAgent`.\n",
|
||
"\n",
|
||
"## Requirements\n",
|
||
"\n",
|
||
"FLAML requires `Python>=3.8`. To run this notebook example, please install flaml with the [autogen] option:\n",
|
||
"```bash\n",
|
||
"pip install flaml[autogen]\n",
|
||
"```"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-02-13T23:40:52.317406Z",
|
||
"iopub.status.busy": "2023-02-13T23:40:52.316561Z",
|
||
"iopub.status.idle": "2023-02-13T23:40:52.321193Z",
|
||
"shell.execute_reply": "2023-02-13T23:40:52.320628Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# %pip install flaml[autogen]~=2.0.0rc4"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Set your API Endpoint\n",
|
||
"\n",
|
||
"The [`config_list_from_json`](https://microsoft.github.io/FLAML/docs/reference/autogen/oai/openai_utils#config_list_from_json) function loads a list of configurations from an environment variable or a json file.\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from flaml import oai\n",
|
||
"\n",
|
||
"config_list = oai.config_list_from_json(\n",
|
||
" \"OAI_CONFIG_LIST\",\n",
|
||
" filter_dict={\n",
|
||
" \"model\": [\"gpt-4\", \"gpt4\", \"gpt-4-32k\", \"gpt-4-32k-0314\"],\n",
|
||
" },\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"It first looks for environment variable \"OAI_CONFIG_LIST\" which needs to be a valid json string. If that variable is not found, it then looks for a json file named \"OAI_CONFIG_LIST\". It filters the configs by models (you can filter by other keys as well). Only the gpt-4 models are kept in the list based on the filter condition.\n",
|
||
"\n",
|
||
"The config list looks like the following:\n",
|
||
"```python\n",
|
||
"config_list = [\n",
|
||
" {\n",
|
||
" 'model': 'gpt-4',\n",
|
||
" 'api_key': '<your OpenAI API key here>',\n",
|
||
" },\n",
|
||
" {\n",
|
||
" 'model': 'gpt-4',\n",
|
||
" 'api_key': '<your Azure OpenAI API key here>',\n",
|
||
" 'api_base': '<your Azure OpenAI API base here>',\n",
|
||
" 'api_type': 'azure',\n",
|
||
" 'api_version': '2023-06-01-preview',\n",
|
||
" },\n",
|
||
" {\n",
|
||
" 'model': 'gpt-4-32k',\n",
|
||
" 'api_key': '<your Azure OpenAI API key here>',\n",
|
||
" 'api_base': '<your Azure OpenAI API base here>',\n",
|
||
" 'api_type': 'azure',\n",
|
||
" 'api_version': '2023-06-01-preview',\n",
|
||
" },\n",
|
||
"]\n",
|
||
"```\n",
|
||
"\n",
|
||
"If you open this notebook in colab, you can upload your files by clicking the file icon on the left panel and then choose \"upload file\" icon.\n",
|
||
"\n",
|
||
"You can set the value of config_list in other ways you prefer, e.g., loading from a YAML file."
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Example Task: Check Stock Price Change\n",
|
||
"\n",
|
||
"In the example below, let's see how to use the agents in FLAML to write a python script and execute the script. This process involves constructing a `AssistantAgent` to serve as the assistant, along with a `UserProxyAgent` that acts as a proxy for the human user. In this example demonstrated below, when constructing the `UserProxyAgent`, we select the `human_input_mode` to \"NEVER\". This means that the `UserProxyAgent` will not solicit feedback from the human user. It stops replying when the limit defined by `max_consecutive_auto_reply` is reached, or when `is_termination_msg()` returns true for the received message."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"user (to assistant):\n",
|
||
"\n",
|
||
"What date is today? Compare the year-to-date gain for META and TESLA.\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"assistant (to user):\n",
|
||
"\n",
|
||
"# filename: stock_comparison.py\n",
|
||
"```python\n",
|
||
"import datetime\n",
|
||
"import yfinance as yf\n",
|
||
"\n",
|
||
"# Get today's date\n",
|
||
"today = datetime.date.today()\n",
|
||
"print(\"Today's date:\", today)\n",
|
||
"\n",
|
||
"# Get the start of the year\n",
|
||
"start_of_year = datetime.date(today.year, 1, 1)\n",
|
||
"\n",
|
||
"# Download the historical data for META and TESLA\n",
|
||
"meta_data = yf.download('META', start=start_of_year, end=today)\n",
|
||
"tesla_data = yf.download('TSLA', start=start_of_year, end=today)\n",
|
||
"\n",
|
||
"# Calculate the year-to-date gain for META and TESLA\n",
|
||
"meta_gain = (meta_data['Close'][-1] - meta_data['Close'][0]) / meta_data['Close'][0]\n",
|
||
"tesla_gain = (tesla_data['Close'][-1] - tesla_data['Close'][0]) / tesla_data['Close'][0]\n",
|
||
"\n",
|
||
"# Print the year-to-date gain for META and TESLA\n",
|
||
"print(\"Year-to-date gain for META:\", round(meta_gain * 100, 2), \"%\")\n",
|
||
"print(\"Year-to-date gain for TESLA:\", round(tesla_gain * 100, 2), \"%\")\n",
|
||
"```\n",
|
||
"Please save this code in a file named `stock_comparison.py` and run it. This script will print today's date and compare the year-to-date gain for META and TESLA. It uses the `yfinance` library to download the historical data for the stocks. If you haven't installed `yfinance`, please install it by running `pip install yfinance`.\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"\n",
|
||
">>>>>>>> USING AUTO REPLY FOR THE USER...\n",
|
||
"user (to assistant):\n",
|
||
"\n",
|
||
"exitcode: 0 (execution succeeded)\n",
|
||
"Code output: \n",
|
||
"Today's date: 2023-07-23\n",
|
||
"[*********************100%***********************] 1 of 1 completed\n",
|
||
"[*********************100%***********************] 1 of 1 completed\n",
|
||
"Year-to-date gain for META: 135.9 %\n",
|
||
"Year-to-date gain for TESLA: 140.54 %\n",
|
||
"\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"assistant (to user):\n",
|
||
"\n",
|
||
"Great! The script has successfully executed and provided the year-to-date gain for both META and TESLA stocks. As of today's date (July 23, 2023), the year-to-date gain for META is 135.9%, and for TESLA, it's 140.54%. This means that both stocks have increased significantly since the start of the year, with TESLA slightly outperforming META. \n",
|
||
"\n",
|
||
"If you have any other questions or need further assistance, feel free to ask. Otherwise, if everything is clear, we can conclude here. \n",
|
||
"\n",
|
||
"TERMINATE\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from flaml.autogen.agent import AssistantAgent, UserProxyAgent\n",
|
||
"\n",
|
||
"# create an AssistantAgent named \"assistant\"\n",
|
||
"assistant = AssistantAgent(\n",
|
||
" \"assistant\",\n",
|
||
" seed=42,\n",
|
||
" config_list=config_list,\n",
|
||
" temperature=0,\n",
|
||
")\n",
|
||
"# create a UserProxyAgent instance named \"user\"\n",
|
||
"user = UserProxyAgent(\n",
|
||
" \"user\",\n",
|
||
" human_input_mode=\"NEVER\",\n",
|
||
" max_consecutive_auto_reply=10,\n",
|
||
" is_termination_msg=lambda x: x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\") or x.get(\"content\", \"\").rstrip().endswith('\"TERMINATE\".'),\n",
|
||
" code_execution_config={\n",
|
||
" \"work_dir\": \"coding\",\n",
|
||
" \"use_docker\": False, # set to True or image name like \"python:3\" to use docker\n",
|
||
" },\n",
|
||
")\n",
|
||
"# the assistant receives a message from the user, which contains the task description\n",
|
||
"user.initiate_chat(\n",
|
||
" assistant,\n",
|
||
" message=\"\"\"What date is today? Compare the year-to-date gain for META and TESLA.\"\"\",\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The example above involves code execution. In FLAML, code execution is triggered automatically by the `UserProxyAgent` when it detects an executable code block in a received message and no human user input is provided. This process occurs in a designated working directory, using a Docker container by default. Unless a specific directory is specified, FLAML defaults to the `flaml/autogen/extensions` directory. Users have the option to specify a different working directory by setting the `work_dir` argument when constructing a new instance of the `UserProxyAgent`.\n"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"All the feedback is auto generated."
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Example Task: Plot Chart"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"user (to assistant):\n",
|
||
"\n",
|
||
"Plot a chart of their stock price change YTD and save to stock_price_ytd.png.\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"assistant (to user):\n",
|
||
"\n",
|
||
"# filename: stock_plot.py\n",
|
||
"```python\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"\n",
|
||
"# Plot the close price of META and TESLA\n",
|
||
"plt.figure(figsize=(14, 7))\n",
|
||
"plt.plot(meta_data['Close'], label='META')\n",
|
||
"plt.plot(tesla_data['Close'], label='TESLA')\n",
|
||
"\n",
|
||
"# Set the title and labels\n",
|
||
"plt.title('META vs TESLA Stock Price YTD')\n",
|
||
"plt.xlabel('Date')\n",
|
||
"plt.ylabel('Close Price')\n",
|
||
"\n",
|
||
"# Show the legend\n",
|
||
"plt.legend()\n",
|
||
"\n",
|
||
"# Save the figure\n",
|
||
"plt.savefig('stock_price_ytd.png')\n",
|
||
"```\n",
|
||
"Please save this code in a file named `stock_plot.py` and run it. This script will plot the year-to-date close price for META and TESLA and save the plot as `stock_price_ytd.png`. It uses the `matplotlib` library to create the plot. If you haven't installed `matplotlib`, please install it by running `pip install matplotlib`.\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"\n",
|
||
">>>>>>>> USING AUTO REPLY FOR THE USER...\n",
|
||
"user (to assistant):\n",
|
||
"\n",
|
||
"exitcode: 1 (execution failed)\n",
|
||
"Code output: \n",
|
||
"Traceback (most recent call last):\n",
|
||
" File \"/workspaces/FLAML/notebook/coding/tmp_code_21e31c0db5c0c051b1fe02f6b8b62812.py\", line 5, in <module>\n",
|
||
" plt.plot(meta_data['Close'], label='META')\n",
|
||
"NameError: name 'meta_data' is not defined\n",
|
||
"\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"assistant (to user):\n",
|
||
"\n",
|
||
"I apologize for the oversight. The previous script was intended to be run in the same session as the first script where `meta_data` and `tesla_data` were defined. Since they were run separately, the variables are not defined in the second script. \n",
|
||
"\n",
|
||
"Let's combine the two scripts into one so that the data is available when we plot the graph.\n",
|
||
"\n",
|
||
"# filename: stock_comparison_and_plot.py\n",
|
||
"```python\n",
|
||
"import datetime\n",
|
||
"import yfinance as yf\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"\n",
|
||
"# Get today's date\n",
|
||
"today = datetime.date.today()\n",
|
||
"print(\"Today's date:\", today)\n",
|
||
"\n",
|
||
"# Get the start of the year\n",
|
||
"start_of_year = datetime.date(today.year, 1, 1)\n",
|
||
"\n",
|
||
"# Download the historical data for META and TESLA\n",
|
||
"meta_data = yf.download('META', start=start_of_year, end=today)\n",
|
||
"tesla_data = yf.download('TSLA', start=start_of_year, end=today)\n",
|
||
"\n",
|
||
"# Calculate the year-to-date gain for META and TESLA\n",
|
||
"meta_gain = (meta_data['Close'][-1] - meta_data['Close'][0]) / meta_data['Close'][0]\n",
|
||
"tesla_gain = (tesla_data['Close'][-1] - tesla_data['Close'][0]) / tesla_data['Close'][0]\n",
|
||
"\n",
|
||
"# Print the year-to-date gain for META and TESLA\n",
|
||
"print(\"Year-to-date gain for META:\", round(meta_gain * 100, 2), \"%\")\n",
|
||
"print(\"Year-to-date gain for TESLA:\", round(tesla_gain * 100, 2), \"%\")\n",
|
||
"\n",
|
||
"# Plot the close price of META and TESLA\n",
|
||
"plt.figure(figsize=(14, 7))\n",
|
||
"plt.plot(meta_data['Close'], label='META')\n",
|
||
"plt.plot(tesla_data['Close'], label='TESLA')\n",
|
||
"\n",
|
||
"# Set the title and labels\n",
|
||
"plt.title('META vs TESLA Stock Price YTD')\n",
|
||
"plt.xlabel('Date')\n",
|
||
"plt.ylabel('Close Price')\n",
|
||
"\n",
|
||
"# Show the legend\n",
|
||
"plt.legend()\n",
|
||
"\n",
|
||
"# Save the figure\n",
|
||
"plt.savefig('stock_price_ytd.png')\n",
|
||
"```\n",
|
||
"Please save this code in a file named `stock_comparison_and_plot.py` and run it. This script will print today's date, compare the year-to-date gain for META and TESLA, plot the year-to-date close price for META and TESLA, and save the plot as `stock_price_ytd.png`.\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"\n",
|
||
">>>>>>>> USING AUTO REPLY FOR THE USER...\n",
|
||
"user (to assistant):\n",
|
||
"\n",
|
||
"exitcode: 0 (execution succeeded)\n",
|
||
"Code output: \n",
|
||
"Today's date: 2023-07-23\n",
|
||
"[*********************100%***********************] 1 of 1 completed\n",
|
||
"[*********************100%***********************] 1 of 1 completed\n",
|
||
"Year-to-date gain for META: 135.9 %\n",
|
||
"Year-to-date gain for TESLA: 140.54 %\n",
|
||
"\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"assistant (to user):\n",
|
||
"\n",
|
||
"Great! The script has successfully executed. It has printed today's date, calculated the year-to-date gain for META and TESLA, and created a plot of the year-to-date close price for META and TESLA. The plot has been saved as `stock_price_ytd.png` in your current directory. You can open this file to view the plot.\n",
|
||
"\n",
|
||
"If you have any other questions or need further assistance, feel free to ask. Otherwise, if everything is clear, we can conclude here.\n",
|
||
"\n",
|
||
"TERMINATE\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# followup of the previous question\n",
|
||
"user.send(\n",
|
||
" recipient=assistant,\n",
|
||
" message=\"\"\"Plot a chart of their stock price change YTD and save to stock_price_ytd.png.\"\"\",\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Let's display the generated figure."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAK8CAYAAABV1dcbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXyVdf/H8ffZWXczYMFGj5SUblARUcDARL1NvO34Yd1YN97edhdiEYriraKgSHd3d40xYt3buX5/XNtgbsA2tp2d7fV8PPY41678nNFvPvt8LYZhGAIAAAAAAAAAOBwnexcAAAAAAAAAAKgYAl4AAAAAAAAAcFAEvAAAAAAAAADgoAh4AQAAAAAAAMBBEfACAAAAAAAAgIMi4AUAAAAAAAAAB0XACwAAAAAAAAAOioAXAAAAAAAAABwUAS8AAAAAAAAAOCgCXgAAAAAAAABwUAS8AAAAAAAAAOCgCHgBAAAAAAAAwEER8AIAAAAAAACAgyLgBQAAAAAAAAAHRcALAAAAAAAAAA6KgBcAAAAAAAAAHBQBLwAAAAAAAAA4KAJeAAAAAAAAAHBQBLwAAAAAAAAA4KAIeAEAAAAAAADAQRHwAgAAAAAAAICDIuAFAAAAAAAAAAdFwAsAAAAAAAAADoqAFwAAAAAAAAAcFAEvAAAAAAAAADgoAl4AAAAAAAAAcFAEvAAAAAAAAADgoAh4AQAAAAAAAMBBEfACAAAAAAAAgIMi4AUAAAAAAAAAB0XACwAAAAAAAAAOioAXAAAAAAAAABwUAS8AAAAAAAAAOCgCXgAAAAAAAABwUAS8AAAAAAAAAOCgCHgBAAAAAAAAwEER8AIAAAAAAACAgyLgBQAAAAAAAAAHRcALAAAAAAAAAA6KgBcAAAAAAAAAHBQBLwAAAAAAAAA4KAJeAAAAAAAAAHBQBLwAAAAAAAAA4KAIeAEAAAAAAADAQRHwAgAAAAAAAICDIuAFAAAAAAAAAAdFwAsAAAAAAAAADoqAFwAAAAAAAAAcFAEvAAAAAAAAADgoAl4AAAAAAAAAcFAEvAAAAAAAAADgoAh4AQAAAAAAAMBBEfACAAAAAAAAgIMi4AUAAAAAAAAAB0XACwAAAAAAAAAOioAXAAAAAAAAABwUAS8AAAAAAAAAOCgCXgAAAAAAAABwUAS8AAAAAAAAAOCgCHgBAAAAAAAAwEER8AIAAAAAAACAgyLgBQAAABzUmDFj5O3tbbfn9+3bV3379rXb8wEAAEDACwAAcF5ffvmlLBaLLBaLlixZUuK4YRiKiIiQxWLRlVdeWexY4XWlfdx7771asGDBec85++Ns1113nSwWi5566qkqfe9l1bdv3zK9h/Hjx0uSGjVqdM5zLrvssmL3XrJkiS6//HI1bNhQ7u7uioyM1LBhwzRlypRi51ksFj3wwANlrvnDDz+UxWJR165dy/VebTabvv76a3Xt2lWBgYHy8fFRs2bNdOutt2rFihVF523btk3jx4/XgQMHynX/6jR+/PhiX3tPT0/Fxsbq2WefVUpKir3LKyE3N1dt2rRR48aNlZmZWeL4gQMH5OnpqWuvvbbMv64WLFigAwcOFNvn4uKi4OBgde/eXU8//bQOHTpkh3cLAABQds72LgAAAMARuLu7a8qUKerZs2ex/QsXLtSRI0fk5uZW6nWDBg3SrbfeWmJ/s2bNFBUVpW+++abY/nHjxsnb21vPPPNMqfdLSUnRr7/+qkaNGmnq1Kl69dVXSwTA1e2ZZ57RP/7xj6LPV69erXfffVdPP/20WrZsWbS/bdu2Rdvt27fXY489VuJeDRo0KNqePn26rr/+erVv314PPfSQAgICtH//fi1atEifffaZbrzxxgrXPHnyZDVq1EirVq3Snj171KRJkzJd9+CDD+qDDz7Q8OHDddNNN8nZ2Vk7d+7UrFmzFBMTo0svvVSSGfC+8MIL6tu3rxo1alThOqvDRx99JG9vb6WlpenPP//UK6+8onnz5mnp0qUX/Ln1559/VlOVkouLiz799FP16NFDL730kv79738XO/7AAw/I1dVV7777roYPH17s2Ndff605c+aU+PXWsmXLorB49OjRuuKKK2Sz2ZSYmKjVq1fr7bff1jvvvKOJEyfqhhtuqNo3CAAAUFEGAAAAzmnSpEmGJGPEiBFGcHCwkZubW+z4XXfdZXTs2NGIiooyhg4dWuyYJGPs2LHlel6rVq2MPn36nPP4F198Ybi4uBjz5s0zJBkLFiwo1/2rw/Tp0w1Jxvz580s9XtrXqjSxsbFGq1atjOzs7BLHjh8/Xuzz8nyt9+3bZ0gyZsyYYYSEhBjjx48v03Xx8fGGxWIx7rrrrhLHbDZbsZou9DWoLLfddpvh5eVVoWv/9a9/GZKMEydOFNs/YsQIQ5KxbNmyc16bnp5eoWdWhvvuu89wcXExtmzZUrTvhx9+MCQZH374YanXjB071jjXP332799vSDL++9//ljh24MABo1mzZoarq6uxYcOGynkDAAAAlYwRDQAAAGUwevRonTp1SnPmzCnal5OTox9++OGiOknLa/LkyRo0aJD69eunli1bavLkyRe8Jjc3V4GBgbr99ttLHEtJSZG7u7sef/zxon3vvfeeWrVqJU9PTwUEBKhTp04lRiJUh71796pz585ydXUtcSw0NLTC9508ebICAgI0dOhQjRo1qkxfQ0nav3+/DMNQjx49ShyzWCxFNX355Ze69tprJUn9+vUrNg6g0IcffqhWrVrJzc1NDRo00NixY5WUlFTivitXrtQVV1yhgIAAeXl5qW3btnrnnXfOW+eGDRsUEhKivn37Ki0trUzv7Wz9+/cver+SOYKjdevWWrt2rXr37i1PT089/fTTRcf+PoM3KytL48ePV7NmzeTu7q769etrxIgR2rt3b9E5NptNb7/9tlq1aiV3d3fVq1dP99xzjxITEy9Y34QJExQcHKx7771XhmEoLS1NDz/8sLp166Z777233O/3fKKiovTll18qJydHr732WqXeGwAAoLIQ8AIAAJRBo0aN1K1bN02dOrVo36xZs5ScnHzeb93OysrSyZMnS3zk5OSUu4a4uDjNnz9fo0ePlmSGzj/88MMF7+Xi4qJrrrlG//vf/0qc+7///U/Z2dlF7+Gzzz7Tgw8+qNjYWL399tt64YUX1L59e61cubLc9Z5Pbm5uqV+Xs2erRkVFae7cuTpy5EilPnvy5MkaMWKEXF1dNXr0aO3evVurV6++4HVRUVGSzNERGRkZ5zyvd+/eevDBByVJTz/9tL755ht98803ReMqxo8fr7Fjx6pBgwZ64403NHLkSH3yyScaPHiwcnNzi+4zZ84c9e7dW9u2bdNDDz2kN954Q/369dPMmTPP+ezVq1erf//+uuSSSzRr1qwKLcBWGMQGBQUV7Tt16pQuv/xytW/fXm+//bb69etX6rX5+fm68sor9cILL6hjx45644039NBDDyk5OVlbtmwpOu+ee+7RE088oR49euidd97R7bffrsmTJ2vIkCHFvgal8fPz07vvvqslS5bo888/13PPPafjx4/r008/rZJxJd26dVPjxo2L/ecOAABAjWLvFmIAAICarHBEw+rVq43333/f8PHxMTIyMgzDMIxrr73W6Nevn2EYpY8dkHTOj6lTp5b6vPONaHj99dcNDw8PIyUlxTAMw9i1a5chyfjpp58u+D7++OMPQ5Lx66+/Ftt/xRVXGDExMUWfDx8+3GjVqtUF73c+ZRnRcK6vy4QJE4rOmzhxoiHJcHV1Nfr162c899xzxuLFi438/PwS91QZRzSsWbPGkGTMmTPHMAxztEJ4eLjx0EMPlem93XrrrYYkIyAgwLjmmmuM119/3di+fXuZvwYJCQmGq6urMXjw4GLv4/333zckGV988YVhGIaRl5dnREdHG1FRUUZiYmKxe9hstqLts0c0LFmyxPD19TWGDh1qZGVlXfC9FI5o2Llzp3HixAlj//79xieffGK4ubkZ9erVKxrD0KdPH0OS8fHHH5e4R58+fYr9fP3iiy8MScabb75Z4tzCuhcvXmxIMiZPnlzs+OzZs0vdfy5XXnml4efnZ1itVmPcuHHnPbeiIxoKDR8+3JBkJCcnl6k2AACA6kQHLwAAQBldd911yszM1MyZM5WamqqZM2decDzD8OHDNWfOnBIf5+qAPJ/Jkydr6NCh8vHxkSQ1bdpUHTt2LNOIgf79+ys4OFjfffdd0b7ExETNmTNH119/fdE+f39/HTlypEwdrReja9eupX5dCruTJemOO+7Q7Nmz1bdvXy1ZskQvvfSSevXqpaZNm2rZsmUVeu7kyZNVr169oq+/xWLR9ddfr2nTpik/P/+C10+aNEnvv/++oqOj9dNPP+nxxx9Xy5YtNWDAAB09evSC1//111/KycnRww8/LCenM38Vv+uuu+Tr66vffvtNkrR+/Xrt379fDz/8sPz9/Yvdo7Qu1fnz52vIkCEaMGCAZsyYcc5F/0rTvHlzhYSEKDo6Wvfcc4+aNGmi3377TZ6enkXnuLm5lTri4+9+/PFHBQcH65///GeJY4V1T58+XX5+fho0aFCx7u2OHTvK29tb8+fPL1PdH3zwgXJychQREaHnnnuujO+2Ygo7oVNTU6v0OQAAABXhbO8CAAAAHEVISIgGDhyoKVOmKCMjQ/n5+Ro1atR5rwkPD9fAgQMv+tnbt2/X+vXrdeutt2rPnj1F+/v27asPPvhAKSkp8vX1Pef1zs7OGjlypKZMmaLs7Gy5ublpxowZys3NLRbwPvXUU/rrr7/UpUsXNWnSRIMHD9aNN95Y6tzZixEcHFymr8uQIUM0ZMgQZWRkaO3atfruu+/08ccf68orr9SOHTvKNYs3Pz9f06ZNU79+/Yrmy0pm2PzGG29o7ty5Gjx48Hnv4eTkpLFjx2rs2LE6deqUli5dqo8//lizZs3SDTfcoMWLF5/3+oMHD0oyQ9Wzubq6KiYmpuh44ZiE1q1bX/B9ZWVlaejQoerYsaO+//57OTuX76/4P/74o3x9feXi4qLw8HA1bty4xDkNGzYsdRby3+3du1fNmzc/bw27d+9WcnLyOX/sEhISylR3ZGSkQkND1apVK3l4eJTpmooqnGVc+J8rAAAANQkBLwAAQDnceOONuuuuuxQfH6/LL7+8RHdlVfn2228lSY888ogeeeSREsd//PHHC3ZY3nDDDfrkk080a9YsXX311fr+++/VokULtWvXruicli1baufOnZo5c6Zmz56tH3/8UR9++KGef/55vfDCC5X7psrB09NTvXr1Uq9evRQcHKwXXnhBs2bN0m233Vbme8ybN0/Hjh3TtGnTNG3atBLHJ0+efMGA92xBQUG66qqrdNVVV6lv375auHChDh48WDSrt7q4ubnpiiuu0M8//6zZs2fryiuvLNf1vXv3VnBw8HnPqcwA1WazKTQ09Jyd5yEhIZX2rMqyZcsWhYaGnvc/UQAAAOyFgBcAAKAcrrnmGt1zzz1asWJFsXEHVckwDE2ZMkX9+vXT/fffX+L4Sy+9pMmTJ18w4O3du7fq16+v7777Tj179tS8efP0zDPPlDjPy8tL119/va6//nrl5ORoxIgReuWVVzRu3Di5u7tX2vuqqE6dOkmSjh07Vq7rJk+erNDQUH3wwQcljs2YMUM//fSTPv744wqFmZ06ddLChQt17NgxRUVFnXOxr8Lwd+fOnYqJiSnan5OTo/379xd1NRd20W7ZsuWCnc4Wi0WTJ0/W8OHDde2112rWrFnq27dvud9DZWjcuLFWrlyp3Nxcubi4nPOcv/76Sz169KjyztvKsHz5cu3du1c333yzvUsBAAAoFTN4AQAAysHb21sfffSRxo8fr2HDhlXLM5cuXaoDBw7o9ttv16hRo0p8XH/99Zo/f77i4uLOex8nJyeNGjVKv/76q7755hvl5eUVG88gSadOnSr2uaurq2JjY2UYhnJzcyv9vZ3P3LlzS93/+++/Syo55uB8MjMzNWPGDF155ZWlfg0feOABpaam6pdffjnnPeLj47Vt27YS+3NycjR37lw5OTmpSZMmksyQXJKSkpKKnTtw4EC5urrq3XfflWEYRfsnTpyo5ORkDR06VJLUoUMHRUdH6+233y5xj7OvK+Tq6qoZM2aoc+fOGjZsmFatWlWmr0tlGzlypE6ePKn333+/xLHCuq+77jrl5+frpZdeKnFOXl5eifdrTwcPHtSYMWPk6uqqJ554wt7lAAAAlIoOXgAAgHIqz1iAXbt2FY1XOFu9evU0aNCgMt1j8uTJslqtReHf31111VV65plnNG3aND366KPnvdf111+v9957T//617/Upk0btWzZstjxwYMHKywsTD169FC9evW0fft2vf/++8UWd6sMR48eLfXr4u3trauvvlqSuUBddHS0hg0bpsaNGys9PV1//fWXfv3116Ig82xr1qzRyy+/XOKeffv21dGjR5Wamqqrrrqq1HouvfRShYSEaPLkySVC70JHjhxRly5d1L9/fw0YMEBhYWFKSEjQ1KlTtXHjRj388MNFow7at28vq9Wq//znP0pOTpabm5v69++v0NBQjRs3Ti+88IIuu+wyXXXVVdq5c6c+/PBDde7cuahL1MnJSR999JGGDRum9u3b6/bbb1f9+vW1Y8cObd26VX/88UeJ+jw8PDRz5kz1799fl19+uRYuXFimGb6V6dZbb9XXX3+tRx99VKtWrVKvXr2Kftzuv/9+DR8+XH369NE999yjCRMmaMOGDRo8eLBcXFy0e/duTZ8+Xe+8884FZ1tXhXXr1unbb7+VzWZTUlKSVq9erR9//FEWi0XffPON2rZtW+01AQAAlIkBAACAc5o0aZIhyVi9evV5z4uKijKGDh1abJ+kc3706dOn1Pu0atWq2LGcnBwjKCjI6NWr13mfHx0dbVxyySUXfD82m82IiIgwJBkvv/xyieOffPKJ0bt3byMoKMhwc3MzGjdubDzxxBNGcnLyBe9daPr06YYkY/78+aUej4qKOufXJSoqqui8qVOnGjfccIPRuHFjw8PDw3B3dzdiY2ONZ555xkhJSSl2z/N9rV966SVj2LBhhru7u5Genn7OuseMGWO4uLgYJ0+eLPV4SkqK8c477xhDhgwxwsPDDRcXF8PHx8fo1q2b8dlnnxk2m63Y+Z999pkRExNjWK3WEl+P999/32jRooXh4uJi1KtXz7jvvvuMxMTEEs9csmSJMWjQIMPHx8fw8vIy2rZta7z33ntFx2+77TbDy8ur2DUnT540YmNjjbCwMGP37t3nfL//+te/DEnGiRMnznmOYRhGnz59jFatWp3z2N9/LmdkZBjPPPOMER0dbbi4uBhhYWHGqFGjjL179xY779NPPzU6duxoeHh4GD4+PkabNm2MJ5980oiLiztvPWcr7dddacaOHWuc658++/fvL/bzxdnZ2QgMDDS6du1qjBs3zjh48GCZ6wEAALAHi2GU8j1eAAAAAAAAAIAajxm8AAAAAAAAAOCgCHgBAAAAAAAAwEER8AIAAAAAAACAgyLgBQAAAAAAAAAHRcALAAAAAAAAAA6KgBcAAAAAAAAAHJSzvQsAKsJmsykuLk4+Pj6yWCz2LgcAAAAAAKBSGIah1NRUNWjQQE5O9Gbiwgh44ZDi4uIUERFh7zIAAAAAAACqxOHDhxUeHm7vMuAACHjhkHx8fCSZv9n5+vrauRoAAAAAAIDKkZKSooiIiKLsA7gQAl44pMKxDL6+vgS8AAAAAACg1mEkJcqKQR4AAAAAAAAA4KAIeAEAAAAAAADAQRHwAgAAAAAAAICDYgYvarX8/Hzl5ubau4xaz8XFRVar1d5lAAAAAAAA1DkEvKiVDMNQfHy8kpKS7F1KneHv76+wsDCGwAMAAAAAAFQjAl7USoXhbmhoqDw9PQkdq5BhGMrIyFBCQoIkqX79+nauCAAAAAAAoO4g4EWtk5+fXxTuBgUF2bucOsHDw0OSlJCQoNDQUMY1AAAAAAAAVBMWWUOtUzhz19PT086V1C2FX29mHgMAAAAAAFQfAl7UWoxlqF58vQEAAAAAAKofAS8AAAAAAAAAOCgCXgAAAAAAAABwUAS8QA0yZswYWSwW3XvvvSWOjR07VhaLRWPGjCl27t8/LrvsMi1YsKDUY2d/LFiwQJJ05MgRubq6qnXr1tX4TgEAAAAAAFAZnO1dAIDiIiIiNG3aNL311lvy8PCQJGVlZWnKlCmKjIwsdu5ll12mSZMmFdvn5uYmLy8vHTt2rGjfQw89pJSUlGLnBgYGSpK+/PJLXXfddVq0aJFWrlyprl27VtVbAwAAAAAAQCUj4AVqmA4dOmjv3r2aMWOGbrrpJknSjBkzFBkZqejo6GLnurm5KSwsrNT7nL3fw8ND2dnZJc41DEOTJk3Shx9+qPDwcE2cOJGAFwAAAAAAwIEQ8KJOMAxDmbn51f5cDxerLBZLua+74447NGnSpKKA94svvtDtt99eNFahssyfP18ZGRkaOHCgGjZsqO7du+utt96Sl5dXpT4HAAAAAAAAVYOAF3VCZm6+Yp//o9qfu+3FIfJ0Lf8vs5tvvlnjxo3TwYMHJUlLly7VtGnTSgS8M2fOlLe3d7F9Tz/9tJ5++ukyPWfixIm64YYbZLVa1bp1a8XExGj69OlFc34BAAAAAABQsxHwAjVQSEiIhg4dqi+//FKGYWjo0KEKDg4ucV6/fv300UcfFdtXOFv3QpKSkjRjxgwtWbKkaN/NN9+siRMnEvACAAAAAAA4CAJe1AkeLlZte3GIXZ5bUXfccYceeOABSdIHH3xQ6jleXl5q0qRJhe4/ZcoUZWVlFZu5axiGbDabdu3apWbNmlXovgAAAAAAAKg+BLyoEywWS4VGJdjTZZddppycHFksFg0ZUvnh9MSJE/XYY4+V6Na9//779cUXX+jVV1+t9GcCAAAAAACgcjlW4gXUIVarVdu3by/aLk12drbi4+OL7XN2di51nMPZNmzYoHXr1mny5Mlq0aJFsWOjR4/Wiy++qJdfflnOzvwWAQAAAAAAUJM52bsAAOfm6+srX1/fcx6fPXu26tevX+yjZ8+eF7zvxIkTFRsbWyLclaRrrrlGCQkJ+v333y+qdgAAAAAAKkO+zdC0VYe0LS7F3qUANZLFMAzD3kUA5ZWSkiI/Pz8lJyeXCECzsrK0f/9+RUdHy93d3U4V1j183QEAAAAAVeGb5Qf03M9b1aahn37954Wbmhzd+TIPoDR08AIAAAAAAKBGysjJ0ztz90iSdh5PVb6NPkXg7wh4AQAAAAAAUCNNWnpAJ9OyJUk5eTYdTcy0c0VAzUPACwAAAAAAgBonMT1HHy/YK0lydrJIkvaeSLNnSUCNRMALAAAAAACAGufjhXuVmp2nFmE+GhRbTxIBL1AaAl4AAAAAAACUyda4ZG08nFTlzzmWnKkvlx2QJD11WQs1DfWWRMALlMbZ3gUAAAAAAACg5juWnKkRHy6TzTA077G+igj0rLJnvTt3t7LzbOrSKFB9m4coJStXkrT3RHqVPRNwVHTwAgAAAAAA4ILem7dH2Xk25eYb+mzxvip7zt4Tafp+zRFJ0pOXNZfFYlHjELODdx8dvEAJBLwAAAAAAAA4r0OnMvT96sNFn3+/5rBOpWVXybPe/HOX8m2GBrYMVadGgZKk6GAvSdLJtBwlZeRUyXMBR0XACwAAAAAAgPN6e+4u5dkM9W4WorbhfsrKtemr5Qcr9RlZufma8Pt2/bb5mCwW6fEhzYuOebk5q4GfuyTGNAB/R8AL1AAWi+W8H+PHj9eBAwfOeXzFihWSpPz8fL366qtq0aKFPDw8FBgYqK5du+rzzz8vetaYMWN09dVXX7CmI0eOyNXVVa1bt66qtw0AAAAAcAB7ElL1v/VHJUmPD26me/s0liR9vfyAMnLyKuUZm48ka9h7S/TJInP0w719GqtFmG+xcxqz0BpQKhZZA2qAY8eOFW1/9913ev7557Vz586ifd7e3jp58qQk6a+//lKrVq2KXR8UFCRJeuGFF/TJJ5/o/fffV6dOnZSSkqI1a9YoMTGx3DV9+eWXuu6667Ro0SKtXLlSXbt2rchbAwAAAAA4uLfm7JbNkIa0qqe24f5q1cBPjYI8deBUhqatOqw7ekZX+N65+Ta9P2+PPpi/R3k2Q8Hervr3NW00uFVYiXMbh3hr8e6TBLzA3xDwAjVAWNiZP7j8/PxksViK7ZNUFPAGBQWVOFbol19+0f33369rr722aF+7du3KXY9hGJo0aZI+/PBDhYeHa+LEiQS8AAAAAFAHbY1LLhqZ8MigZpIkq5NFd/WO0TM/bdHEJft1S7couVjL/k3iefk2bTicpEW7T2rW5mPanWAGtle0CdPLV7dRoJdrqdfFhJhzePcmMKIBOBsBL1CLhIWFad68ebr//vsVEhJS4fvMnz9fGRkZGjhwoBo2bKju3bvrrbfekpeXVyVWCwAAAACo6d6as0uSNKxtg2IjE0Z2CNdbc3bpaFKmZm6K0zWXhJ/3PkcSM7Ro10kt2nVCS/eeVGrWmdEOfh4ueunq1hrWtr4sFss579E4xBzRsI8OXqAYAl7UDYYh5WZU/3NdPKXz/OFUEd27d5eTU/H/GU1LM/9we/PNNzVq1CiFhYWpVatW6t69u4YPH67LL7+8XM+YOHGibrjhBlmtVrVu3VoxMTGaPn26xowZU1lvAwAAAABQw60/lKi/tifI6mTRwwObFjvm7mLV7T2i9d8/duqThft0dfuGxcLZjJw8rdx3Wgt3ndCi3Se0728Lo/l5uKhn02D1aRqigbH1ztm1e7bCgPfg6Qzl5Nnk6szSUoBEwIu6IjdD+neD6n/u03GSa+V2vX733Xdq2bJlqcdiY2O1ZcsWrV27VkuXLtWiRYs0bNgwjRkzpthCa+eTlJSkGTNmaMmSJUX7br75Zk2cOJGAFwAAAADqkDcLundHdmiomIJw9Ww3d43Sh/P3aEd8qhbsPKEwP3ctKgh0V+9PVE6+rehcJ4t0SWSAejcNUe9mwWob7i+rU/kaour5usnL1ar0nHwdOp2uJqE+F/cGgVqCgBdwMBEREWrSpMk5jzs5Oalz587q3LmzHn74YX377be65ZZb9Mwzzyg6+sKD76dMmaKsrKxiM3cNw5DNZtOuXbvUrFmzSnkfAAAAAICaKy07T0v2mGvBPNCvaann+Hm6aHSXSH2+ZL/u/Gq1bEbx4w39PdS7WbB6Nw1R9ybB8vNwuaiaLBaLGod6a9ORZO1JIOAFChHwom5w8TS7ae3xXDuLjY2VJKWnl20I/cSJE/XYY4+V6Na9//779cUXX+jVV1+t7BIBAAAAADXM9mMpMgypvp+7IoPO/W/bO3tF65sVB5WdZ5O7i5MujQkq6NINUeMQr/PO1K2IxiFmwLvvJHN4gUIEvKgbLJZKH5VgL6dOnVJ8fHyxff7+/nJ3d9eoUaPUo0cPde/eXWFhYdq/f7/GjRunZs2aqUWLFkXnJycna8OGDcXuERQUpFOnTmndunWaPHlysfMlafTo0XrxxRf18ssvy9mZ3zoAAAAAoDbbejRZktSqge95z6vv56FfHuipU+nZ6hAZIHcXa5XW1TjE/Lf93oSyNTEBdQEpDeBgBg4cWGLf1KlTdcMNN2jIkCGaOnWqJkyYoOTkZIWFhal///4aP358sVB2wYIFuuSSS4rd484775SHh4diY2NLhLuSdM011+iBBx7Q77//rquuuqry3xgAAAAAoMbYdixFkhRb//wBryQ1D/ORVD3jEgoXWtt7gg5eoJDFMAzjwqcBNUtKSor8/PyUnJwsX9/if9hkZWVp//79io6Olru7u50qrHv4ugMAAABA7TH03cXaGpeij2/uqMtah9m7nCK7jqdq8FuL5OPurE3/GlzpIyBqgvNlHkBpnOxdAAAAAAAAAGqOnDybdh1PlXThEQ3VLSrIU04WKTUrTyfSsu1dDlAjEPACAAAAAACgyJ6ENOXmG/J1d1Z4gIe9yynGzdmqiEBz0Tfm8AImAl4AAAAAAAAU2RpnLrAW28C3Ro5AYA4vUBwBLwAAAAAAAIpsjTMXWGvVwM/OlZSucYiXJAJeoBABLwAAAAAAAIpsKwh4Y+vXrPm7hc508DKiAZAIeFGLGYZh7xLqFL7eAAAAAOD4bDZD244VdPA2rKEBb2hBwJtABy8gEfCiFnJxcZEkZWRk2LmSuqXw61349QcAAAAAOJ7DiRlKy86Tq7NTUadsTVNY19GkTGXm5Nu5GsD+nO1dAFDZrFar/P39lZCQIEny9PSskUPhawvDMJSRkaGEhAT5+/vLarXauyQAAAAAQAUVzt9tXs9HLtaa2RcY6OWqAE8XJWbkat/JtBo7KxioLgS8qJXCwsIkqSjkRdXz9/cv+roDAAAAABzTtqIF1mrmeIZCjUO8teZgovadSCfgRZ1HwItayWKxqH79+goNDVVubq69y6n1XFxc6NwFAAAAgFpga1yyJMcJePeeYA4vQMCLWs1qtRI8AgAAAABQRoUjGmJreFdsTIiXJGnviXQ7VwLYX80cpgIAAAAAAIBqdSI1Wwmp2bJYpBZhPvYu57ya1TPr23I02c6VAPZHwAsAAAAAAABtO2Z270YHe8nLrWZ/03fHRgFyskj7T6brWHKmvcsB7IqAF+Xy0UcfqW3btvL19ZWvr6+6deumWbNmFR3PysrS2LFjFRQUJG9vb40cOVLHjx8vdo9Dhw5p6NCh8vT0VGhoqJ544gnl5eVV91sBAAAAAABnOTN/t2aPZ5AkX3cXtW5o1rl87yk7VwPYFwEvyiU8PFyvvvqq1q5dqzVr1qh///4aPny4tm7dKkl65JFH9Ouvv2r69OlauHCh4uLiNGLEiKLr8/PzNXToUOXk5GjZsmX66quv9OWXX+r555+311sCAAAAAAA6a/5u/Zq9wFqhbjFBkgh4AYthGIa9i4BjCwwM1H//+1+NGjVKISEhmjJlikaNGiVJ2rFjh1q2bKnly5fr0ksv1axZs3TllVcqLi5O9erVkyR9/PHHeuqpp3TixAm5urqW6ZkpKSny8/NTcnKyfH0d4w8eAAAAAABqsn6vL9D+k+n6+o4u6t0sxN7lXNCCnQkaM2m1wgM8tOSp/vYup9KQeaC86OBFheXn52vatGlKT09Xt27dtHbtWuXm5mrgwIFF57Ro0UKRkZFavny5JGn58uVq06ZNUbgrSUOGDFFKSkpRF3BpsrOzlZKSUuwDAAAAAABUjrTsPB04lS5Jim3gGKFi50aBcnay6Ehipg6fzrB3OYDdEPCi3DZv3ixvb2+5ubnp3nvv1U8//aTY2FjFx8fL1dVV/v7+xc6vV6+e4uPjJUnx8fHFwt3C44XHzmXChAny8/Mr+oiIiKjcNwUAAAAAQB2241iKDEOq5+umYG83e5dTJl5uzmobXjCHdx9jGlB3EfCi3Jo3b64NGzZo5cqVuu+++3Tbbbdp27ZtVfrMcePGKTk5uejj8OHDVfo8AAAAAADqksL5u46wwNrZujVmDi9AwItyc3V1VZMmTdSxY0dNmDBB7dq10zvvvKOwsDDl5OQoKSmp2PnHjx9XWFiYJCksLEzHjx8vcbzw2Lm4ubnJ19e32AcAAAAAAKgc24oCXsf693a3mGBJZsDLMlOoqwh4cdFsNpuys7PVsWNHubi4aO7cuUXHdu7cqUOHDqlbt26SpG7dumnz5s1KSEgoOmfOnDny9fVVbGxstdcOAAAAAACkrceSJTlewNsxKkCuVifFp2TpwCnm8KJucrZ3AXAs48aN0+WXX67IyEilpqZqypQpWrBggf744w/5+fnpzjvv1KOPPqrAwED5+vrqn//8p7p166ZLL71UkjR48GDFxsbqlltu0Wuvvab4+Hg9++yzGjt2rNzcHGPGDwAAAAAAtcn2YynacjRFFovUNtzf3uWUi4erVe0j/bVq/2kt33tK0cFe9i4JqHYEvCiXhIQE3XrrrTp27Jj8/PzUtm1b/fHHHxo0aJAk6a233pKTk5NGjhyp7OxsDRkyRB9++GHR9VarVTNnztR9992nbt26ycvLS7fddptefPFFe70lAAAAAADqtHfn7pYkXdGmvhr4e9i5mvLrFhNkBrz7TunGrpH2LgeodhaDASVwQCkpKfLz81NycjLzeAEAAAAAqKBtcSm64t3FslikPx7urWb1fOxdUrmt2HdKN3y6QsHeblr9zABZLBZ7l3RRyDxQXszgBQAAAAAAqKMKu3eHtqnvkOGuJF0S6S83ZyedTMvWnoQ0e5cDVDsCXgAAAAAAgDpoa1yyZm+Nl8UiPTSgqb3LqTA3Z6s6NQqQJC3fd8rO1QDVj4AXAAAAAACgDirs3r2ybQM1ddDu3ULdYoIkScv3EvCi7iHgBQAAAAAAqGO2xiXrj63HC7p3m9i7nIvWrbEZ8K7Yd0o2G8tNoW4h4AUAAAAAAKhj3vnL7N4d1raBmoQ6dveuJLUN95enq1WJGbnaEZ9q73KAakXACwAAAAAAUEMcOpWhzxbtU2pWbpU9Y8vRZP25zezefdCBZ++ezcXqpE6NAiUxhxd1DwEvAAAAAABADWAYhv45dZ1e+X277v56rXLybJX+jH0n0vTs/7ZIkq5q10BNQr0r/Rn20r0xc3hRNxHwAgAAAAAA1ADzdiRo45FkSWYX6hM/bKy0ebJJGTl68ddtGvzWIm04nCQPF2vN7d7Ny5aM8r/vbjFBauDnrvAAjyooCqi5nO1dAAAAAAAAQF1nGIbeLpiL26tpsJbvPaWfN8Spvp+H/u/yFhW+b26+Td+uOKh35u5WUoY59qF/i1A9fUULNQ6pgd27xzZJXw+XgptJN06TPALKfGnbcD8t/b/+slgsVVggUPMQ8AIAAAAAANjZX9sTtPlosjxdrXrnhks0b0eCHp++UR8v3KsG/u66tVujct3PMAzN25GgV37frn0n0iVJzev56NkrW6pX05AqeAeVIDdT+vEfUuZp6fAKM+i95X+SZ2CZLifYRV1FwAsAAAAAAGBHZvfuLknSbd0bKdDLVaM6hutYUqbemLNL//plq0J93HVZ67Ay3W9HfIpenrldS/aclCQFebnq0cHNdH2nCDlba/C0zjn/kk7ulLxCJRnSsY3S11dJt/5S5pAXqItq8K9qAAAAAACA2u/Pbce1NS5FXq5W3d0rpmj/A/2baHSXCBmG9NC09fp5w1EZ55lNeyI1W+NmbNYV7yzWkj0n5Wp10j19YjT/ib66qWtUzQ53d/8lrfrE3L76I+m2mWbQG79Z+mqYlM7CacC50MELAAAAAABgJzbbmdm7Y3o0UoCXa9Exi8Wil4a3VkJKtubuSNBD0zboz23H9crVreXveea8rNx8fbF0vz6cv1dp2XmSpKFt6uv/Lm+hiEDP6n1DFZF+Svr5fnO7y91S04Hm9piZZrh7fIv5etsvklew/eoEaqga/F83AAAAAAAAtduf2+K1/ViKvN2cdddZ3buFnK1O+viWjnp4YFNZnSz6bdMxDXl7kRbtOiHDMDRzU5wGvrlQr83eqbTsPLUN99P0e7vpg5s6OEa4axjSrw9Kacel4ObSwBfOHAtpLo35TfIOkxK2Sr8+ZL86gRqMDl4AAAAAAAA7OLt79/YejYp15Z7Nxeqkhwc2U7/moXrkuw3adzJdt36xSjEhXkULqIX5uuvJy5rr6vYN5eTkQIuNrf9W2jFTcnKRRn4muf4tlA5uKl3zkfTNNWYnL4AS6OAFAAAAAACwg9lb47UjPlU+bs76R8+S3bt/1y7CX7892Eu3dYuSJO07kS4PF6seGdhM8x7voxEdwh0r3D29T5r1lLnd/1mpfrvSz/MNN18zEqunLsDB0MELAAAAAABQzWw2Q+8Udu/2jJafp0uZrvNwteqF4a01uFWYVu47pRu7RinMz70qS60a+XnSjLul3HQpqqfU/Z/nPtcz0HzNTjavsxJnAWfjVwQAAAAAAEA1+33LMe08niofd2fd2TO63Nf3aBKsHk0ceMGxxW9IR1ZLbn7SNR9LTtZzn+vuf2Y7M1HyDqny8gBHwogGAAAAAABQox1LzlRSRo69y6g0+Wd1797RI1p+HmXr3q01jqyRFv7H3B76huQfcf7zrc6Su5+5nXm6amsDHBABLwAAAAAAqLH2nUhT/9cXaui7S5SWnWfvcirFb5uPaXdCmnzcnXVHBbp3HVp2mjTjLsnIl1qPktpeW7brPArGNGQQ8AJ/R8ALAAAAAABqrNdm71Rmbr6OJmXqrTm77F3ORTO7d8338Y+eMXWve/ePp83F1XzDpaGvl/26wjm8dPACJRDwAgAAAACAGmntwdOavTVeFov5+aSl+7U1Ltm+RV2kmZvitPdEunzdnXV7z0b2Lqd67fhNWveVJIt0zUeSR0DZr6WDFzgnAl4AAAAAAFDjGIahf/++Q5J0Q+cIDW1TXzZDevZ/W2SzGRd1721xKRUe95CSlavcfFuFrs23GXpnrjl7965eMfJ1r0Pdu6nHpV/+aW53/6cU3bt819PBC5yTs70LAAAAAAAA+Ls/th7X2oOJ8nCx6uGBzWQY0oKdCVp/KEnTVh/WjV0jK3TflftO6fpPV6ihv4cmjumkFmG+Zb72r23H9Y+v18jqZFFkoKdigr0UE+KlmBDvgm1vBXu7ylLYcvw3v2w8qn0n0uXv6aIxPRpVqH6HZBjSz2OljFNSvTZS/2fLfw86eIFzIuAFAAAAAAA1Sm6+Ta/NNrt3/9ErWvV83SVJjw1urhdnbtOrs7ZrcKt6CvZ2K/e95+1MkCQdTcrUyA+X6d3Rl2hAy3pluvazxfskmZ24+0+ma//JdM3dUfwcH3dnxYR4q/HZ4W+IlyICPPXu3D2SzO5dn7rUvbv6c2nPHMnqJo38THIu/48bHbzAuRHwAgAAAACAGmXa6sPadzJdQV6uurt3TNH+W7tF6Ye1R7TtWIr+/ft2vXld+3Lfe+U+MyAM8XHTidRs/ePrNXrmipa6s2f0OTtvJenAyXSt3H9aFov0v/t7KC07T/tOpGnviXTtO5mufSfSdDQpU6lZedp4OEkbDyeVep8ATxfd1r1Ruet2WCd2Sn8WdOwOelEKbVmx+xTO66WDFyiBgBcAAAAAANQYadl5euevXZKkhwY2Ldbp6mx10ivXtNaIj5ZpxrqjurZjhLo1DirzvdOz87T5qLlI2/R7uumTRXs1ddVhvfzbdu0+nqaXrm4tV+fSlyv6fs1hSVLvpiFqF+EvSerRJLjYOVm5+TpwKl37TpiB774T6dpbEP6mZpkzf8f2ayJvtzoSx+TlSDPukvKypMb9pS53V/xeRR28iZVTG1CL1JHfUQAAAAAAgCP4bNE+nUzLUXSwl0Z3KTln95LIAN3YJVKTVx7Scz9v0e8P9jpnKPt3aw8mKt9mqKG/hxoFe+nf17RRk1AfvfLbNn235rBybbZSu4Lz8m36Ye0RSdL1nSPOeX93F6tahPmWmOtrGIZOpuUoKSNHTUK9y1RrrbDg39Kxjeb83OEfSk5l+3EqFTN4gXO6iF9ZAAAAAAAAledoUmbRnNsnhjSXi7X02OLJIS0U7O2qPQlpReeXxar9ZjjYNcYMCy0Wi+7sGa3Pbu0ki0Wase6o1h8q2SG6aPcJJaRmK9DLVQPLOK/3bBaLRSE+bmpaz+e8YyBqlQNLpSVvm9vD3pF861/c/ZjBC5wTAS8AAAAAAKgyWbn5+t/6o7r585W679u1ysrNL/U8wzD09IzNysjJV+dGAbq8ddg57+nn6aJnhpqzXN+du1uHT2eUqZaV+09JkrpGBxbbP6BlPY24JFyS9PJv22UYRrHj3602xzNc3b5hmbuF67SsZOmneyQZ0iU3S7FXXfw9z+7g/duPD1DX8bsSAAAAAACodLuOp+qFX7eq67/n6uHvNmjJnpOatSVe//p5a6nn/7T+qBbuOiFXZye9OrLtBTtdr27fUN1igpSdZ9PzP28pEcr+XVZuvjYeNufvdo0uObf3iSHN5e7ipLUHEzVrS3zR/hOp2Zq7PUHS+ccz4Cy/PyElH5YCGkmXvVo59yzs4LXlSjlplXNPoJYg4AUAAAAAAJUiIydP3685rBEfLtXgtxZp0tIDSs7MVUN/D93WLUpOFum7NYc1ddWhYtedSM3WizO3SZIeGtBUjUMuPKfWYrHopatby8Vq0fydJ/TH1vjznr/uUKJy8m2q5+umqCDPEsfD/Nx1d+/GkqRXZ+1Qdp7ZafzT+iPKsxlqF+Gv5mE+Zfo61Gmbf5A2fSdZnKQRn0lulfQ1c/GUrG7mNnN4gWJYZA0AAAAAAFyULUeTNW31If28Pk6p2XmSJKuTRQNbhmp0l0j1ahoiq5NF9fzc9drsnfrXz1sVW99X7SL8JUnjf92qpIxcxdb31d29Y8r83Cah3rqnd2O9P3+PXvh1m3o1DZGXW+lRR9H83eigc3YH39M7RlNXHdKh0xn6etlB/aNXtL5fU7C4Wie6dy8o+Yj026Pmdu8npIgulXdvi8Xs4k09Zs7hDYiqvHsDDo6AFwAAAAAAlFtadp5+2RCnaasPadOR5KL9kYGeur5zhK7tGK5QX/di19zXp7E2HErSn9uO675v12rmg720+sBp/bbpmKxOFr02qu05F1Y7lwf6N9HPG4/q8OlMvf3XLj0zNLbU81buMwPeLn+bv3s2LzdnPT64mZ76cbPem7dbMSFe2pOQJg8Xq4a1u8hFwsoqYbt0eKXU/ibJ6lI9z6wMNpv0073m/N2GHc2At7J5FAS8dPACxRDwAgAAAACAMjEMQxuPJGvaqkP6ZWOcMnLMMQYuVouGtArT6C6R6hYTJCen0jtkLRaLXr+unYa/v1T7T6Zr7OR12nvCnKd6d+8YtW7oV+6a3F2sevGq1rr9y9X6YukBjegQrpb1fYudk52Xr3WHEiVJl8acO+CVpFEdIzRp6QHtiE/VP6eulyRd0aa+fNyrOGzNzZQWviYte1ey5UmZiVLPR6r2mZVpxQfSgcXmKIURn1VNOF04hzczsfLvDTgwAl4AAAAAAOq4t//apelrjmhgy1Dd0CWyRECanJmrnzcc1ZSVh7QjPrVof0ywl0Z3idSIDg0V5O1Wpmf5urvo45s76uoPlmr5vlNF93loQNMK19+vRagubx2mWVvi9cxPm/XDvd2LhcybjiQrO8+mYG/XC873tTpZ9OzQWN08cWVRgH1dp/AK11Yme+dLMx+REvef2bfxO6nHw+ZogpoufrM090Vz+7IJUlDjqnmOR4D5SgcvUAwBLwAAAAAAdVi+zdAXS/YrJStPXy0/qK+WH1S7CH+N7hyhRsFe+n7NYf2++Ziycm2SJFdnJw1tU183dI5Ql+jAc86zPZ/mYT76z6i2erCgQ/Y/o9rK3cV6Ue/j+WGxWrTrhNYdStJ3aw5rdJfIomOF83fLWm/PpsHq1zxE83eeUHSw13nHOlyU9FPSn89IG6ean/s0kAaOl355QDqxXTq+RQprUzXPrix5OdKMu6X8HKn5FVKH26ruWUUdvAS8wNkIeAEAAAAAqMN2xKcoJStPXq5W9W4Wojnbjmvj4SRtPJxU7Lzm9Xx0Q5cIXXNJQ/l7ul70c69q10BOFsnF6qTOjS4+QK3v56FHBjXTy79t16uzdmhwbL2iruIVBZ3CXcrxnBeHt9YLv27VTZdGVSjEPi/DkDZOk/54uiCstEhd7pL6Pye5+0rbf5F2zJQ2T6/5Ae+KD6SEbZJnsHTVe1XbcexR8ONHBy9QDAEvAAAAAAB12IqCxcc6Rwfqo5s76kRqtn5cd0Tfrz6s4ylZuqJNfY3uGqlLIvwrPei8sm2DSr3fmO6N9OO6o9p+LEUTZu3Q69e2U26+TWsPmjNbu8YElfleEYGe+vy2zpVanyTp1F5zHMP+hebnobHSsHeliLOe1fa6goD3R2nAeMmpfAvPVZukw+bcYEka/LLkFVy1z6ODFygVAS8AAAAAAHXYyoLu1ksLws8QHzfd26ex7u1TRXNUq5Cz1UmvXNNaIz9aph/WHtG1HcPl6uykjJx8+Xu6qHk9H/sVl59nLqC28D9SXpbk7C71eUrq/s+SC5I1HSK5+UopR6RDy6RGPe1T84X8MU7KzZAiu0vtbqj659HBC5Sqhv4XEAAAAAAAqGo2m6FVB8ywrGtVzZmtZh0iA3RDZ3P+7rP/26Kle05Kkjo3Ciy28Fq1W/y6NPcFM9yN7iPdt0zq9WjJcFeSXNyllleZ25unV2+dZbX7L2n7r5LFKg19vXoWg6ODFygVAS8AAAAAAHXUzuOpSsrIlZerVa0b+tm7nErz1GXNFeTlqt0JaXp//h5Jdg6wbTZp3dfm9sAXpFt/loIu0CHd9lrzdev/zIXMapLcLOn3x83trvdK9VpVz3Pp4AVKRcALAAAAAEAdVbj4WMdGgXKx1p6IwN/TVU9f0VKSlJVrkyR1jS77/N1Kd3iFlHLUHLvQ9d6ydbs26iV5h0lZSdKev6q8xHJZ9q6UuN+sr+//Vd9zizp4E6vvmYADqD2/ewMAAAAAgHJZUTR/t3aMZzjbiA4Ni7p2fdycFdvA137FFI5ZaDnMHL9QFk5WqfXIguu/r5q6KiLxgLT4DXN7yCuSezV+XQs7eLNTpPzc6nsuUMMR8AIAAAAAUAfZbIZW7S+cv2vH7tYqYrFY9O8RbRQe4KEbL42U1V7zd/NzzTEL0pnAtqwKxzTsnCVlpVRqWRU26//MOcKNepX//VwsD39JBT+OdPECRQh4AQAAAACog3YlpCoxI1ceLla1Da8983fP1jjEW0ue6q9xl7e0XxF755uLgnmFmIurlUf99lJQEzNQ3fFblZRXLqf2SrtmFSys9kb1LKx2Nier5F7wc5U5vEARAl4AAAAAAOqglfvMgKxTo4BaNX+3xtnyg/na6hrJ6ly+ay0Wqc115nZNGNOwqaCGxv2kkOb2qaFoDi8BL1CI38EBAAAAAKiDzszfrX3jGWqMnAxp+0xzu821FbtHm1Hm674FUurxSimrQgxD2vSduV0YOtuDBwutAX9HwAsAAAAAQB1jGIZWFs3frX0LrNUYu2ZLuemSf6QU3rli9whqLDXsJBk26cc7zdDYHo6ulRL3Sy6eUouh9qlBOtPBy4gGoAgBLwAAAAAAdczuhDSdTs+Ru4uT2ob727uc2mtzwXiG1qMubl7t5a9Jrj7SgcXSlOvsE/IWjmdofoXk5l39zy/kwYgG4O8IeAEAAAAAqGNWFoxn6BgVIFdnooEqkZko7ZljbheOWaio8I7SzT9Krt5myDv1+uoNefPzpK0zzO22dhzPINHBC5SC38UBAAAAAKhjVhQssHZpNPN3q8z2X6X8HCk0VqrX6uLvF9lVunmGGfLuXyRNvaH6Qt59C6T0E5JnkNS4f/U881zo4AVKIOAFAAAAAKAOMefvmh28XatzgbWtP50ZWVAXFI1nGFl594zseqaTd/9CadpoKTu18u5/LpsLxjO0GiFZXar+eefjGWC+0sELFCHgBQAAAACgDtl7Ik0n03Lk5uykdhF+1fPQQyuk6WOkGXdJ6aeq55n2lBpvdtlKFz+e4e8iL5Vu+sEMefctkD7tJx3fVrnPOFtOurR9prlt7/EM0lkdvIn2rQOoQQh4AQAAAACoQwrHM3SIDJCbs7XqH5ifJ/32mLlt2KTTe6v+mfa29SdJhhTeWQpoVPn3j+om3fqz5NNAOrVb+qy/tHFa5T9HknbOknLTzfcR3rlqnlEezOAFSiDgBQAAAACgjsjLt+n3zcckSZdW13iG1Z9Jx7ec+fz0vup5rj1tnm6+trm26p4R3km6d7EU00/Ky5R+ukf65UEpN6tyn7PpO/O1zbWSxVK5964IZvACJTjbuwAAAAAAAKrTwVPpOpqYWWJ/fX8PRQV6ysmpBoRYVSAnz6aHpq3Xsr2n5Oxk0ZDW9ar+oanx0rxXzG2vUCk9ofYHvKf3SUfXShYnqdU1Vfssr2BzJu+i/0oLXpXWfSXFrZeu+0oKjLn4+6eflPbMNbfb1IDxDFLxDl7DqBmhM2BnBLwAAAAAgDrj8OkMDXxzoXLzjVKPe7s5K7a+r2Ib+Kp1Qz+1auCrJqHecrE69jfAZuXma+zkdZq7I0GuVid9cFMHtQjzrfoH//mslJMqNewotRwm/TW+9ge8m380X6P7SN6hVf88J6vU9//M8Qkz7pLiN0mf9JWu/lBqeeXF3XvrT5KRL9VvJ4U0q5RyL1phB68tV8pJk9x87FsPUAMQ8AIAAAAA6ox5OxKUm2/Ix91Z9f3ci/bn2wwdTsxUWnaeVh04rVUHznz7t6uzk1qG+Si2gZ9aN/RVqwZ+ahHmI3eXaphfWwkyc/J19zdrtHj3Sbk5O+nTWzupT7OQqn/w/sUFowos0tA3pOQj5v7aHPAaxlnjGSp5cbULaTJAumex9MPt0uGV0nc3Sd0ekAaOl6wu5b+fLV/aMNncrindu5Lk6ik5u0t5WWYXLwEvQMALAAAAAKg7luw5KUm6t09jje3XpNix3Hyb9p5I09ajKdoal6ItccnaHpei1Ow8bTySrI1HkovOtTpZ1CTEW60KAt+YEC9FBHgoPMCzxgS/+TZDcUmZemz6Rq3af1qerlZNvK2zujWuhtm7+bnS74+b253vlBpcIlldzc9rc8B7fIt0cqdkdTM7lqubX0NpzG9mp/Ty982PI2ukaydJvg3Kfh+bTfr1QXPcg9Wt+sPqC/EIkFKPmXN4A6LsXQ1gdwS8AAAAAIA6IS/fphV7T0mSejYJLnHcxeqkFmG+ahHmq5EdzX02m6FDpzOKAt+tcSnaejRZp9JztPN4qnYeT9WMdUeL3SfEx01RgZ56dFAzdS/lOVVlR3yKvl5+UAdPpevw6UzFJWUqz2aOovBxc9aXd3RWx6jA6ilmxYfSiR2SZ7DU/1lzX0Aj8zUz0ey89KymWqrT5h/M16aDJHc/+9RgdZGGvCJFdJV+HisdXiF93Esa+bnUuN+FrzcMafb/Seu/NecIj/hU8gmr+rrLwyPQDHgzWGgNkAh4AQAAAAB1xKajyUrNzpOfh4taNyxb+ObkZFGjYC81CvbS0Lb1JUmGYeh4Sra2xiVry9EUbTuWrIOnMnSkYMTDidRsnUjN1ut/7tSMagp41xw4rTGTVistO6/YfherRc3q+WjCiDZqG+5fLbUo+ai04D/m9qAXzW5LSXL1krzDpLR4KXF/7Qt4bTZpS8H83TbX2rcWSYq9SqrXSvr+Nun4Zumba6R+T0u9HpeczjFT2jCkuS9Iqz4xP7/6I6nV1dVWcpkV/tzJTLRvHUANQcALAAAAAKgTluw2xzN0bxwkq5OlwvexWCwK83NXmJ+7BrSsV7TfMAwlZeRq27EU3fT5Sm04nKTkjFz5eVZg/mk5LNt7Uv/4ao0ycvLVuVGAbugcqYhAT0UEeqiej7ucLuK9Vsgf46TcdCniUqnd6OLHAmPMgPf0fnPhtdrkyCop+bDk6iM1G2LvakxBjaV/zJF+f0Ja/400/xXp0AppxGeSVymjOha/Li15y9we+qbU7obqrbesCv/TgA5eQBIBLwAAAACgjiicv9ujirpqLRaLArxc1aNJsJqEemtPQpqW7DlZ1PlbFRbuOqG7v16j7DybejUN1qe3dJKHqx1nAO+ZK237WbJYzYXV/t4pGhgjHVpWO+fwFi6u1vJKycXDvrWczcVDGv6+FNlN+u0xae9c6ZNe0mWvSk5WKf2E+XFqr7RxqnnN4FfM2ck1VVEHLwEvIBHwAgAAAADqgPTsPK0/ZH47d2nzdytbn2Yh2pOQpkW7TlRZwDtn23GNnbxOOfk2DWgRqg9u6mDfBd7yss1OUUnqeo8U1rrkOYHR5mttC3jzc6Wt/zO3W9ewBckKXXKT1KC99N0t0um90ve3lH5ev2ek7g9Ua2nl5lEQ8NLBC0gi4AUAAAAA1AGrDpxWbr6h8AAPRQV5Vvnz+jQL0cQl+7Vw1wkZhiGLpXLHJPy++ZgenLpeeTZDl7cO0zs3XCJX53PMVa0uy941g0PvelLf/yv9nMAY87W2Bbz7FkoZJ81F5WL62Luac6vXSrp7gTlG48ASyTNI8gqRvILN14YdpRZX2rvKC6ODFyiGgBcAAAAAUOsVzt/t2SS40sPW0nSJDpSbs5PiU7K063iamof5VNq9/7f+qB79foNshjS8fQO9cW07OVvtHO4mHpQWvWFuD35Fcj/HIna1NeDd8oP52upqyVq1M5cvmruvNPwDe1dxcejgBYqx858AAAAAAABUvaVVPH/379xdrLo0xlzEatGuE5V23+9WH9IjBeHutR3D9eZ17e0f7krS7P+T8jKlRr2kNucZUVA4oiH9hJSVUj21VbXcTGn7r+Z2m2vtW0tdQQcvUEwN+FMAAAAAAICqk5CapR3xqZKk7o2Dqu25fZqFSDIXQqsMXy8/oKd+3CzDkG6+NFL/GdlWVqeq70a+oJ2zpZ2/S07O0hWvS+frkHb3M8cYSFLi/uqpr6rt+kPKSZP8IqTwLvaupm6ggxcohoAXAAAAAFCrLd97SpLUqoGvgrzdqu25vQsC3lX7TysjJ++i7vX54n16/uetkqQ7e0brpeGt5VQTwt3cTGnWk+Z2t7FSaIsLX1M0pqGWBLybp5uvrUdKTsQs1aKogzfRvnUANQS/8wAAAAAAarWz5+9Wp8YhXmro76GcfJtW7qt4p+H783br5d+2S5LG9musZ4e2rJY5wmWy+E0p6aDk21Dq/WTZrqlNc3gzk6Tdc8zt842mQOUq7ODNTpHyc+1bC1ADEPACAAAAAGotwzC0pJrn7xayWCzq07ziYxoMw9Abf+7U63/ukiQ9OqiZnhjSouaEu6f2SkvfNreH/Fty8y7bdbUp4N0xU8rPlkJaSPVa27uausPDX1LBrwO6eAECXgAAAABA7bXvZLqOJWfJ1eqkzo0Cq/35vZuaAW95F1ozDEMTZu3Qe/P2SJLGXd5CDw5oWun1VZhhmKMZ8nOkxv2l2OFlv7Y2jWjY/IP52nrU+WcPo3I5Wc15zhJzeAER8AIAAAAAarGlBd27nRoFyMPVWu3P794kSM5OFu07ma5DpzLKdI3NZmj8L1v16SKzw3X8sFjd06dxVZZZftt/lfb8JVldL7yw2t8FRpuvjt7Bm3pc2r/Q3G4z0r611EVFc3gJeAECXgAAAABArVU4f7e6xzMU8nV3UYfIAEnSwt0X7uJNy87T0z9t1lfLD8pikSaMaKMxPaKruszyyUmXZo8zt3s8JAWVM3wu7OBNjZNyyhZ610jb/icZNqlhxzPvCdWncA4vHbyAnO1dAAAAAAAAVSEnz6bl+05Jqv4F1s7Wp3mIVh04rUW7TuiWS6OK9mfm5GvejgRtO5asnfGp2hGfqiOJmZIkJ4v031HtNLJjuL3KPreFr0kpRyS/SKnno+W/3iPA/Pb6rGQp8YBUL7b48bj1kounFNK8UsqtMpunm69trrVvHXUVHbxAEQJeAAAAAECtk28z9Oj3G5SalacgL1e1buhnt1r6NAvRf//YqWV7Tionz6aMnDx9vfygvlx2QKfTc0qc39DfQ88Mbakr2tS3Q7UXcGKntPx9c/vy/0iunuW/h8VidrzGrTfHNJwd8J7eJ30+SHLzkR7bITm7VU7dle30funIasniJLW6xt7V1E108AJFCHgBAAAAALWKzWboqR83aeamY3KxWvT6de1kdbLfAlix9X0V5OWqU+k5emjaei3cdUIZOfmSpPAAD/VqGqIWYT5qHuaj5vV8FODlardaz8swpN8ek2x5UrPLpBZXVPxeZwe8Z1szSbLlml2ZR9ZIjXpcXM1VZcuP5mujXpJPmH1rqavo4AWKEPACAAAAAGoNwzA0/tet+mHtETlZpHdvuET9mofatSYnJ4t6NwvRT+uPataWeElSy/q+uq9vY13ROkzOVgdZHmfLj9KBxZKzu9m9ezEKZ9aeHfDmZUvrvz3z+b4FNT/gbTPKvnXUZXTwAkUIeAEAAAAAtYJhGHp19g59XbBA2RvXtdPlNWTMwegukfpja7zahvvpvr5N1LtpsCwW+3UVl1tWivTHM+Z2r8ekgEYXd7/SAt5tPxfvxty/UNIzF/ecqnB8q5SwTbK6Si2H2buausvTXLxQmYn2rQOoAQh4AQAAAAAOwWYzlJaTp7SsPKVm5Sk1K1ep2We2txxN0dRVhyRJL1/dWtdcUnMWKOsSHahtL15m7zIqbsGrUlq8FBAtdX/w4u9XFPDuP7NvzRfm6yU3m528R9dK2anmPN6aZPMP5muTQeaCcbAPrxDz9dgmKTtNcvO2bz2AHRHwAgAAAADs4vDpDK3cf9oMarPylJadV7RdGNqmFQW45vGyeHZoS93UNaqKq69Djm+VVn5sbl/xuuTifvH3LAx4kw+boxlO7ZEOLZcsVqnfs9KBJVLiAengMqnZkIt/XmUxDGlLQcDLeAb7iukr+TSQkg9Js56Urv7Q3hUBdkPACwAAAACodoZhaPRnK3QkMbPc17pYLfJxd5GPu7O83ZwLXl3k6+6sPs1DNLx9wyqouI4qXFjNyDfHETQdWDn39QqRXL2lnDQp8aC5uJoktRgq+daXovuYAe++hTUr4D2yWko6ZNbezIE7smsDdz9p5GfSV8OkDZOlmH5S22vtXRVgFwS8AAAAAIBqd+h0ho4kZsrFatHgVmHyLQprzw5uzW3zw6UozHVzdnKs+bWObONUs7PWxVO67NXKu6/FIgVGS/GbpeObpY3TzP2d7jBfY/pK674yF1qrSQo7mVsMlVw97VsLpEY9pd5PSAv/I818RArveKY7HKhDCHgBAAAAANVu7UFzYaQ2Df30wY0d7FwNSpWZJP35nLnd50nJr5JnGgfGmAHvojeknFQpsLHZuStJ0b3N14StUtoJyTukcp9dESd2SltmmNvd/2nfWnBG7yel/YulQ8ukH+6Q7vhTcna1d1VAtXKydwEAAAAAgLpn3SEz4O0QySJVNdb8f0sZJ6XgZtKlYyv//oWdlglbzddOt0tOBTGFV7BUr425vX9h5T+7Iha9LsmQWlwphbWxdzUoZHU2RzW4+0tx66V5L9q7IqDaEfACAAAAAKrd2oNJkqSOUQS8NVJqvLS2YC7u5a9VTUdkQPSZbaub1P6m4sdjCrp5a0LAe3LPmcXVej9h31pQkl+4NPwDc3vZe9Luv+xbD1DNCHgBAAAAANUqLTtPO+NTJEkdCHhrplWfSvk5UkRXqXG/qnnG2bNSW10jeQYWP144rmFfDQh4F78hGTZzYbUG7e1dDUrT8kqp8z/M7ZkPS/m5di0HqE7M4AUAAAAAVKuNh5NkM6SG/h6q5+tu73Lwd9lp0uqJ5nZVzpo9O+DtfGfJ41HdJSdnKemgdHq/uSibPZzeJ236ztzu/aR9akDZDH5ZSj8p9X5csrrYuxqg2hDwAgAAAACqVeECa4xnqAaJB6S986W210uunmW7ZsNkKSvJDGCbX1F1tfk1lLo/aG6Hdy553M3b3H9ouTmmwV4B7+I3JSNfajJQCu9onxpQNi4e0nVf2bsKoNoxogEAAAAAUK3OLLDmb99C6oLfHjO/Xf2ba6TMxAufn58nLS+YZdptrORkrdLyNPgl88NiKf24vcc0JB6UNk41t/s8ZZ8aAOACCHgBAAAAANXGZjO0rqiDN/ACZ+Oi5OdKB5eb24dXSJOukFLizn/Njl/NkQieQVK7G6u+xgspWmhtkWSzVf/zl7wl2fKkmL5SRJfqfz4AlAEBLwAAAACg2uw9kaaUrDx5uFjVor6Pvcup3eI3SbnpkquP5B0mJWyTJg6RTu4p/XzDkJa+a253vqvsIx2qUsNOkouXlHHSrL86xW+W1n9rbvf5v+p9NgCUAwEvAAAAAKDaFI5naBvuJxcr/yStUoXdu1HdpTv/kAIbS8mHpC8GS0fXlTz/0HIpbp3k7C51/kf11nouzq5m/ZK0b0H1PDM7VfrzWenTvpItV2rUS4rqVj3PBoAK4E9TAAAAAEC1YYG1anSoMODtJgU0ku74Q6rfTso4JX15pfTHM9LpfWfOX/ae+dputOQdUu3lnlPRmIYqnsNrGNLmH6T3O5tfC1ueucjcyM+r9rkAcJGc7V0AAAAAAKDuWHcoSZLUIZKAt0oZhnRohbkdWdAB6x0i3TZT+v4Wsxt2+fvmgmpNB0str5R2/i7JYi6uVpPE9DVf9y+WspIld7/Kf0ZWivTdzWdC5IBG0uWvSc2GVP6zAKCS0cELAAAAAKgWSRk52pOQJknqQAdv1Tq1x5xba3WTGrQ/s9/dV7r5J+nG6VKTQZIMafcf0i//NI83v0IKbmqPis+tXmsppKWUlylt+r5qnrH6MzPcdXaX+j0j3b+ScBeAwyDgBQAAAABUi/UF3bsxwV4K9HK1bzG13cFl5mt4J8nZrfgxJyep2WDp5h+kf66TLr1fcvOTnFykXo9Wf60XYrFIne4wt9d8YXYnV7bNP5ivl78m9XlScnGv/GcAQBUh4AUAAAAAVIvCBdYuYTxD1Sucvxt5gcXBghpLl02QHtshPbLVDIRrorbXSc4eUsI26fDKyr338W3mfZ1cpNirKvfeAFANCHgBAAAAANWCBdaqUVkD3kKunpJPvaqr52J5+EttRprba76o3HtvKejebTpI8uDnJgDHQ8ALAAAAAKhyefk2bTycJEnqEOVv11pqvZRjUuIByeIkRXSxdzWVp3BMw9b/SRmnK+eehnFmPEObUZVzTwCoZgS8AAAAAIAqt/N4qtJz8uXj5qymoT72Lqd2O1Qwf7dea3NRtdqiQQepfjspP1vaMKVy7nlkjZR0UHLxkppdXjn3BIBqRsALAAAAAKhy6wrGM7SP9JfVyWLnamq5QyvM17KOZ3AUVbHYWuF4hhZXmGMqAMABEfACAAAAAKrcukNJkqQOLLBW9Q4WzN+NqmUBryS1HiW5+kin90r7F13cvWz50pYZZ+4LAA6KgBcAAAAAUKUycvK0ePdJSVIHFlirWplJ0vEt5nZt6+CVJDdvqd315vbFLra2f5GUnmAurNa4/8XXBgB2QsALAAAAAKhS783bo5Np2QoP8FDX6EB7l1O7HVktyZACoiWfMHtXUzU63m6+7pgppR6v+H0KxzPEDpecXS++LgCwEwJeAAAAAECV2ZOQps8X75MkjR/WSu4uVjtXVMsdLFhgLaq7feuoSmGtpfAuki1PWv9Nxe6Rly1t+9XcZjwDAAdHwItymTBhgjp37iwfHx+Fhobq6quv1s6dO4ud07dvX1kslmIf9957b7FzDh06pKFDh8rT01OhoaF64oknlJeXV51vBQAAAEAVMwxDz/+8Rbn5hga0CNXA2Hr2Lqn2O1Qwf7c2jmc4W+Fia2u/MmfpltfuOVJ2suTToHaH4QDqBAJelMvChQs1duxYrVixQnPmzFFubq4GDx6s9PT0YufdddddOnbsWNHHa6+9VnQsPz9fQ4cOVU5OjpYtW6avvvpKX375pZ5//vnqfjsAAAAAqtDMTce0bO8puTk7afxVrexdTu2XmyUdXWtu1/aAt9XVkru/lHxI2jO3/NcXjmdoPUJyoqscgGNztncBcCyzZ88u9vmXX36p0NBQrV27Vr179y7a7+npqbCw0uc9/fnnn9q2bZv++usv1atXT+3bt9dLL72kp556SuPHj5erK7OPAAAAAEeXlp2nl3/bJkka26+JIgI97VxRHRC3XsrPkbxCpKDG9q6marl4SO1vklZ8IK2dJDUbXPZrs1OlnQX/tm09smrqA4BqRAcvLkpycrIkKTCw+EIJkydPVnBwsFq3bq1x48YpIyOj6Njy5cvVpk0b1at35tuzhgwZopSUFG3durXU52RnZyslJaXYBwAAAICa6+05u3Q8JVtRQZ66u3eMvcupGw4uNV8ju0kWi31rqQ6dChZb2zVbSj5S9uv2zJXyMqXAGKnBJVVTGwBUIwJeVJjNZtPDDz+sHj16qHXr1kX7b7zxRn377beaP3++xo0bp2+++UY333xz0fH4+Phi4a6kos/j4+NLfdaECRPk5+dX9BEREVEF7wgAAABAZdgZn6pJyw5Ikl64ioXVqsWO36TFb5jbjXrZt5bqEtzUfK+GTVr3ddmvO7TCfG3cv24E4QBqPUY0oMLGjh2rLVu2aMmSJcX233333UXbbdq0Uf369TVgwADt3btXjRtX7NuExo0bp0cffbTo85SUFEJeAAAAoAbKys3Xkz9uUr7N0GWtwtS3eai9S6r9VnwkzR4nyTBDy0tuvuAltUan26UDi83F1no/IVldLnzN4YKAN+LSqq0NAKoJHbyokAceeEAzZ87U/PnzFR4eft5zu3btKknas2ePJCksLEzHjx8vdk7h5+ea2+vm5iZfX99iHwAAAACqn2EY5z32xA+btPFwknzdnfXcsNhqrKwOys+Tfn9Cmv1/kgyp4xjpxu8l1zo077jFMMkzWEqLN0c1XEhOunRsk7kd2bVqawOAakLAi3IxDEMPPPCAfvrpJ82bN0/R0dEXvGbDhg2SpPr160uSunXrps2bNyshIaHonDlz5sjX11exsfwFEAAAAKhpcvJs+mVjnEZ9tEwdXpqjn9aXPu/0rb9269eNcXJ2sujjWzqqob9HNVdah2SnSdNulFZ9an4+6EXpyrfL1sFamzi7Sh1uMbfXfHHh84+uk4x8yaeB5Md3hQKoHRjRgHIZO3aspkyZop9//lk+Pj5FM3P9/Pzk4eGhvXv3asqUKbriiisUFBSkTZs26ZFHHlHv3r3Vtm1bSdLgwYMVGxurW265Ra+99pri4+P17LPPauzYsXJzc7Pn2wMAAABwloTULE1ZeUhTVh5SQmp20f5HvtuoFXtPa/xVreThas7X/Wn9Eb07d7ck6d8j2qh742C71FwnpMRJU66X4jdJzu7SNZ9Ira62d1X20+E2acnb0t550ul95uJp51I4niGyK/N3AdQaBLwol48++kiS1Ldv32L7J02apDFjxsjV1VV//fWX3n77baWnpysiIkIjR47Us88+W3Su1WrVzJkzdd9996lbt27y8vLSbbfdphdffLE63woAAACAUhiGofWHk/TVsgP6ffMx5eabIxlCfdx0U9co5RuG3pu3W9+tOawNh5P0wU0ddDo9R0/9sFmSdF/fxrquE52RVSZ+szT5Oik1zhxNMHqaFNHZ3lXZV2C01GSAtOcvae2XZjfzuRxeZb5GMJ4BQO1hMc43QAmooVJSUuTn56fk5GTm8QIAAADncCotWz+uO6IhrcIUFeR13nOzcvM1c9MxfbXsgDYfTS7a3ykqQLd2b6TLWoXJ1dmc8rdsz0k9OG2DTqZly9PVKherk5Izc3V56zB9cGMHOTnRGVklds+Rpo+RctKk4GbSTdOlgEb2rqpm2PGbObLCM1h6dJvkXMp3h9ps0muNpKxk6a75UsMO1V4mUBZkHigvOngBAAAAoJZ64odNmrcjQa//sUu392ykB/o1kY978RmtcUmZ+nbFQU1bfVin03MkSa7OThreroFu695IrRv6lbhv9ybB+v2hnnp42gYt23tKUr7ahfvpzevaE+5WldWfS78/ac6PbdRLuv4bySPA3lXVHE2HmHN1U+Ok7b9KbUaVPOfkTjPcdfGUwtpUf40AUEUIeAEAAACgFtpyNFnzdpgLG+fk2/TJwn36ce1RPTmkuUZ2DNfqA6f11bID+nPbceXbzG/sbODnrpu7RemGzpEK9HI97/1Dfdz1zZ1d9emifdpyNFn/uiq2aB4vKpHNJs15Tlr+vvl5+5vMxdScz//jU+dYnaWOt0kLJkhrJpUe8B4qmL/bsGPdW4wOQK1GwAsAAAAAtdCHC/ZIkq5q10DD2zfQy79t1/6T6Xryx0165fftSs7MLTq3W0yQbuveSANbhsrZ6lTmZ1idLLqvb+NKrx0FcjKkGXdJO2aan/d/Vur1OIuDncslt0gL/yMdXCKd2CmFNC9+nPm7AGopAl4AAAAAqGX2JKRq1pZ4SdLYfk3UPMxHvZqG6KtlB/Tu3N1KzsyVh4tVIzo01K3dGql5mI+dK0YJqcelqTdIceskq6t09Ueld6XiDL+GUrPLpZ2/mV28l79a/Pjhgg7eyEurvzYAqEIEvAAAAABQy3w4f68MQxocW68ovHV1dtJdvWM0okNDbYlLUfsIf/l58G3qNVLCdmnydVLyIckjULphihTVzd5VOYZOd5gB78Yp0oDnJVdPc39agnR6nySLFN7ZriUCQGUr+/feAAAAAABqvEOnMvTzxjhJ0gP9m5Q4HuTtpj7NQgh3a6pjm6SJg81wN7Cx9I+/CHfLo3F/yT/SXExt609n9h9eab6GtpQ8/O1SGgBUFQJeAAAAAKhFPlq4V/k2Q72bhahtuL+9y0F5rfpEyk6RwruY4W4QM47LxclJ6ni7ub3mizP7CwNe5u8CqIUIeAEAAACglohPztKPa49Ikh7oV7J7Fw7g8GrztddjkmegfWtxVJfcLDm5SEfXmB3RknSIgBdA7UXACwAAAMDuDMPQ6gOnde83azX60xU6nZ5j75Ic0qeL9ikn36Yu0YHqEk046HAyk6STO83t8E52LcWheYdKLYeZ22snSblZ0rEN5ueRBLwAah8WWQMAAABgN/k2Q39sjdeni/Zpw+Gkov3vzt2t8Ve1sl9hDuhkWramrDooie5dh3V0jfkaGCN5Bdu3FkfX6XZp6wxp0/dS8yuk/BzJK1QKiLZ3ZQBQ6Qh4AQAAAFS7jJw8/bD2iD5fvF+HTmdIklydndS3WYj+3HZck1ce1J09oxUR6GnnSh3HJwv3KivXpnbhfurVlHDQIR0pCHjDO9u3jtqgUS8pqIl0ao/0x9PmvsiuksVi37oAoAoQ8AIAAACoNidSs/X18gP6ZsVBJWXkSpL8PV1066VRuqVbI4X4uOnmz1dqyZ6TenPOLr11fXv7Fuwg9p9M15fLDkiSHh7UTBZCLMd0eJX5SsB78SwWqdMdZrh7cpe5L+JS+9YEAFWEgBcAAABAlduTkKrPF+/XjPVHlZNnkyRFBXnqHz2jNbJjuDxdz/zT5KnLWmjJ+0v0vw1HdXfvGLWs72uvsh3GK79tV26+oT7NQtSveai9y0FF2GxnRjQQ8FaOdqOlv16Q8rPNz1lgDUAtRcALAAAAoEoYhqGV+0/rs0X7NHdHQtH+SyL9dU/vGA2KDZPVqWSnaZtwPw1tW1+/bTqm//6xU1+MIew6nyW7T+qv7cdldbLouStb2rscVNSp3VJWsuTsIdVrbe9qagfPQKn1CGnjVMnZXarfzt4VAUCVIOAFAAAAUKny8m2avTVeny3ap41HkiWZ3y09qGU93d07Rp0aBV7wHo8NaqbZW+I1b0eCVu0/rS7RF76mLsrLt+mlmdskSbdcGqUmoT52rggVdmS1+dqwg2Tln+qVpuu90pYZUrPLJGdXe1cDAFWCPzUAAAAAVJpTadm679t1WnXgtCTJzdlJozqG686e0YoJ8S7zfWJCvHV95whNWXlI/5m9Qz/c2425sqWYuvqwdh5Plb+nix4e2NTe5eBiFM3f7WTfOmqbBu2lR7dJbvznB4Dai4AXAAAAQKXYdTxVd361WodPZ8rbzVn/6BWtWy6NUpC3W4Xu99CAppqx7ojWHkzUX9sTNCi2XiVX7NiSM3L15p87JUmPDmomf0+6Ex3akcL5u13sW0dt5BVs7woAoEo52bsAAAAAAI5v/s4EjfhwmQ6fzlRkoKf+N7a7Hh7YrMLhriTV83XX7T2iJUn//WOHcvNtlVVurfDO3N1KzMhV01Bv3dgl0t7l4GJkpUgJ5qgNFlgDAJQXHbwAAAAAKswwDH2x9IBe+W2bbIbUNTpQH9/cUQFeldNNem+fxpqy8pB2HU/TY99v1FvXty91YbbabFtcij5auFfp2XlydrLIxeokZ6tFv206Jkl67spYOVvp3XFoceskGZJ/pORDpzoAoHwIeAEAAABU2DcrDhYt8nV9pwi9dHVruTpXXtjo5+Git69vr7u+XqNfNsbJ09WqCSPa1Jl5vL9sjNOTP2xUVm7p3csDWoSqd7OQaq4Kla5wgTW6dwEAFUDACwAAAKDC5u1IkCT9o2e0nhnaskqC134tQvXODZfon1PXadrqw/Jwter5K2Nrdcibl2/Ta3/s1KeL9kmSejUN1pVt6yvPZigv31Buvk1WJ4uubt/QzpWiUhwm4AUAVBwBLwAAAIAKS8rIlSR1iQ6s0sB1aNv6ysxtp8enb9SkpQfk7easxwY3r7Ln2VNieo7+OXW9luw5KckcU/HEkOZ1bjRFnWEYZ3XwssAaAKD8CHgBAAAAVFhSRo4kyd+zcmbuns+ojuHKyMnT8z9v1Xvz9sjLzVn39mlc5c+tTtviUnTPt2t0+HSmPFys+u+1bXVl2wb2LgtV6fQ+KfO0ZHWTwtrYuxoAgANiEj8AAACACkvKNDt4AzxdquV5t3ZrpP+7vIUk6dVZO7Ri36lqeW51+GVjnEZ8tFSHT2cqMtBTM+7vTrhbFxR27zZoLzlX/X+UAABqHwJeAAAAABWSbzOUXBDw+lVTwCuZIwtGd4mQJP3r563KzS99ATJHkZdv04Tft+vBqeuVlWtTr6bB+uWBHmpZ39fepaE6HF5lvjJ/FwBQQQS8AAAAACokNStXhmFu+3tUb+fhU5e1UICni3YeT9XXyw9W67MvJN9maOamOO1JSLvguYnpORozabU+KVhM7Z4+Mfry9i7VMvICNcQRFlgDAFwcAl4AAAAAFZJYsMCal6tVrs7V+08Lf09XPXWZOarh7Tm7lJCSVa3PP5+3/9qlB6as11XvL9GS3SfPed62uBRd9cESLdlzUh4uVr03+hKNu7wli6nVJTnp0vGt5jYBLwCgggh4AQAAAFRIdS6wVprrOkWoXYS/UrPzNGHWDrvU8HfzdhzXe/P2SJIycvJ1x5er9efW+BLn/XrWvN2IQA/NuL+7hrVj3m6dE7deMvIlnwaSX0N7VwMAcFAEvAAAAAAqpHCBNf9qnL97Nicni14a3koWi/TT+qNatf+0XeoodOhUhh6etkGSdGPXSF3WKkw5+TbdN3mdflp/RJI5vmHC79v1z7Pm7f76QE/m7dZVReMZOtm3DgCAQyPgBQAAAFAhhR28AXacF9s23F+ju0RKkp7/eYvy7LTgWlZuvu79dq1SsvJ0SaS/xg9rpfdvvEQjO4Qr32boke826pOFezVm0qoz83Z7x2jSmM7M263Ljq4zXwl4AQAXgYAXAAAAQIUkFczg9bNTB2+hJwY3l7+ni3bE22/Bted/3qJtx1IU5OWqD2/qIFdnJzlbnfTfUW11W7coSdKEWTu0ePdZ83avaClnK/8kq9PiNpivDS6xaxkAAMfmbO8CAAAAADimwkXWAuwc8AZ4uerJIS309E+b9e/ft2v5vlMa3r6BBrSoJw9X63mvNQxD6Tn5SkzPUWJGjk4XveYqMT1HqVm5Ss/JV0ZOntKy85WRnSc/DxdFBnmqUZCXIoM8tTchTd+vOSIni/Tu6EtU38+j6P5OThaNv6qVfNxd9P78PYoI9NAnN3dSbANGMtR56Sel5EPmdv32di0FAODYCHgBAAAAVEhy4SJrHvYfMXB95wgt2JmgP7cd15yCDy9Xq4a0ClPrhn5KyjQD29MZOeZrQZCbmJ6rnEoa6/DY4Obq0SS4xH6LxaLHhzTX1Zc0UAN/D3m68s8wyFxgTZKCmkruBP4AgIrjbxYAAAAAKqSwg9dei6ydzepk0ae3dtLO+FT9svGoft4QpyOJmZqx/qhmrD96wevdnJ0U5OWqAC9XBXq5yt/TVQGeLvLzcJGnq7O83KzycnWWh6tViRk5OngqQwdPpevgqQwdSczUoNh6uq9P4/M+o0moT2W9XdQGhQEv4xkAABeJgBcAAABAhSRlFga89u/gLdQ8zEdPhLXQ44Oba/3hJP26MU4JKdkK8HJRoOeZADfAs+DVy1WBnq4XHOUAVLrCBdYadrBvHQAAh0fACwAAAKBCkopGNNi/g/fvLBaLOkQGqENkgL1LAUpHBy8AoJKwZCsAAACACkkqXGTNq+YFvECNlnJMSouXLE5SWBt7VwMAcHAEvAAAAAAqJLGgg9evBiyyBjiUuILxDCEtJVcv+9YCAHB4BLwAAAAAyi0v36bUrDxJUkANWGQNcCiMZwAAVCICXgAAAADlllywwJok+dXAGbxAjVYU8La3axkAgNqBgBcAAABAuSUVBLw+7s5ytvLPCqDMDOOsgLeDfWsBANQK/E0MAAAAQLkVLrDmz3gGoHySDkkZpyQnFymstb2rAQDUAgS8AAAAAMotqWCBtQBPFlgDyqWwe7derOTsZt9aAAC1AgEvAAAAgHIr7OBl/i5QTiywBgCoZAS8AAAAAMotkQ5eoGLi1pmvzN8FAFQSAl4AAAAA5ZacyQxeoNxsNiluo7lNBy8AoJIQ8NYhe/bs0R9//KHMzExJkmEYdq4IAAAAjqqwg9efDl6g7BL3S9nJktVNCm1p72oAALUEAW8dcOrUKQ0cOFDNmjXTFVdcoWPHjkmS7rzzTj322GN2rg4AAACOqHAGrz8zeIGyO1owniGsjWTl1w4AoHIQ8NYBjzzyiJydnXXo0CF5enoW7b/++us1e/ZsO1YGAAAAR1UU8DKiASi7wgXWGjJ/FwBQeZztXQCq3p9//qk//vhD4eHhxfY3bdpUBw8etFNVAAAAcGRJmSyyBpRbYcDL/F0AQCWig7cOSE9PL9a5W+j06dNyc3OzQ0UAAABwdInpZgevHx28QNnY8qVjLLAGAKh8BLx1QK9evfT1118XfW6xWGSz2fTaa6+pX79+dqwMAAAAjio50wx46eAFyujkLik3XXLxkoKb2bsaAEAtwoiGOuC1117TgAEDtGbNGuXk5OjJJ5/U1q1bdfr0aS1dutTe5QEAAMDB5OTZlJadJ4lF1oAyO7jMfK3fTnKy2rcWAECtQgdvHdC6dWvt2rVLPXv21PDhw5Wenq4RI0Zo/fr1aty4sb3LAwAAgIMp7N61WCRfAl7gwjJOSwteNbebDrJvLQCAWocO3jrCz89PzzzzjL3LAAAAQC2QXLDAmq+7i6xOFjtXAziAP5+T0hPM0Qzdxtq7GgBALUMHbx0wadIkTZ8+vcT+6dOn66uvvrJDRQAAAHBkiRmF83fp3gUuaO98acO3kizSVe9Lzix0DQCoXAS8dcCECRMUHBxcYn9oaKj+/e9/26EiAAAAOLKkgoDXjwXWgPPLSZd+fcjc7nKXFNnVvvUAAGolAt464NChQ4qOji6xPyoqSocOHbJDRQAAAHBkiRnmiAY6eIELmP9vKemg5BsuDXje3tUAAGopAt46IDQ0VJs2bSqxf+PGjQoKCrJDRQAAAHBkyQUdvP4ssAac25G10ooPze1hb0tuPnYtBwBQe7HIWh0wevRoPfjgg/Lx8VHv3r0lSQsXLtRDDz2kG264wc7VAQAAOK7dx1P12eJ9ssii67tE6JIIf1kstX/RscIOXn9GNACly8uRfnlAMmxSm+ukpoPsXREAoBYj4K0DXnrpJR04cEADBgyQs7P5Q26z2XTrrbcygxcAAKAC4pOz9PZfu/T9msOyGea+79YcVuuGvrr10kYa1q6BPFyt9i2yCiVlFnTwMqIBKN2KD6WEbZJnkHTZq/auBgBQyxHw1gGurq767rvv9NJLL2njxo3y8PBQmzZtFBUVZe/SAAAAHEpKVq4+XrBXXyzdr6xcmyRpcGw9ebs7a+amY9pyNEVP/rhJr/y+Xdd2DNfNl0apUbCXnauufElFM3jp4AVKSEuQFr1ubg96SfJiLB4AoGoR8NYhzZo1U7NmzexdBgAAgEPKys3X1e8v1b6T6ZKkTlEBGndFC3WMCpQkPTs0Vt+tPqxvVxzU0aRMfb5kvz5fsl99moXo1m5R6ts8VFan2jG+ISmDDl7gnOa/IuWkSvXbS+1G27saAEAdQMBbSz366KN66aWX5OXlpUcfffS857755pvVVBUAAIDjWrz7pPadTFeAp4v+M7KtBsXWKzZvN9DLVff1bay7e8dowc4Efb38oBbuOlH0ER7goZu6Run6zhEK9HLsztfEgoDXj0XWgOLit0jrvja3L5sgObGuOQCg6hHw1lLr169Xbq75F+9169adc7GPurAICAAAQGX4ffMxSdI1l4RrcKuwc55ndbJoQMt6GtCyng6cTNfklQf1/ZojOpKYqf/M3qG3/tqlK9vW1y2XRqm9gy7KlsyIBqAkw5D+eNpcWC32aimqu70rAgDUEQS8tdT8+fOLthcsWGC/QgAAAGqB7Lx8/bXtuCTpijbnDnf/rlGwl54ZGqtHBzXXrxvj9PWKA9pyNEUz1h3VjHVH1aahn8Z0Nxdlc3V2nE6/REY0ACXtmi3tXyhZXaVBL9i7GgBAHeI4f4tEheTm5srZ2VlbtmyxdykAAAAOa/Guk0rNzlOYr7s6RAaU+3oPV6uu6xyhXx/oqZ/u764RlzSUq9VJm48m67HpG9Xnv/P1+eJ9SsvOq4LqK1dWbr4yc/MlSf508AKmvBzpz2fN7W5jpYBGdi0HAFC3EPDWci4uLoqMjFR+fr69SwEAAHBYv28xxzNc1jpMThexUJrFYtElkQF68/r2Wj6uv54Y0lzB3m46lpyll3/brm4T5uq12Tt0Oj2nskqvdCmZZveuk0XyceMbAgFJ0urPpVN7JK9Qqef510ABAKCyEfDWAc8884yefvppnT592t6lAAAAOJzsvHzNKRjPMLRt/Uq7b5C3m8b2a6IlT/XThBFtFBPspdSsPH24YK+u/mCp4pOzKu1ZlenMeAbXiwq7gVrj1F5p4avmdv9nJXdf+9YDAKhz+C/3OuD999/Xnj171KBBA0VFRcnLy6vY8XXr1tmpMgAAgJpv6Z6TSs3KU6iPmzpWYDzDhbi7WDW6S6Su6xShOduO6+XftunQ6Qzd+PkKfXd3N4X4uFX6My9GUsECa/4ezN9FHZeVIi36r7TiI8mWK9VrI11ys72rAgDUQQS8dcDw4cMdcnVmAACAmuD3zfGSpMsvcjzDhVidLLqsdZhaNfDV9Z8s174T6bpl4kpNu/vSGjXrlgXWUOfZ8qUNk6W5L0rpJ8x9TQZJV74pOVntWxsAoE4i4K0Dxo8fb+8SAAAALkp2Xr7cnKs/OMnJs+nPrWbAe0WbyhvPcD4RgZ6afNeluu6T5doRn6pbv1ilb//RVb7uNSNQTc4s6OCtQaEzUG0OLpdmPyUd22h+HtRUGvJvqdlg+9YFAKjTCHhrsfT0dD3++OP65ZdflJOTowEDBui9995TSEiIvUsDAAAos+d/3qKvlx9UqI+bmtbzVpMQbzUJ9VbjUPM1xNutyr5baenek0rJylOIj5s6NQqskmeUJjrYS1P+0VXXf7pCm44k645Jq/X1nV3k6Wr/v77TwYs6KemwNOd5aesM83M3P6nvU1LnuyRn/rMDAGBf9v8bIqrMc889p2+++UY33XST3N3dNXXqVN1999366aef7F0aAABAmRw+naHJKw9JkhJSs5WQmq2le04VO8fX3VlNCsLeJqHeahrqoyah3mro73HRIxV+33RMknRZqzBZq3lBsab1fPT1HV1042crtOZgou6fvE4Tb+tc7XX8XVJhwOtBqIU6ICdDWvqO+ZGXKckidRxjLqbmFWzv6gAAkETAW6v99NNPmjRpkq699lpJ0q233qpLL71UeXl5cnbmhx4AANR8Xyzdr3yboe6Ng/T4kObak5CmvQlp2pOQpj0n0nT4dIZSsvK07lCS1h1KKnatu4uTYoK9i4W/TUK91SjIS67OThd8dm6+TX9uOy6p+sYz/F3rhn76siDkXbDzhN74c6eevKyFXWopVLjIWgAdvKjNDEPa8qPZtZty1NwX1VO6bIJUv619awMA4G9I+WqxI0eOqEePHkWfd+zYUS4uLoqLi1NkZKQdKwMAAHWdYRiavPKQ5u1I0HNXxio62KvEOckZufpu9WFJ0r19GqtDZIA6RAYUOycrN1/7T6abgW9B6Ls3IU37TqQrK9embcdStO1YSrFrrE4Wxdb31U1dIzW8fUN5uJY+23fZ3lNKzsxVsLerukRX33iGv+sQGaD/jGyrh6Zt0IcL9qp1Qz+7Bc7SWR28BLyorY6uk2aPkw6vMD/3j5QGvyy1vEpi8WoAQA1EwFuL2Ww2ubgU/4u3s7Oz8vPz7VQRAFShk3uk5e9Lff9P8gmzdzUAziMjJ0/jZmzWzxviJEmn03P0433dS4we+HblQWXk5KtFmI96NS39W6HdXaxqWd9XLev7Ftufl2/T4cTMM8HvWeFvWnaeNh9N1v/N2KwJs3bohi4RuuXSKIUHeBZdn5Nn0y8F9Q2xw3iGvxvevqG2HE3WZ4v36/HpG9U4xFvNw3zsUktiBousoZZKPS7NfVHaMFmSIbl4Sb0ekbo9ILl42Ls6AADOiYC3FjMMQwMGDCg2jiEjI0PDhg2Tq+uZv5CvW7fOHuUBQOWa+bB0YLHk7icNesHe1QA4hwMn03Xvt2u1Iz5VVieLXK1O2nA4SZOW7tc/esUUnZedl68vlx2QJN3dO6bci6g5W50UHeyl6GAvDYqtV7TfMAzFp2Rp5sZj+nrFAR0+nalPFu7TZ4v2qWmoj1KzcpWUmauMnDP/IT7Ujt2yZ3vqshbadixFS/ec0t3frNEvY3vKzw5dtMmZdPCiFko5Jn3cQ8oomPHd9gZp4L8k3wb2rQsAgDIg4K3F/vWvf5XYN3z4cDtUAgBVLGG7Ge5KUsI2+9YC4Jzmbj+uh7/boNSsPAV7u+mDGy/RvpPpGjdjs17/c6cGx4YpMsjsov15fZxOpGYrzNddw9pVXsBisVhU389Dd/WO0R09ozVvR4K+WnZAS/ac1M7jqX87V7o0Osiu4xnO5mx10nujO2jYe0t08FSGHvpuvV0WXSvq4GWRNdQmm74zw93AGOmaT6WIzvauCACAMiPgrcVKC3gBoFZa9dmZ7YTt9qsDQJHE9BztiE/VjvgU7Thmvm48kixJ6hDprw9v6qgwP3d1iQ7ULxvitHzfKf3fjE2a/I+uMgzp08X7JEl39GwkF+uFF0SrCKuTRYNi62lQbD3tO5GmQ6cz5O/pKn8PF/l7usjX3UVOdh7N8HeBXq769NaOGvnRMi3YeUK9/jNPob7uCvZ2VZCXmwK9XeXm7CRnJ4usToWvFjlbC17/vv+s416uzuoYFSDnC3y9mcGLWmn7L+Zrt7GEuwAAh0PACwBwbFnJ0sZpZz5PPixlpUjuvue+BkClycmzad/JNO04lqrtZ4W5x1OySz3/1m5RenZorFydzRDRYrHo1ZFtNOTtRVq295S+X3NYIT5u2pOQJh83Z43uUj0Lw8aEeCsmxLtannWxWjXw02uj2umx7zcoLjlLcclZlXbvRwc104MDmp7zeGZOvrLzbJIIeFGLJB2Wjq6VZJFaDLN3NQAAlBsBLwDAsW2YKuWmSyEtzLA39Zh0YocU0cXelQG10op9p7ThcJJ2HEvRjvhU7T2Rptx8o9RzIwI91CLMVy3DfNSivq9aN/ArGsFwtqggLz0+uLle/m27Xv5tuxoFeUmSRneNlI87IWJprmrXQN1ignTodIZOpWXrVHpO0Wtuvk35NkN5+Yb5ait8tRX/PP/M/rTsPO06nqZvVhzUfX0bn7NrOinTHM/g7GSRtxv/lEAtsf1X8zWym+RT7/znAgBQA/G3MgCA47LZpNUF4xm63CXt+N0MeI9vJeAFqsCni/bq37/vKLHfx81ZLer7qEWYb9Fr8zCfcgWAt/eI1q+bjmnj4SRtPposZyeLbu/RqBKrr31CfNwU4uNWKffKybOp+6tzdSI1W3O3H9dlrUtfWO7s8QzlXfgOqLEKxzPEXmXfOgAAqCACXgCA49o3Xzq1R3LzNVe7Pr1f2juXObxAFUjOyNV78/ZIkvq3CFXHqAC1CPNR8zAfNfT3uOiwz+pk0Wsj2+rK9xYrN9/QVe0bqL6fR2WUjjJwdXbStZ0i9NGCvZqy6vA5A96iBdY8WWANtURqvHRohbndkvEMAADHRMBbx2RlZcnd3d3eZQBA5ShcXK39jZKbtxQaa36esM1+NQG11GeL9yk1K08twnz0+a2dqmTxseZhPhp/VStNW3VYD51nDiyqxujOkfpowV4t3n1Ch09nKCKw5DiN5MIOXg9GZ6CW2P6rJENq2EnyC7d3NQAAVEjVLEmMGsVms+mll15Sw4YN5e3trX37zFWpn3vuOU2cONHO1QFABSUekHbNNrc7/8N8DW1pvtLBC1SqU2nZ+mLpfknSI4OaVUm4W+imrlH69Z89FVUwhxfVJzLIU72aBsswpKmrDpV6TmLRiAY6eFFLbPvZfI0dbt86AAC4CAS8dcDLL7+sL7/8Uq+99ppcXc/8Zbx169b6/PPP7VgZAFyENV9IMqSYflJwQadfSAtJFinjpJR2wp7VAbXKJ4v2KSMnX20a+mlwLAsQ1WY3domUJH2/5ohy820ljhcusubvSQcvaoH0k9LBpeY283cBAA6MgLcO+Prrr/Xpp5/qpptuktVqLdr//+zdd3hUZdrH8e9Mem+QkEACoffekaKiFBVQ1LV3sK66uq5rd1137V1fy9q7ooKICgLSe++9JUASICG9Z+b948kkBAKkTDIpv891zXWezDnnOffEAzj33HM/PXr0YPv2UxdKERGp8wpyYO3nZtx/cunznr4QGmvGatMg4hRH0nP5fNl+AB64oL0W1mrgRnaOoGmAF8cy85izNemU/Y5F1kKU4JWGYPsMsNsgsgeEtHJ1NCIiIlWmBG8jcOjQIdq2bXvK8zabjYKCAhdEJCJSTZt/gpzjEBQD7UeV3VfSh1dtGkSc4f/m7yG3wEbvmGBGdGjq6nCkhnm4Wbmyr+lD+vVJbRqOZeaxYIf5doRaNEiDsHW62XZS9a6IiNRvSvA2Ap07d2bRokWnPP/DDz/Qq1cvF0QkIlJNB5aabfcrwepWdl9JH15V8IpU1+HUHL5eYZJ8D17YQdW7jcRV/WKwWGDRrmMcSM4CYO/RTC79vyXsSMogxNeDS7pHuThKkWrKOQ77Fpix+u+KiEg95+7qAKTmPfnkk9x4440cOnQIm83GTz/9xI4dO/j888+ZMWOGq8MTEam8lD1m60jmnuhsC63FrYB1n8OIRyGoec3EJ9JAvD1vN/lFNga2DmVwmzBXhyO1JDrUl6HtmrJw51G+XRXPyE7h3PbZao5nFxAT6sunN/cjJszX1WGKVM+O38FWaL754+jlLyIiUk+pgrcRGD9+PL/88gtz5szBz8+PJ598km3btvHLL79wwQUXuDo8EZHKSy5O8Ia2PnXfiS0a7PZT9898GNZ9Cd9dB4V5NRdjTSvML//1iThJXHI236+KB1S92xg5Flv7cvkBrvnfCo5nF9AjOpif7hpM66b+Lo5OxAm2/my2as8gIiINgCp4G4mhQ4cye/ZsV4chIo3F/iXQtAP4NXH+3HkZkHXEjMPanLo/tA1YPSA/A9LiITimdF/KPji8zowPr4VZj8JFrzg/xpqWeQQ+HAnuXnD1t+X/HkSqITu/kLu+XkOhzc7Qdk3o1yrU7Eg7CPOfg0F/hfCOrg1SatT5ncIJD/DiSIb5IGxkp3DevLoXvp56+yANQE4q7PnTjNWeQUREGgBV8DYC8fHxHDx4sOTnlStXcv/99/PBBx+4MCoRabC2/wqfjoXpf62Z+VP2mq1vE/AOOnW/u2fpVy1PbtOwdZrZBkWb7aoPYeOUGgmzRs35F6QegGM74eNRcHi9qyOSBsRms/PAdxvYfCidUD9P/jOhW+nOFe+ZCvhpd6qCvIHzcLNy6zmxAFw/sCXvXddHyV1pOBa9DEX50LRT+e2eRERE6hkleBuBa665hnnz5gGQmJjIyJEjWblyJY899hjPPPOMi6MTkQZn3Vdmu38x2GzOn/9M7RkcSto0nLTQ2pZpZjv0QRj2kBn/cu/p+/XWRQfXwPovzTisLWQdhU8vhn0LXRuXNBgv/bGDmVsS8XSz8v71fcr2Wk0q/jN1eC3s0jeDGrrJw1qz9okL+PeErri76W2DNBBHd8Lyd834gmdA7WdERKQB0P+pNQKbN2+mf//+AHz//fd069aNpUuX8tVXX/Hpp5+6NjgRaVhyUmF3cdInLx2O73P+NRwLrJ2pLUF5C62l7IWE9WBxg06XwIhHIHY4FGTDd9eb1g91nc0GvxcnpntcDZP+hFZDTTuKLyeW9hOUBmdHYgZJ6bk1fp0pq+N5d775M/b8xG6lrRkcTvwzteB5VfE2cBaLhVA/T1eHIeI8djvMesQsrtZuFLS/0NURiYiIOIUSvI1AQUEBXl5eAMyZM4dx48xCAh07diQhIcGVoYlIQ7PtF/OVRwdHv1tnSi5u0RB6pgRvORW8jurd2GGmN7DVDSZ+BAFRkLwLpt9b95NVG76BQ2vA0x9GPm1aVFz7g0lYF+XD9zfCms9cHaU4kc1m57XZOxn1+kLOeeFPHpu6icOpOTVyrRV7k3l06iYA7jm3LZf1blH2gJzjkHHYjN29zb24e26NxCIiUiN2zoLdc0yv/tHPuToaERERp1GCtxHo0qUL7733HosWLWL27NmMHj0agMOHDxMWFubi6ESkQdlU3M/Wo/gr3TWR4C2p4D1Ti4biCt6jO6Go0Iy3TDXbLpeWHuffFK74FKzusOUnWFmHe5PnpsGcp814+D8goJkZe3jDFZ9Bn5sAO8z4G8SvclGQ4kzZ+YXc/fVa3pi7C4CCIjtfrYhj+EvzeHyacxO9B49nc/uXaygosnNRt0geuKD9qQc5qneDoqHfbWY8/7m6/8GIiAhAYR7M/KcZD7pbC5SKiEiDogRvI/DCCy/w/vvvM2LECK6++mp69OgBwPTp00taN4iIVFtGEuxfZMaD7jHbmlj8q6QH7xnemAW3NEnmojzTJiJ5DyRuLG3PcKKYAXDBv8141mN1Nzm64EXIOmL67g64s+w+qxtc/Dp0vRzsRfDjrZCb7pIw66tfNhzmqZ83U1BUA32jq+Dg8WwmvruM3zcn4uFm4cXLu/Pd5IEMah1GQZGdL5fHMeKl+TwxbTMJadVP9L79525Sswvo3iKIl6/ogdVaTk9KR0V8eCcYfG9xFe9q2KMqXhGpB5a9Y/6fwL8ZDPu7q6MRERFxKiV4G4ERI0Zw7Ngxjh07xscff1zy/OTJk3nvvfdcGJmINChbpoLdBi36QZcJ5rmEDc5daC03DbKPmfGZFlmzWqFpRzM+srW0erf1CPANPfX4gXdC5wlgK4ApN0LWMefF7AxHd8CK4r+vR78A7uX0xLRY4OJXISgGUg/Abw/Vboz1WEGRjUenbuKzZQeYt/2Iq8Nh1f4Uxr+9hG0J6TTx9+SbSQO5sm80A1qH8c3kgXw7eSADYkPJL7LxxfIDDH9xPk/9vJnEtKr16D2akcdP6w4B8OTFnfHxdCv/QEcFb3hnCIiAvrean+e/oCpeEanb0g/DwpfN+IJnwCvAtfGIiIg4mRK8jYSbmxuFhYUsXryYxYsXc/ToUVq1akV4eLirQxORhsLRnqHbFdCkA7j7mMW/HC0VnCGluP+uX1PwDjzzsY4+vElbS/vvntie4UQWC4x7y1THph+CH28DW5FTQq42u918pdRWCO3HQLuRpz/WOwgm/g8sVtj4LWz6ofbirMdW7z9ORq5p5bEm7rhLY4lPyea6D1eQnJVP58hAfr7nHPqetNDZwNZhfHf7IL6ZNJD+xYnez5YdYNhL83h6+pZKL8b2xbL95Bfa6BkdTJ+WIac/8MQEL8CQ+0wV78GVsHdepa4pIlKrZj8FBVnQoj90v9LV0YiIiDidEryNQFZWFrfccguRkZEMGzaMYcOGERUVxa233kp2drarwxORhiBln/mqtsVqkqhu7tCsm9nnzD68FWnP4ODow7t9BiRtMn12O150+uO9A+HKL0xrh73zTEuEumDHb7DnT3DzhFH/OfvxMQNh2D/MeMbf4PiBmo2vAZi3o7Rqd92BVNcFAry/cA95hTb6tAzhhzsH0TzY57THDmoTxneTB/L1pAH0bxVKfqGNT5fuZ+iLJtF7pAKJ3pz8Ir5Ybu6RSUNbY7GU05oBzAcNJ7ZoAFPF2+dmM57/vKp4RaRu2v4bbPoesMDYF82HuiIiIg2MEryNwAMPPMCCBQv45ZdfSE1NJTU1lZ9//pkFCxbw4IMPujo8EWkINv9otrHDwL/4mwFRvczWmQleRwVvRRZGiXBU8G4229bnlt+e4eRzLn7NjBe8ALvmVC1OZynIgZmPmPGgeyq+IMywhyB6AOSlw0+TSxeak3L9eUJbhg0HU8kvdE0f3qMZeXy/+iAAD17YHl9P97OeY7FYGNymCd/dPpCvbhtA35YhZRK9//rlzIneH9ce5Hh2AdGhPozqEnH6C2UkQs5x8yFOkxMWYDvnflPFG78C9s6v4CsVEaklx/fDtDvMeOBdpf9vIiIi0sAowdsI/Pjjj3z00UeMGTOGwMBAAgMDGTt2LP/73//44Qd9fVdEnMDRCqDr5aXPRfU0W2cutFZSwXuG/rsOjq+ROzj6Ap9Nj6uKqxLt8NNtkBpfmQida+nbpp9uQBQMrcQHcm7ucNkH4BUI8cth8as1F2M9F5+Sze4jmbhZLQR4u5NXaGNrgmsWqPtkyb6SVgmDWodV6lyLxcKQtk2Ycscgvrx1AH1ahpBXaOOTJSbR+9HifaecY7PZS56/ZUgs7m5n+N9CR/VuaBvw8C59PqAZ9LnJjBeoF6+I1CGFefD9jaZ/f4t+MPJpV0ckIiJSY5TgbQSys7OJiDi1Kic8PFwtGkSk+pK2wNFtpoVAp0tKn3dUySRscF4/W0c/34pUsvpHgE9xP1Grx5nbM5xs9PMQ2dNULE650bxJrG1pB2HRK2Z84b/By79y54e0gjHFbSaWv6vE22k4qnf7tAyhX3Gv2zUHaqYPb0pWPqnZ+eXuS88t4ItlplXCnSPanL5VwllYLBbOadeEH+4YxBe39qd3TDB5hTb+PWMrHy7aW+bYOduS2Hcsi0Bvd67sG33miR39dyM6n7pvyP3g5gVxy2DfwirFLSLidLMeg4T15v8FLv+k/AVKRUREGggleBuBQYMG8dRTT5GbW/oVzZycHP71r38xaNAgF0YmIg2Co3q33YXgE1z6fJP2pp9tQRYc2+Wca1WmB6/FUlrF2+bc0mRvRXh4w5Wfg3cwHFpj3iRWx75F8L/z4P1hkFvB6tA/noDCHIgZBF0nVu26XSaYr9TnpJiv2MspHAne8zqGlywwtrYGFlpLycrn/Ffmc+7L89mVlHHK/q+Wx5GRV0jbcH8u6HSGVgkVZLFYGNquKT/eOZi/jTQtFZ79dRufLd1fcsyHi0z17rUDW+LndZZ2ECcvsHaiwEjoc6MZqxeviNQFm3+EVf8z48v+B8Fn+RBLRESknlOCtxF44403WLJkCS1atOD888/n/PPPJzo6mqVLl/LGG29Uaq7nnnuOfv36ERAQQHh4OBMmTGDHjh1ljsnNzeXuu+8mLCwMf39/Jk6cSFJSUplj4uLiuOiii/D19SU8PJyHHnqIwkL1iBSpd+x22Oxoz3BSEtLqBs26m3HC+upfK+e4SVRCxVo0AHQYC1ig/+TKXy+kpWlzAOZN4sYplZ8jZR98dx18drFJFCdsgI3fnf28/Ythy08mOTumGgvCePiUJsOPbKnaHA1Ydn4hy/YmAybB2zumOMFbAxW8nyzZx/HsAo5nF3DjxytJTCv90DW3oKikVcIdw9tgtTpvASCLxcK957fl7nPNffDU9C18vSKO9fGprNyfgoebhZsGtzr7RCcvsHayc/5mqvjjlsL+Rc4JXkSkKo7tgun3mvHQB6HdBa6NR0REpBYowdsIdO3alV27dvHcc8/Rs2dPevbsyfPPP8+uXbvo0qVLpeZasGABd999N8uXL2f27NkUFBRw4YUXkpWVVXLM3/72N3755RemTJnCggULOHz4MJdddlnJ/qKiIi666CLy8/NZunQpn332GZ9++ilPPvmk016ziNSSuGWQGgee/tB+9Kn7nbnQmmOBNf+IircrGHQ3PHqo6m/u2o+CoX8341/ugyPbK3ZeXgbM+Re80x+2/WIStc37mn2rPz5zhWNRIfz2DzPuczNEdq9a7A4RxX/PJynBe7Klu5PJL7TRPNiHduH+9IgOws1qISEtl8OpOU67TnpuAZ8WV84G+XhwOC2Xmz5ZSVpOAQA/rDnIscw8ooK8Gd8zymnXdbBYLPz9wg5MGhoLwKNTN/HA9+sBuKRHFBGB3mc4G7DZ4GjxvV9eBS9AYBT0dlTxvuCEqEVEqiA7Bb6/AfIzoeU5MOJRV0ckIiJSK86+PLM0CL6+vkyaNKna88ycObPMz59++inh4eGsWbOGYcOGkZaWxkcffcTXX3/NeeedB8Ann3xCp06dWL58OQMHDuSPP/5g69atzJkzh4iICHr27Mm///1vHn74YZ5++mk8PdUfS6TeWPqW2Xa5FDx9T91fkuBdX/1rJRcneCvSnsHBYgFPv+pd99xH4eAq2LfAvGmc9OeZE8xFhfDpxaVVy7HDTU/fwCh4paOphIxfCTEDyj9/zSem2tY7GM57vHqxg0nwbp0GSVurP1cD8+eO0vYMFosFX093OkUGsPlQOmsOHCcq2Mcp1/li2QEycgtpF+7PRzf2Y+J7S9memMHtX6zm45v68cFCc29PGtYajzMtdFYNFouFR8d2oqDIzqdL97P3qPlgdtLQClTDp+6HgmzTZzck9vTHnfM3WPsZHFhs2pLEDnVO8CIiFZGRBF9MMP/O+oXD5R+ZRUdFREQaAf2L10BNnz69wseOGzeuytdJS0sDIDS0eGGaNWsoKChg5MiRJcd07NiRmJgYli1bxsCBA1m2bBndunUrs/DbqFGjuPPOO9myZQu9evWqcjwiUouStsKO3wALDLmv/GOieppt4kaT+KzOG62SBdYq2J7BWaxuMPEj0z/32A745V7z8+naJqx83yR3vYNhwv+ZNhGOY7tNhHVfmire8hK8Wcnw57NmfN7j4Bta/fgdFZdq0VCG3W5n3gn9dx36xISw+VA6a+OOc0mP6lfTZucXlixudve5bYkJ8+XTm/vxl/eXs3xvCuPeXkJcSjahfp5c1S+m2tc7E4vFwlOXdCa/yMbXK+IY0aEpnSIDz36io/9u0w5n/jMc1Bx63wCrPoQFLyjBKyK1JzUOPh9vvu3j3wxu+BkCmrk6KhERkVqjBG8DNWHChAodZ7FYKCqq2ur2NpuN+++/nyFDhtC1a1cAEhMT8fT0JDg4uMyxERERJCYmlhxzYnLXsd+xrzx5eXnk5ZWuYp+eXsFFikSk5iwp7uHd6RJo0q78Y8LamvYN+ZlwbCdEnObr3RVRmQXWnM2/KVzxCXx6kVm4JXogDCinr296Asx7zowveAY6XlR2f59bTIJ3y1QY/dypCdx5z0JuKkR0Ne0ZnMHRouHoDigqADcP58xbz21PzCAhLRdvDyuD2oSVPN+7ZQifLTvgtD68X6+I43h2AS3DfLm4eyQAXaKCeP/6Ptz0yUp2H8kE4KbBrfDxdHPKNc/EYrHw7PiuXNI9is4VSe7CCf13K/Dn95y/wZrPTB/e/Uug1ZCqBysiUhHJe+CzcZB+EIJj4IbpEHqGbxuIiIg0QOrB20DZbLYKPaqa3AW4++672bx5M99++60TIy/fc889R1BQUMkjOlor4Yq4VGocbCpedOycv53+OKsbRPYw4+outFZSweuCBC9AzECTtAWY9SjErzr1mNlPQH6G6bfb6/pT9zfvbRaeK8qD9V+X3ZewAVZ/YsZjXnTe10qDW4KHHxTllybJhT+Lq3cHt2mCt0dpYrVPS7PQ2pbD6eTkV/3fSDCLp71f3H7hrhFtcD+h/cKQtk14+QrzZyPAy50bB7Wq1rUqw2q1MKhNGEG+FUz2Oyp4T7fA2omCWkDv4nt/wfNVC1BEpKKStsDHo01yN6wd3DxTyV0REWmUlOCVKrnnnnuYMWMG8+bNo0WLFiXPN2vWjPz8fFJTU8scn5SURLNmzUqOSUpKOmW/Y195HnnkEdLS0koe8fHxTnw1IlJpS98GexG0HmGSlmcS2dNsq7vQmisreB0G3gWdx4OtAKbcZFoqOOxbWJz0tsBFr4C1nH9iLRboe4sZr/mkdLE1u714YTU7dJ3o3KpHq7U0Mac2DSUc7RnOPaE9A0DzYB/CA7wotNnZeDC1WteYsjqeoxlm8bRLe7U4Zf/4ns358c5B/HjX4IonW10hqRIVvADnPABWD/Nn4sDSmotLRBq3Q2vNN2uyjkBEN7j5d9MqRkREpBFSgrcB+/PPP+ncuXO57QzS0tLo0qULCxcurNScdrude+65h6lTp/Lnn38SG1v2E/I+ffrg4eHB3LlzS57bsWMHcXFxDBo0CIBBgwaxadMmjhw5UnLM7NmzCQwMpHPn8t88enl5ERgYWOYhIi6SdQzWfm7GZ6redXDGQmvZKaZ1Abi2MsdigXFvm9YT6Qfhp9vAVmRaH/z6d3NMv1tLew+Xp9vl4BkAybvN19gBNv0A8cvBw7e0StiZHG0akpTgBTielc/aONOC4byTErwWi6WkindNXNXbNBQU2XhvganevWNEGzzdy/9frj4tQ2kfEVDl69S4wnxI3mXGFangBQiOhl7XmfF8VfGKSA04sNS0Zcg5br41c9Mvpp2SiIhII6UEbwP2+uuvM2nSpHKToUFBQdx+++289tprlZrz7rvv5ssvv+Trr78mICCAxMREEhMTycnJKZn31ltv5YEHHmDevHmsWbOGm2++mUGDBjFw4EAALrzwQjp37sz111/Phg0bmDVrFo8//jh33303Xl5e1X/hIlKzVrwPhTkmcRs7/OzHOxK8joXWqsJRvRsQCZ5+VZvDWbwD4crPwd0H9vwJC1+C5e+aBdh8m5jF0c7EKwC6X2HGqz+GvEzT2gFg6APmK+7OVpLg3er8ueuhhbuOYrNDh4gAmgf7nLLfkeBdeyC1yteYuu4Qh1JzaOLvxZV963FboeTdYCsEr8DK3ZtDHVW8C+DAspqLT0Qan91z4IvLTEukVkPhhmngE+LqqERERFxKCd4GbMOGDYwePfq0+y+88ELWrFlTqTnfffdd0tLSGDFiBJGRkSWP7777ruSY1157jYsvvpiJEycybNgwmjVrxk8//VSy383NjRkzZuDm5sagQYO47rrruOGGG3jmmRqoWhMR58rLgJUfmPE5fzMVrWcT2tpUrBbmwtHtVbtuyt7iuVzYnuFEEV3gktfNeP7zMO+/ZnzBMxV7k+lo07DtF5j5T8hIgJBWMOivNRFtaYL3dC0aso7Bx2Ng2l2QebRmYqhD5m4z3yAZ0bH8aq/ejgRv3HHsjjYaFbT7SCavzt7JC7+be33ysNjSHr+H10HipipG7SIlC6x1qtifd4fgGOh5jRmrF6+IOMu2X+Cbq80Hze0uhGunmA9ORUREGjknreAidVFSUhIeHqfv6efu7s7Ro5V7I1+RN7re3t688847vPPOO6c9pmXLlvz222+VuraI1AFrPjOtEsLaQseLK3aO1WpaFuxfZBZaa9a18tctWWCtdeXPrSk9roK45aaXbmEORA+AHldX7Nxm3aBFPzi4CtZ9YZ4b9Rx4eNdMrI7eqalxkJtuqpBPtOEbiFtqHtt/hQv/bRaJq0xCr57YezST3zYlADCqS/l937tEBeLpZiUlK5/9ydnENjlz1fjh1Bx+2XCYn9cfZmtCaVuk2CZ+XDugpfkhNx0+ucj8Tv+2BXyCnfJ6alxlFlg72dAHYf1XsHc+xK2AmAFODU1EGpkN38G0O80aAJ0nwGX/A3dPV0clIiJSJ6iCtwFr3rw5mzdvPu3+jRs3EhkZWYsRiUi9VpADy9424yH3g9Wt4udG9jDb9V/DwdWli4tVVF1YYK08o5+HFv3Bw+/0C6udTp+bS8dtzocOY5wfn4NvqGlvAaUJuxPt+N1svYNNAn/6X+HTi+HYrpqLyUWe+307hTY753ZoSu+Y8qutvdzd6NYiCIA1B8rvw5ucmccXyw9wxXtLGfz8nzz3+3a2JqTjbrVwXsdwXv9LT2b89Rz8vIo/Sz+2CwqyID8Tds6qkddWI0oSvBVcYO1EIS1VxSsizrH6Y5h6u0nu9rwWJn6k5K6IiMgJlOBtwMaOHcsTTzxBbm7uKftycnJ46qmnuPjiClbgiUjjlp8N31xlWgkEREH3Kyt3fquhZntgCXx4PrzV27Q1OLa7YueXVPDWsQSvhzfc/Bs8uM1U5VZGl0vBPwLcvU2iuKarZU/XpiE7BeKKe6ROngcXPmsWezuwGN4dDPNfgMK8mo2tlizdc4zZW5Nws1p47KIzV6T2OaFNg0NGbgE/rjnIjR+vpP9/5/LEtM2s2n8ciwUGxIbyn0u7suqxkXx8Uz8m9GpemtyF0nsYYOvPTn1dNcpxv1SlghdMFa/V3fSrjl/pvLhEpPFY+hbM+Btgh/6TzWKnbvoiqoiIyIn0L2MD9vjjj/PTTz/Rvn177rnnHjp06ADA9u3beeeddygqKuKxxx5zcZQiUuflZcLXfzEJPw8/uPwjcK/kgogdRsP1U00F7/ZfTU/dBS+YR1RvkzDuOhH8w089126H5DrWg/dEbh7gFlT58zx9YfJ805s4tBZaT4R3NgvTJJ2U4N05C+w2iOhm4hj8V+g0Dn59EHbPhvn/hc0/wiVvQMtBNR9nDSmy2Xl2hqlGvXZADG3Dz9yz0VHdu2pfCjM3JzB9w2HmbjtCXqGt5JhuzYMY1yOKi3tEEhl06mJtZSSf8GHG7jmmn3Vd7xuZnwXH95txVSp4wfSW7nG1aUUy/3m4/qezniIiAph//+c/X/oNgHP+Buc/1SDbB4mIiFSXErwNWEREBEuXLuXOO+/kkUceKemfa7FYGDVqFO+88w4REREujlJE6rTcdPjqcohfAV6BcO0PVe+j2eY888jLhB2/wcbvTVXf4bXmMesxaD3CJHs7Xgxe/ua87GTISzPjkFbOeFV1R2BU7V3LUcGbtLXs8zuK+6Gf2CIipKVZuGbLT/D7w3BsB3wyGvrcBCOfrperlf+49iBbE9IJ8Hbn/pHtz3p875bBAOw6kskdX64teb51Uz/G92jOJT0iad3Uv+IBJJ9QwVuUB7v+MB9q1GWORRH9wsGvSdXnGfqg+XBnz1zToqVFX+fEJyINl90Ofzxe2hrqvCdg2N9dG5OIiEgdpgRvA+dYzOz48ePs3r0bu91Ou3btCAmpf2/ORaSW5RyHLyfCoTXgHQTXTYUWfao/r5e/SeJ2vxIyj5ok4sbv4dBqkwDaMxfcfaDjReYYz+IFrgKbm6pXqZoTWzTY7aYCqiAXds81z5/cA9hiMQnINufB7Kdg7Wew5lPY/huMeR66XFZvqqiy8gp5adYOAO49rx2hfmfv2xge4E3X5oFsPpROZJA343pEcUmPKLpEBWKpyut2VPA27WgSp1t/rtsJ3qICWPeVGVe1PYNDaKyp4l3/panGu+6H6scnIg2XrQh+fcD8mwMw+gUYeIdLQxIREanrlOBtJEJCQujXr5+rwxCR+iLtIHxzNSRuNNWa10+DqJ7Ov45/Uxhwu3kk74FNU0yyN2UPbP7BPKwe5tjaaGPQkDVpDxY3yE2D9EMQ1AL2LzYLfwVEQmTP8s/zCYFxb0KPq+CX++DYTvjhFtjwrVlYLjimVl9GVby/YA9HM/KICfXlhsEtK3ze57cMICEth07NArFaq5HMtttNWxIwXzGeejvsmm1aIDg+wKhLEjbCz3dB4ibzc6dLqj/nsAdhwzem7cf+xdDqnOrPKSINT1EhTLsTNn0PFitc8ib0vt7VUYmIiNR5WmRNRETK2jUb3htqkru+TeDGGTWT3D1ZWBsY8U/46xqY9CcMuAP8moKtwOyvbhVhY+fuBU3ambGjTcOJ7RmsZ/lfgpaD4Y7FMOIRcPM0LQbeGQBL3zZvyOuow6k5fLDIJFcfGdMRL3e3Cp8b6udJl6ig6iV3AbKOQl46YIHOE0xSvCDb9OKtSwrzYd5z8L9zTXLXJxQu/xj63Vb9uUNbQ8+rzfjba0uTxyIiDoV5MOVGk9y1usPEj5TcFRERqSAleEVExCgqhLnPmJ67OSkQ2QNumwPNutZuHBYLNO8DY16AB7bDdT/CuY+bPp5SPSe3adjxu/m5w9iKne/uZZLwdyyBlkNMkvKPx+DD88r2mK1D3py7i9wCG/1bhTK6azPXBOH43QRHg4c3dB5vft76s2viKU9GEvzvPLOYka3QVO3evcK0kXBWK47Rz0OL/pCbCp9PgKM7nDOviNR/+VlmQdftM8DNC/7yFXS9zNVRiYiI1BtK8IqICGQkwufjYdEr5ud+t8Etf5jema7k5g5tR8LwhyDARcm5hiS8s9kmbYGEDZBxGDz8oNXQys3TtL2p7B73lunPnLABfq2bCfhle5MBuOvcNlXrnesMjv67YW3NtvMEs905y/RBrgsWPA9JJ1TtXvkF+Ic79xpeAWbxvsgekH0MPhtX2rpCRBqv3DTT83/vPPNv0rVToMNoV0clIiJSryjBKyLS2O1dAO+dAwcWg6e/+UrkRa+YSkNpWBwVvElbS9sztD2vav+trVbofQPcWtxmYN8CyDzinDidJLegiPiUbAA6RwW6LhBHgje0jdlG9TaLBuZnwp4/XReXQ1YyrP/ajK/83LlVuyfzCTYLNjbtBJmJ8Nl4SI2vmWuJSP3w/Y0Qtwy8guCGadB6uKsjEhERqXeU4BURaaxsNljwInwxwfQIDe8Ck+dDt8tdHZnUFEeC99hO2DrdjCvanuF0mrY3LTXstrrVcgDYdywLmx0Cvd1p6u/lukBSils0OCp4rVboNM6M68LvbPXHUJhrKmtrY/EzvzC44WeT8E6Lg8/HmSSziDQ+mUdN5S7AjdMhur9r4xEREamnlOAVEWmMso7BVxNh3n9MYq7X9abfrmMRLmmYgqLBK9AsXHd0m1mhvN2F1Z+360Sz3fxj9edyot1HMgFoG+7vuvYMUNqDN6xN6XOOPrw7fjeLmznEr4Lvb4A/noCigpqPrSAXVn5gxoP+WnOVuycLiDDJnOAY06Zh9ce1c10RqVvilplteJfaWdBVRESkgVKCV0SksTmwDN4bar4a7u4DE96F8W+Dp+9ZT11z4DiJaXWkZ6hUnsUC4Z1Kf44eAH5Nqj9vl0sBi3mjXoe+bn9igtdlbLbSPrMnJnijB4B/BOSlmfYWh9bCV1fARyNNVe/SN83PuWmVv6bdbpLK67+BGX+DDy+AVR+Vf+ymKZB1xLSM6DKh8teqjqAWpYsn7pxZu9cWkbrhwFKzbTnYtXGIiIjUc+6uDkBERGqJzQbL3oI5/wJ7ETRpD1d8BhGdK3T6yn0pXPn+Mrq3CGL6PbXwNW6pGRFdIH6FGVe3PYNDYJR5c35gCWyZCkPudc681bT7aB1I8KYfMu0PrB4QFFP6vNUKnS6BVR/CtDtNmxQAixt0HmcWYNs7Dz4eDdd8D8HRp79GXiYcWgMHV8LB1XBwFWSf1PLg4CpTwd3+hIptux2WvWPGA+4ANw/nvObKaDfKbA+tMT2cnb2wm4jUbQeWmK0SvCIiItWiBK+ISGOQnQLT7oKdv5ufu10BF78OXhVPfH2zMg6AjQfTOJKRS3iAFmGrl8JPSOg7K8EL0PUy80Z98491JsG7py5U8Dr674a0AreT/rer83iT4M06atpldP8LDHvIVPoeXg9f/wWObIUPz4erv4XmvUurcw+uNEnb+FVwZItptXIiN0+I7Gn6WaYfMon3H2+DSX9Ck+JewLvnmlYdnv5mwTxXCIw0cSash11/QK/rXBOHiNS+3DRI3GTGSvCKiIhUixK8IiIN3cE1MOUms5iRmxeMeQH63FSpXpvpuQX8vjmh5Odle5IZ37O582OVmhc9wGwjupUm+pyh8wT47R8mUZe8p2w7AhcostnZeywLgLZNA1wXSPJusw0r53fdcgj0nwwFOTDkvrI9sKN6wqS58NWVJoH7yVizANqhNZCTcupcgS0guh+06G+Sus26gXvxwnKF+ZCeAPHL4dtrTL9t70BT0Q8muesT7MxXXTntR5v7ZudMJXhFGpO4FYDdLLgY0MzV0YiIiNRrSvCKiDRUdrtZPGnWY2ZRrZBYuPIziOxR6al+25hAbkFpheDyvUrw1luR3eHmmWZxK2fyawKtR8CeuaaKd/g/nDt/JcWnZJNfaMPL3UrzEB/XBZJcTv9dB6sbjH3p9OcGtYBbZsIPN8PuObB7tnnezcskgFv0M8ncFv1Mm4zTcfeEKz+HD4bDsR2mJcTwh2HvfFM5POCOqr4652g/ChY8D3vmQWFeaWJaRBq2kvYMg1wbh4iISAOgBK+ISENUkGsWV9rwtfm50zizkJp3UJWmm7LmIAADYkNZsS+FpXuSz3KG1Gk19Wa660ST4N30g2k1UIkqcWdzLLDWuqk/blbXxVFawVvFimbvQLj6O9j4LeSmF1fndjdJ28oIiIC/fAmfjIHtM0yvXjBtIkJaVi02Z4nsCf7NIDMR9i+Gtue7Nh4RqR0lC6wNcW0cIiIiDYDV1QGIiIiTpSfAp2NNctdihQv/Y6r3qpjc3XM0kzUHjuNmtfDcZd1ws1o4kJzNodQcJwcu9V7Hi0zv12M7TO9YF6oTC6xBaYI3tBotK9zcTeuCQXdBi76VT+46tOgLF79mxpmJZjvonqrH5SxWa+nibztnuTYWEakd+dlweK0Zq/+uiIhItSnBKyLSQHyzMo6ff5mG/YMRpk+ndzBc9xMMvqdalZQ/FFfvDm/flNZN/enW3CSKl6mKV07mEwztihN1m390aSiOCt62TV2Y4C0qgNQDZlxeD15X6HUd9JtkxjGDTdK3Lmg/2mx3zjTtZUSk7lryBnwwwvRbr6pDq8FWCIHNIdjF3yIQERFpAJTgFRFpAHILilg5/T1Gr74VS2Yi9qadYPI8aHNuteYtstn5aa1J8F7RpwUAg9uEAbB0z7HqBS0NU9fLzHbzjy5N1JUkeF1ZwZsaZxIY7j4QEOm6OE42+nlT1X/FJ66OpFTrEaa3cOoBOLrD1dGIyOns+RNmPwmH18HU28FWVLV5StozDHZpOx8REZGGQgleEZEGICMliRfc3sPLUsisor78X5t3IbR1teddtOsoSel5BPt6cF6ncAAGt2kCmApeuyrt5GTtR4OHLxzfD4fWuiQEu93OnrqQ4HVUt4W1MW0I6go3d9N7ty6tWu/pB7HDzHjn766NRUTKl3UMpp6wKOPBVbD0zarNVbLAmtoziIiIOEMderchIiJVZdsxC09LEdtt0dxRcD8vzT/MR4v3VXtex+JqE3o2x8vdDYA+LUPwdLOSkJbL/uTsal9DGhhPP+gwxow3TXFJCEcy8sjIK8RqgVZNfF0SA1D9BdYam/ajzFZ9eEXqHrsdpt0FmUnQtCOMfdk8P++/kFTJnuuF+RC/yoy1wJqIiIhTKMErItIAeO41CZFlHgN54IKOAPx7xla+XxVf5TlTs/OZvSUJgMuL2zMA+Hi60TMm2FxPfXilPN2uMNvNP0BRYa1ffleSqd5tGeZX8sGES6QUV/BWZ4G1xsSR4I1fAdkpro2lNthsJsk17znYO9/V0Yic2Yr3Ydcs00rl8o+h323mGxtF+aZVQ1FBxedKWA+FOeAbBk3a11jIIiIijYkSvCIi9V1BLoEHFwCwxmcw95zXlsnDTHuGf/60kQ8W7mHBzqNsPJhKfEo2GbkFFWqtMH3DYfKLbHSKDKRr8cJqDurDK2fUdiT4NoGso7Bnbq1ffveRDADauHKBNTihgreOLLBW1wXHQERXsNtg95zavXZuOnx2CXxwLhTk1tx1bEWwbxH89hC81gU+GgkLnoev/wIJG2vuuiLVkbgJZj9hxhc+CxFdTN/cS94AnxBI3AgLX674fI72DDGD1H9XRETESdxdHYCIiFTT/kW4FWaTaA/hiF9HLBYLj4zpSHpOAd+uiue/v20/5RQPNwtBPp6E+HoQ4utJiJ/ZBvuWPvfV8jigdHG1Ew1u04TX5+wq6cNr0Rs0OZGbh6niXfEubPimtDKzluw+Wgf67wIk7zVbtWiouPajIGkz7Pgdul9ZO9csyIVvr4H9i8zPu2dDp0ucN39hPuxbCNt+hu2/QfYJH4x5BoB/uKn2/v56mLwAfIKdd22R6srPhh9uMZW67cdA/0ml+wKawUWvmP0LX4IOoyGq19nnLFlgTe0ZREREnEUJXhGR+m77rwDMKepNgI8HABaLhf9c2o3IIB+W703meHY+qdkFHM/OJ6/QRkGRnWOZeRzLzDvj1B5uFib0an7K8z2jg/H2sJKclc/OpEw6NAtw/uuS+q3HVSbBu/03yEmt1aTV7rqwwFpBDqQVt0hRBW/FtR8Ni16B3XPNV77dPGr2ekWF8OOtpcldgC1TT5/gtRXBT5NMdXrvG81ideXFWJBjXsO2X0yyOi+tdJ9PCHS4CDqPg9YjID8LPhhuFiacdif85au6tSifNG6zHoFjO8G/GYx/59SK264TzX2+ZapZgG3yAvDwPv18tiKIW27GWmBNRETEaZTgFRGpz2w22DkTgNm2voR4l/617ma1cN/IdtxHuzKn5OQXcTw7v0zS93h2Acezyj6XllPARd0iCfXzPOWynu5W+rUKZdGuYyzbc0wJ3gZg6e5jHM8uwN/bnQBvdwK83PH3dsffyx0/T3es1kpWaUf2gKad4Og288a/7801E3g5dh/JAlyc4E3ZB9jBK8j0mZSKad7HtPfIPgYfXWi+wt2iL7ToB0EtnPt1brsdfrkPts8wfUXPewxmPwk7ZpqqRc9yFujb8yds/tGM9y2EPx6HvrdCn5tMUmvXH7B1OuyaDQVZpef5R0DHi01St+WQsklhdy+48nPzenf8BkvfgHP+5rzXKVJVW6fDmk8BC1z2Pvid5u+ysa/A/sVwdLv5MzT2xdPPmbQZ8tJN9XqzbjURtYiISKOkBK+ISH2WsB4yEsi3+rLM1pm/eJ+92s3H0w0fTx+ign2qdelBbcJYtOsYS/ckc9OQ2GrNJa615kAK13y44ozH+HuZxK//CYlfkwj2IMDbndimfnSKDKRjswB8Pd1NIq7n1TD7SVKXf8HHKYPZl5zNHcNb0yUq6IzXqo607IKSynTXJniLF1gLa6Mek5VhdYPe18Pi1+DwWvNw8AkxyXLvYFMR7h10wvg0z3kHgVdg+RWxs5+E9V+CxQpXfAIdxsLKDyEtzrRp6Dz+1HPWfma2zftAajxkJMC8Z2Hhi4AFik74VkRQNHQaZ6qBo/ub13Y6Ub1gzIsw436Y+ww07wuxQyvxixNxsrSDMP2vZjzkPlNtfjp+YTDhXfjqclj5PrQeDh0vKv9YR3uGmIFn/jMhIiIilaIEr4hIfbbjNwB2BQ4gP9sk2mrL4DZNgB0s35tMkc2OW2UrPKXOWLEvBYAm/l40DfAiM6+AjNxCMnMLKbSZBfky8wrJzCs861wWC8Q28SM2zI+0Iy34zm4h+Ngaph1aQpw9gk0HU5l5/zC8PWrmjf3uo2aBtcggb/y9XPi/OVpgrepGPg29roeDq+HgKvNI3AQ5x82jsixWk+Q9MelrscLeeWb/uLdKk1FdJsDSN03V+ckJ3swjpt0CwLi3zX/brdNgxftwaLV5PrSNqdLtNM4kbSuT3O9zE8SvMH2rf7gF7lhkepyK1DZbEfw0GXJTIao3nPf42c9pdwEMugeWvQ0/322+xRF0ag9/9i82W7VnEBERcSoleEVE6rPiZMN630EABPrUcL/KE3SNCsTfy5303EK2JaTTtXnNVWVKzdpyKB2A24bGcsfw0gXB7HY7eYU2k+zNKyQjt4DM3EIy8kzy15H0PZ6Vz84jmWxLSOdoRh57j2ax92gW4M0Sj64Mc9vEY83X80TaOPYnZ/PG3F08PLpjjbyWKvff3fAdHFxpVoj3qF51OwDJJ1TwSuWFtTGPHn8xP+dnQ8peyE0zSaecVLPNTSsd56Seur8wF+y24mNTT73Ohc9Cr+tKf+5yqUnw7pxleuN6+pXuW/812ApNu4iIzua57leax5FtgAWadqh6xbbFAhe9Cgkb4cgW08/0+qmqAJfat+gVOLAEPP3h8o8q3gv7/KfMeYfXwY+T4MZfwK347WZhPsx5yrREAWilCnURERFnUoJXRKS+Or7f9LKzuLHSox+QU6sVvO5uVgbEhjJ3+xGW7jmmBG89tumQWQCq60mtEywWC94ebnh7uNE0wKtCcx3NyGNbQjr7jmXRMsyXPul3wa93MqpwHoz/J7d/uY4PFu7l4u6RNdKqwZHgbdO0Egne5D2m4sxWAIHNYegD1Q+kJMGrCl6n8PSFZl0rf15B7klJ3xPGTdpCm/PKHh/VC0Jamb9fd86CrpeZ5+12WPu5Gfe+4dTrhHeqfGzl8fQ1/XjfHWwqjHf8Dh3HOmdukYqIWwHznzfji16B0NYVP9fdEyZ+BO8Ph7ilsPAlOPcR8+dpys2lLVeG3Gd6a4uIiIjTaIleEZH6aodZXI2YQSQVmIrDgAr04HWmQW3MgiuLdh2r1euK86RlFxCXkg1A1+aB1Z6vaYAXw9o35cbBrRjRIRy/HhNMFVhqHKMC9jO2WzOKbHb++eMmCots1b7eyU6p4N23CGY+ahJ6p/PHEya5C7Dk9aq1AThRVjIc22HGlUmOiPN5eENAhKmsjRkA7S80FbcDJp+a3AVTLdvlUjPeMrX0+QNLTF9lT3/oclnNxtykLQy6y4z/eNxUPorUhpxU+PE2sBdBtyuhx1WVnyOsDVzyuhkvfBHmPQfvDTPJXe9guOobuOAZVaaLiIg4mRK8IiL11Y5fzbbjWDJyTW/U2qzgBRjRIRyApXuSOZKRW6vXFufYkmCqd1uE+BDs6+n8C3j6QucJZrzhG54e14VAb3c2HUrjkyX7nX653UdPSvD+/g9Y/o6p0LXbTz1h73zzZ8niBsExpsJz6VtVu3jWMZj9FLzeDbKTwequCt76yJHg3fUH5Jn7qaR6t+tE8KqFxfvOeQD8mpqk8uqPav56Ina7WeQvLc5UsV/0StXn6nY59LzOtEdZ8DzkpZnWJncsUkW6iIhIDVGCV0SkPso5DvuXmHGHMSUJ3sBaTvC2DfenV0wwRTY7U9ceqtVri3M4+u+e3J7BqRxVYFumEe5t57GLzNfZX5m9g7jkbKddJregiIPHc4DiBG92ChzZanZun2EWwzqRrchU9wL0uw1GPWfGy9+FjKSKXzjziKm0fL2bqQAuyIJm3eGa78G7+lXRUsuadTeV14W5sHOm+ft2689mX+8baycG70A49zEznv+8uZdFatK6L03VutXdtFmo7t9dY1+EpsWtSwbfCzf/bj5EExERkRqhBK+ISH20e675CmXTThDamoxc8/Xy2m7RAHBl32gApqw5iL28Ckmp0zYfLu6/64T2DKfVcggExUBeOmz/lSv7RjOodRi5BTYenbrJaffNnqOZ2O0Q7OtBmJ8nxC0zO6zFfy7+eBwOrSk9Ye1nZjEr72AY8U/oeBE07wMF2WaRobPJSDQJ4te7m6rfgmzTw/Xq7+D2hdD2fKe8LqllJ7dp2DjFJHsjukLz3rUXR+8bILyL6Rm84MXau640Psd2mW87AJz7qHP643r6waQ/4b6NcOG/K75Qm4iIiFSJErwiIvXR9uL2DB3GYLfbXdaiAeDi7pF4e1jZfSSTdfGptX59qZ6SBdZqcpE8q9V8ZRdgx+9YLBaeu6wbXu5WFu8+5rRWDSX9d5v6Y7FY4MBSs6PnNdDpEtNnd8pNpYtt/fms2T/iEfANNYm98580z63+GI4fKP9C6Yfh94fhjR6m/UNhjkkMXzMFJs2DDqPVX7K+c/TZ3TUbVv3PjHvfULv/Xa1uMOo/ZrzqfyYJJ+JshXnwwy3mA6pWQ2HI/c6b29MXQlo6bz4RERE5LSV4RUTqm6JC2D3HjDuMJaegiEKbqYB0RQVvgLcHY7tGAjBldXytX1+qLjOvkH3HsgDoUpMtGgBaDzfb+BUAtGrix98v7ADAMzO2OuXe2XPyAmuOCt6WQ2Dc2xDcElLjTD/eBS+aPrlN2kO/W0+IcwTEDjfJ4AUvlL1A2kH49e/wRk9Y8Z6p6mzRH677EW6baxbwUmK3YYjoAmHtoCgPju0ENy+zOFtta3MutBsFtkKzGKCIs819BhI3gk8oXPaB+WBBRERE6h0leEVE6puE9ear7t7B0Lx3SfWu1QJ+nq55Y3ZFcZuGXzYkkJ1f6JIYpPK2JaRjt0OzQG+aBnjV7MWa9zULmaXFm0QpcNvQWG4a3AqAh3/cyPQNhys1ZXJmHnO2JvHSrO1c/cFy/rdoH1Cc4M3LhMPrzYEtB4FPMFzxqWnXsH0GLHvb7Bv131O/Ouyo4t3wDRzZDqnxMONv8GYvU0lZlAcxg+D6aXDrH9B2pBK7Dc2JbRoAOo8HnxDXxHLhs6Yv6s7fzaKAIs6ya07p34Xj34bAKNfGIyIiIlVW+9/lFRGR6tm3wGxbnQNWNzJyzSJVAd4e5mvpLjAgNpSYUF/iUrKZuTmRy3q3cEkcUjmbD9VC/10HL39o1hUSNkDccuh2ORaLhacu6UxeYRHfrIznb9+tx9PNyuiuzU45vaDIxvaEDNbFH2ftgeOsi0/lQDkLtDXx92REh3A4uMr0qQ5sUbqwT/PeJlk282Hzc9uR0O6CU2Nt0Rc6XmwSwV9faVoy2Eyfa1oOgeEPQ+wwJXUbui6XwsLi3re9b3BdHE3bQ99bYeX7sORNU2UuUl2ZR2DaHWbc7zbTg1xERETqLSV4RUTqm30LzTbWfOU93YX9dx2sVgtX9GnBK7N38v3qeCV464nNh9KBWmjP4BAzyCR441eU9OS1WCz8Z0I38gps/LTuEH/9Zi0fXN+XLlGBrI07zrq4VNbFpbLxUCq5BbZTpmwX7k/vmBB6xQTTKyaEtuH+uFktsMXRnmFw2RMG3G5i2DMXRj9/+ljPe9z0uk4t7sPbaqhZiK3VOc74TUh9EN7J9CMtzHX9f/cul5oEb/Ju18YhDYPdDr/cD1lHIbyz+eBLRERE6jUleEVE6pPCPFP9CKaCEE5YYM21K1RP7NOCV+fsZPneFA4kZ9EyzM8p8+4+ksH/Fu4jLaeA/CIbBUU28gtt+Hi6cf/I9vSMDnbKdRojRwVvt5pcYO1E0QNM71rHPVzMarXw4uXdySu08eumBG75bBV2+6mnB3q70ysmpCSh2yM6mCCf09z3jgXWWg4q+7zFApe+e/ZYwzvBmBdMMrrfbacmiqXhs1jggn+5OgojqPhDs/RDYCtSn1Spni1TYcevpmXNZf8DDx9XRyQiIiLVpASviEh9cnC1qSbzC4emZoGqjFzz1XFXVvACRAX7cE7bJizadYwf1hzkweIFtKpj/o4j/PXrdWTkld/Xd+2B43x/xyA6NquFFgMNTE5+EbuOZADQtbYSvDEDzTZpM+RlgFdAyS53NyuvX9WT/CIbs7cmYbVA+4iA4oSuqc5t3cQPq7UCbREK802LBoCYaiRmB9xuHiKuFhBpeljbCiEjEYKauzoiqa+yU+D3f5jx0AdM6xwRERGp95TgFRGpT0raMwwt6f/pqOANdHGCF+DKvtEs2nWMH9cc5P6R7c1X5avAbrfz6dL9/HvGVmx26NcqhPE9m+PpZsXD3YKHm5VPl+xn9YHj3PjxSn68czAtQnyd/Goatu2J6djspmdtRGANL7DmEBhl+uGmxpkEbJvzyuz2cLPy3nV92JaQTqsmfvh7VfGeTlhvPgjxDSv5IESkXnNzh8DmkBZnFilUgleqatajpjVD044w9EFXRyMiIiJO4vpsgIhIQ2S318wCTCUJ3mElT5VW8Lq2RQPABZ0jCPR253BaLkt2H2NY+6aVnqOgyMZT07fw9Yo4AK7o04JnL+2Kl3vZryQPbduUK95fys6kTG74eCU/3DGYUD9Pp7yOxmDz4dL+u7W6OF/0QJPgjVtxSoIXwM1qqX5FsaM9Q8wgLYQmDUdQi+IEbzwwwNXRSH20aw5s+AawwLi3wb2WPtwTERGRGmd1dQAiIg3OvP/Cy+0hcZNz583PLv3aeZkEr+sXWXPw9nBjQi9TWfbVigOVPj81O58bP17J1yvisFjg0bEdefHy7qckdwGCfD34/JYBNA/2Ye/RLG7+dBXZ+eW3cpBTbSnuv9u1eS23t4gpTkzFLz/zcdVxYoJXpKEIjjbbtHjXxiH1U14GzLjfjAfeCdH9XBqOiIiIOJcSvCIizrZlGmQdgd8fptyVoqoqfjnYCiCwBYTEljxdlxK8ANcOaInFArO2JLE27niFz9tzNJNL/28pS/ck4+fpxv+u78vkYW3OWF3aLMibz27pT7CvBxviU7nzy7UUFNmc8TIavE21vcCagyPpGr8KimogIW+zlSaPtTCaNCSOhdZSleCVKpj7b/PhQHAMnPe4q6MRERERJ1OCV0TEmez20uqqA0tg+6/Om/vE9gwnJD3Tc+pOiwaADs0CuLy3SUT859dt2CuQ5F686xiXvrOEfceyaB7sww93DmZk54gKXa9tuD+f3NQPHw83Fuw8ygcL91Yr/sYgr7CInUlmgbUuUbWc4G3aCbyCoCDLLLbmbEe2Qm4aePpDs+7On1/EVYJUwStVFLcCVn5gxpe8AZ5+ro1HREREnE4JXhERZ8o5DgXZpT/PfgIK850zdzn9dwHSSxZZqxsJXoC/j+qAj4cbaw4c5/fNiWc89ovlB7jxk5Wk5xbSOyaYaXcPoVNk5doG9IoJ4ZnxXQD4ZMl+8gqLqhx7Y7ArKZOCIjtBPh60CPGp3YtbraVfDY5f4fz545aZbYt+ZmEqkYaipEXDQdfGIfVLfhZMuwOwQ89ry+19LiIiIvWfErwiIs6UahYGwzsY/MIhZS+s+rD68+amweF1Zhw7tMyu0kXW6k4yKyLQm8nDWgPw/O/by024FhbZeHr6Fp6Ytpkim51LezXn60kDaRpQtUVfJvRqTrNAb45l5jF9/eFqxd/QbT6h/26tLrDmEDPQbB3JWGc6sMRsWw5x/twiruSo4E2Nd277H2nY/njc/L9IYHMY9V9XRyMiIiI1RAleERFnclRWhbYu7XG34AXITqnevAeWgd1m5nX0YSxW13rwOkwe1pqmAV7EpWTzxbKyC66l5RRw86er+HTpfgAeGtWBV6/sgbfHqYupVZSHm5WbhrQC4KPF+yrUGqKx2lSS4K3l9gwO0Y4E7wrnJqrsdvNnBaClFliTBsbxd39+hvnQT+Rsdv4Bqz824wnvgk+wS8MRERGRmqMEr4iIMzl6IwZHQ6/rILwL5KbCwpeqN+9p2jMAZOTVrR68Dn5e7vz9wvYAvDl3F6nZplXF/mNZXPZ/S1i06xg+Hm68d11v7j63rVMqSa/uF4OvpxvbEzNYsju52vPVNxVNam8+nA5A19ruv+vQvA9Y3SHjsHP7iR7fB5mJYPUw1xBpSDz9wCfUjNWHV84mKxl+vtuMB94FrYe7Nh4RERGpUUrwiog4k6OCNygarG4w6lnz88oPIHlP1ec9U4K3pAdv3argBbi8TzQdmwWQnlvIm3N3s3xvMhP+bwl7jmYRGeTNlDsGMbprpNOuF+TrwZV9zdeYP1zcuBZbS83O57xXFnDRm4vYlpB+2uMKimwl+11WwevpC5E9zDhuufPmPbDUbJv3AY9a7i0sUhuCT2jTIHI6djvMuA+yjkDTjnD+k66OSERERGqYErwiIs7k6MHr6JXY5jxodyHYCmF2Fd9gZSVD0iYzblW2/67dbj+hRUPdquAFcLNaeHRsJwA+X7af6z5cQWp2AT2ig/n57iE1kmC8eUgrLBaYv+Mou5IynD5/XfXj2kPsO5bFlsPpjH9nCZ8uObVNRXJmHs/O2Ep+oQ1/L3dahvq6KFpOaNNQxQRvXiYcWgPrvzZ/tr66EmY/ZfapPYM0VEFaaE0qYMO3sO0X822Gyz7QB14iIiKNQN0r9xIRqc9KKnhP6JN7wb9h91zYPgP2L4ZW51RuzgOLzbZpJ/APL7Mrp6CIIptJ4tW1HrwOw9o3ZXj7pizYeRSAi7tH8vIV1eu3eyYtw/y4sHMEs7Yk8dHifTw/sXuNXKcusdvtfLfKfLgQE+pLXEo2T/+ylUW7jvHi5d3xdLfy4aJ9fLhoL1n5ZsG7awbEYLW6YIE1h5gBsPwdiF9x5uNy0+DoTji6/YTHjtN/Rd3NEzpe4vx4ReqCkgRvnGvjkLorNQ5+e8iMR/yz9NsSIiIi0qDVzWyAiEh9dWIPXofwjtDnJlj9Ecx6FCbNB2slvkBRgfYMblYLvp41kzB1hmfGd+GfP25iWPum3DG8tVP67Z7JpKGtmbUliZ/WHeLvozrQxN+rRq/nauvjU9mZlIm3h5Vf/noO09Yd4j+/bWPu9iOMfmMRhUU2jmebXs3dmgfx0KgODG3XxLVBOyp4k7aYJK53EGQeMR+CHFwFR7aZRG7G4dPP4RcOTTuYryCHdyzedgbf0Np5DSK1LVgVvHIWS98yC/G16A9D7nd1NCIiIlJLlOAVEXGWghzIMlWqJVVWDiMegU1TIGEDbPwOel5d8Xn3LjDbchK86Tkmaefv5V7jSdPqaBnmxzeTB9ba9fq0DKFHdDAb4lP5cvkB7h/ZvmRfWk4B8SnZhPp50sTfC0/3+t+t6LtV5oOFsV0jCfLx4MbBregfG8pfv1nH7iOZALRu4sffR3VgTNdmdeNeCYiAkFizMNqPk8z22M7THBtZnMjtVJrQbdpBiVxpfILUg1fOwG6HnbPM+Jy/gZve6omIiDQW+ldfRMRZ0g6ZrYcf+ISU3effFIY+CHOegrnPQOfxZqGpszm2G5J3gdUdWg05ZXe6Y4E1H/11fiKLxcJt58Ty12/W8cWyAwR6e7DxYCobD6ax91hWmWODfT0ID/CiaYAXTf29CA/0pqm/+dnxfHiAN4E+dTOJnplXyPQNpsr1L/1KP1joFBnIL/ecw8dL9hER6M2EnlG4u9WxZHbMQJPY3TWr9LmIrtByMDTrZhK5TdqDT7DLQhSpUxztf1TBK+VJ3g2pB0yrmnI+FBYREZGGSxkBERFncfREDGoB5SUCB9wBqz4yxy17G4b/4+xzbv/FbGOHnZo0BjJyTQVvgFfdW2DN1cZ0bUbzYB8OpebwzIytZfaF+XmSllNAoc1OanYBqdkF7EzKPON8nm5WkwQ+4eFIALdu4s+A2NAz9rRNzswjr9BGVLBzF7v5deNhsvOLiG3iR//YshWtPp5u3H1uW6dez6kG3ws5qRAaa3pTxwxSVa7ImQTHmG1mIhTmgXvDbj9T7x1eB0Ex4BdWO9fb9YfZthwMXv61c00RERGpE5TgFRFxFkdFVXB0+fs9vOGCp+GHW2Dx69D7BghoduY5txUneDuVv2iUowdvXV1gzZXc3aw8OrYTr8zeQWyYHz2ig+neIogeLYIJ8fPEZrOTllPAkYw8jmbkcTQzlyPpjnGeGWfmcSQ9l/TcQvKLbBxKzeFQak6512sX7s+kYa0Z3zMKL/fSfsibD6Xx8eJ9/LLxMHY7PHFxZ24Y1NJp1cCO9gxX9o2ukxXGZxTRGa751tVRiNQfvmHg7gOFOebfnLA2ro6o4cpNNz3B9y8yC5X1uKpy52+dDt9fD826w+QFleu9X1W7Zptt2wtq/loiIiJSpygjICLiLI6eiI6v0Jany2Ww/F2ziNSfz8L4t09/bNpBOLQGsECHi8o9pDTBqwre8lzUPZKLukeWu89qtRDi50mInycdmgWccZ7cgiKOZeaVJoMzThznsnxvCruOZPKPHzby8qwd3DSkFa3C/Ph06X5W7kspM9dT07ewPj6V/17aDZ9qLoy3MymDtXGpuFktTOzTvFpziUg9YLGYf2OSdynB62y2IkhYD7v/hD1/wsGVYCss3e/pD50urthc+dkw8xEzTtwIW6dC14lOD7nsNbPgwBIzbndhzV5LRERE6hwleEVEnMVRwXvyAmsnslhg1H/howtg3Zcw4HbTa7Q822aYbcxAsyBVORwtGgJVwVujvD3caBHiS4uQ8vsmp+cW8M2KOD5Zsp/E9FxenLmjZJ+71cJF3SO5eUgsq/en8Nzv25m67hDbEtJ5//o+tAzzq3Jcjurd8zuGEx7gXeV5RKQeCY4uTvBqobVqSztokrl7/oS98yHneNn9oa3NIo8HlsDUO6DJXLPA49ksfhXSDwIWwA7zn4fOE8BavQ/1zmjfQijKN208mrSrueuIiIhInaSMgIiIszjebDt6JJ5OdH9TybvlJ5j1GNzwc/k9e8/SngHUoqGuCPT24Pbhbbh5SCy/bDjMx0v2kZKVz2W9m3P9wFY0CzLJ157RwXRtHsQ9X69le2IGF7+1mCcv7kyP6GBiQn3x9qj4m/+8wiKmrjML+13V/wwfKohIw6KF1qouPwv2LylN6h7bUXa/V6Dped/mPPMIjYWiAvjiUtOq4dtrYdJc8A46/TWS98CSN8x4/Dvwx2NwbCdsmlL5Ng+VcWJ7hvrWrkdERESqTRkBERFnSatAiwaHkU/D9l9h3wKzKEr7UWX3Zx6FuKVm3PH0XwktWWRNLRrqBE93KxP7tGBin9PfAwNbhzHjr0O586s1rItL5aEfNpbsiwj0IibUl5hQP2JCfWkZ5kt08TbMz7NMj905W4+QkpVPRKAXw9o1rdHXJSJ1SFDxh4ipquCtsE0/wNrPIG65qXJ1sFiheZ/ihO75Zux20tsjNw+4/BP4YISpnJ56B/zlq9P31J31qLlGm/Og5zWQmQRz/2WqeLtONPM5m90Ou4sTvGrPICIi0igpwSsi4gw2G6SZasoztmhwCGkJA++EJa/DH4+bN4Invunb8RvYbWZhl5CWp51GFbz1U7Mgb76bPIg35u5k/o6jxCVnk5FXSFJ6Hknpeazaf/yUc/w83UqSvTGhvizbmwzAFX2icXerhcV7RKRuKKngjXNtHPVFTir8NBnsRebnoGjzb27b8021rk/I2efwbwp/+QI+Hm3+fV74Eox4+NTjdsyEnTPB6gFjXjSVtP0nw7J34Pg+WP819LnRqS8PMBXCqXHg5gmxQ50/v4iIiNR5ygiIiDhDZhLYCsDiZvr1VcTQB2DdF+aN2ZpPof+k0n0l7RnGnXGKdFXw1lue7lYeGtWRh0Z1xG63k5pdQFxKNgdSsolPyeZAchZxKdnEJWeTkJ5LVn4R2xMz2J6YUWaeK/uqPYNIoxJc/GdeLRoqJn6FSe4Gx8B1U83CdFVpYdC8N1z8Gvx8F8z/LwQ1h66Xg0dx//OCXJj5TzMedFdpH1wvf/Pv/axHTWK4x1Xg7uWc1+bgaM/Qcgh4Vr2vu4iIiNRfSvCKiDiDoz1DYNSpX+88He8gOPdR+PVBmP8cdLsCfIIhN80s9gIVSPCaCt5AH/11Xp9ZLBZC/DwJ8fOkR3TwKfvzCos4eDynJOEbV5wE7tcqlJiw8hd+E5EGKuiEBK/NdvpWAWIcKG53FDsMmrSt3ly9roXD62DV/+Dnu+HXv0Pr4dDuAji+31TpBkTCsIfKntf3Flj6lvl/hbWfl/1A1xnUnkFERKTRU0ZARMQZKtN/90S9b4IVH5iFXha9Ahf+G3b+YaqBm3SApu3PeHppiwZV8DZkXu5utGnqT5um/q4ORURcLTDK9I4tyoesoxAQ4eqI6ra45WYbM9g58436r6na3fQjZBw2LRl2zizdf+Gz4BVQ9hwPHxj6IPz2d1j4MvS6zjznDHmZpUnsdhc4Z04RERGpd/SRv4iIMzgWu6lI/90TubmbN4MAK96DlH2wbbr5udMlZz29dJE1fV4nItIouHmUtgJK00JrZ1SQC4fXmnHLQc6Z093T/Lv9wFa4Ywmc/5RJHlvcoN0os5BaeXrfYP4fITMRZjwA+5dAYV7149m30CT7Q1pBWDUrlEVERKTeUkZARMQZHL0QK1vBC6bipvW5sHcezHwE9i0wz1cowVvcokEJXhGRxiOoBaQfMgtrtejr6mjqrkNrTPLTPwJCYp07t8UCzbqax9AHTLLW6nH6/r7uXjD8YZh+D2z42jzcfSBmoGkfETvcLKxa0TZPDo72DG0vqFpvYREREWkQlBEQEXEGRxVVcBUWvLJYYNR/4L1zYOfv5rmgGPNG7wzsdjuZeWrRICLS6ARFm8XDtNDamcUVty6IGVTzyc+KLJzW6zqzCNr2X03lbdYR8+Hu3nlmv1cQtBpSnPAdBk07nbnHst1eusCa2jOIiIg0akrwiog4Q1VbNDhEdDFv/NZ+bn7udMlZ34xm5xdRZLMDatEgItKoOD5MVIuGMzuwzGxbOqn/bnVZLND1MvOw2+HodpPo3bcQ9i8yi6zu+M08AHybQOzQ0grf0NZmDrsdclMhYYO5B9y8oNVQl740ERERcS1lBEREnKGkRUMVE7wA5z4Om3+C/EzoPP6shzvaM7hZLfh4uFX9uiIiUr842gGpgvf0bEUQv9KMY5zUf9eZLBYI72QeA2438SZsKE34xi2D7GOwZap5gGk1YbdDdjLYi0rnanUOePq65nWIiIhInaAEr4hIdeWmQV6aGVelB69DQARcPw1SD0DMgLMefuICaxb13RMRaTyCYsw2VRW8p5W0GfIzwCvQfEumrrO6QfPe5nHO/VCYb3oI71tgEr7xKyEzqew5ngEQ0AyG3OuSkEVERKTuUIJXRKS6HBVUPiHg5V+9uaL7mUcFpOc6+u/qr3IRkUalpIJXCd7TcrRniO5vkqf1jbsntBxkHiP+CfnZJmnt7g1+TcAnFDy8XR2liIiI1BHKCoiIVFdJ/91qVO9WQXpxBW+gFlgTEWlcHD14c1MhLwO8AszPh9fBrMegWTfoc5P5+n9jdeICaw2Bp69JVouIiIiU4wzLsoqISIU4KqgcX5mtJRmq4BURaZy8AsA72IwdHzIeWgOfj4cDS2DFe/B/A+GjUbDhWyjIcVmoLmG3170F1kRERERqkBK8IiLV5UjwBldjgbUqKO3BqwpeEZFGx7GoZ9pBOLgGPr/U9IRv0R86XgwWN4hfDlNvh1c6wu//hKM7ai++BS/B8zHw02TYv8QkXWtLyl7IOgJunhDVu/auKyIiIuIiKvsSEakuRw/eWm7RoApeEZFGLDgakjbB1p9h23TIS4eYwXDt96bCNz0B1n0Jaz8zH0SueNc8Ygab9g2dx9dcD9fUeFj4IhTlw8bvzCOsLfS+AXpcA/5Na+a6DnHF1btRvdWnVkRERBoFVfCKiFRXSQ9e11TwqgeviEgj5PhQcf2XJrnbcghcO6W0H29gJAx/CO7bANf+AB0uMlW9cUth6mR4tSPMfBSO7nR+bAtfMsnd5n1NUtfDD5J3w+wnzXW/ux52zwFbkfOvDSe0Z2gg/XdFREREzkJlXyIi1VVSwVvbCV5V8IqINFon/pvT8hxTuevpd+pxVjdod4F5pB82Vb1rPoP0g7D8HfNoOQT63Aydx4G7V/XiStkH678y4wufNUnWUf+FzT+ZauJDa0zF8bbppnd9r+vMI6h59a57opIF1tR/V0RERBoHVfCKiFRHYT5kJJhxrffgVYJXRKTRiimuTo0dfvrk7skCo2D4P+D+jXDNFOgwFixWszDbT7eZXr2bf6peXAtfAlshtDmvtILWKwD63AiT/oQ7lkD/28E7CNLiYP5/4fWu8NUVsG0GFBVU7/oZSaYHLxaI7l+9uURERETqCWUFRESqI/0QYAc3L/BtUquX1iJrIiKNWHQ/eGgv+IaCxVK5c61u0P5C80g7VNyr93NT1fvDzeaDy0F3Vz6mY7thwzdmfO7j5R/TrCuMfREu+Bds+8VUEx9YDLv+MA//COh5jWntENq68jE4+u9GdAGf4MqfLyIiIlIPqYJXRKQ6TlxgzVq7f6Wmq4JXRKRx8wurfHL3ZEHNYcTDpldv/9vNc7MehVmPgc1WubkWvAB2G7QfDS36nPlYDx/ofiXc/CvcswaG3Ad+TSEzCRa/Bm/1hYUvV75PryPBG6P+uyIiItJ4KMErIlIdaY4F1lrU+qXTc7TImoiIOImbO4x5AUY+bX5e9rZZjK0wv2LnH9kOm6aY8YhHKnftJm3hgmfgb1vhys9N2wl7Efz5b/h8vOkdfDb5WbBzFuycaX7WAmsiIiLSiKjsS0SkOhwVvLXcfxfUg1dERJzMYoFz/gYBkfDz3SZhm3kErvoavPzPfO785wA7dLwYonpW7fruntB5PHQaB+u/ht8egv2L4N3BMP4d6HiROc5uh+xkSN4DB1fC7jlwYCkUFSejLW5m4TgRERGRRkJZARGR6kiNM9sgVyR41YNXRERqQI+rwK8JfHcD7FsAS9+Cc89QlZu4GbZOM+PKVu+Wx2KBXtdC9AD48RZI2ADfXgOtz4XcVEjeC3lpp54XFANtz4dul0NAs+rHISIiIlJPKMErIlIdJS0aajfBa7fbycwzFbyBquAVERFnazsSxr4EP98F22ecOcG75A2z7XKpWUTNWZq0hVvnwNx/mZYRe+eV3R/YAsI7maRu25EQ1rb6PYlFRERE6iFlBUREquP4AbMNaVWrl83KL8JmN2NV8IqISI3oMMa0O0jabP69C2l56jEFubDjNzMeeLfzY3D3hFH/Ma0bDq6G4BgIa2P+3fXwcf71REREROohJXhFRKqqqLC0greWE7yO9gzuVgveHlovU0REaoBvKMQMhANLzOJlA24/9Zg9f0J+JgQ2h+Z9ai6W6P7mISIiIiKnUFZARKSq0g+BrRDcPM2CNLXoxAXWLPo6qoiI1JQOY8x2x+/l79/6s9l2GgdWvbUQERERcQX9X5iISFUd32+2wS1r/U2tFlgTEZFa0WGs2e5fDLknLWxWmF+a+O08rnbjEhEREZESSvCKiFSVI8Fby+0ZANJPqOAVERGpMWFtoEl7sBXA7rll9+1bAHlp4B8B0QNcE5+IiIiIKMErIlJlLkzwZijBKyIiteV0bRq2TjPbTpeA1a1WQxIRERGRUkrwiohUlSsreHNMi4ZAtWgQEZGa1r44wbvrD7PAKEBRAWz/1Yw7qT2DiIiIiCspwSsiUlV1ooJXCV4REalh0f3BJxRyUyF+uXlu/2LIOQ6+YdByiEvDExEREWnslOAVEakqlyZ4HYusqUWDiIjUMKsbtB9txo42Ddumm23Hi8BN/xaJiIiIuJISvCIiVZGbBjkpZhzSstYv76jgDVSCV0REaoOjD+/2X8FWBNt+MT93Hu+6mEREREQEUIJXRKRqjh8wW98m4BVQ65cvreBViwYREakFbc4DN084vg/WfgZZR8E7GGKHuzoyERERkUZPCV4RkapwYXsGOLEHryp4RUSkFnj5Q+wwM579tNl2GAtu+qBRRERExNWU4BURqYo6k+DVG2sREakljjYNeWlmq/YMIiIiInWCErwiIlXh4gRvuhZZExGR2tZ+TOnYMwDanOu6WERERESkhBK8IiJVUWcqeJXgFRGRWhLUHCJ7mHGH0eDu5dp4RERERARQgldEpGrqSAVvoI9aNIiISC065wEIbQOD7nF1JCIiIiJSTKVfIiKVZSuC1DgzdkGCd0diRkkFb5ifZ61fX0REGrEuE8xDREREROoMVfCKiFRW+mGwFYDVAwKjav3yb8zdCcDYbs0I9lWCV0RERERERKQxU4JXRKSyHO0ZgmPA6nbq7qx8Fu86RpHN7vRLbz2czm+bErFY4L7z2zt9fhERERERERGpX5TglUpZuHAhl1xyCVFRUVgsFqZNm1Zm/0033YTFYinzGD16dJljUlJSuPbaawkMDCQ4OJhbb72VzMzMWnwVItV0hv67drudmz5ZyXUfreCGj1dwJCPXqZd+fY6p3r24exQdmgU4dW4RERERERERqX+U4JVKycrKokePHrzzzjunPWb06NEkJCSUPL755psy+6+99lq2bNnC7NmzmTFjBgsXLmTy5Mk1HbqI85whwbtg51E2HEwDYMnuZMa+sYjFu4455bKbD6Xxx9YkrBa47/x2TplTREREREREROo3LbImlTJmzBjGjBlzxmO8vLxo1qxZufu2bdvGzJkzWbVqFX379gXgrbfeYuzYsbz88stERdV+P1ORSjtDgvf/5u8B4KLukew5ksn2xAyu/3gFd49oy/0j2+HuVvXP1RzVu+N6RNE23L/K84iIiIiIiIhIw6EKXnG6+fPnEx4eTocOHbjzzjtJTk4u2bds2TKCg4NLkrsAI0eOxGq1smLFCleEK1J5p0nwrt6fwsp9KXi4WXjios5Mu3sI1wyIwW6Ht+ft5ur/LSchLadKl9wQn8qcbUewWuBeVe+KiIiIiIiISDEleMWpRo8ezeeff87cuXN54YUXWLBgAWPGjKGoqAiAxMREwsPDy5zj7u5OaGgoiYmJp503Ly+P9PT0Mg8RlzlNgtdRvTuxdwuaBXnj7eHGfy/txltX98Lfy51V+48z9o1FzN2WVOlLvlZcvXtprxa0bqrqXREREREREREx1KJBnOqqq64qGXfr1o3u3bvTpk0b5s+fz/nnn1/leZ977jn+9a9/OSNEkerJy4Ds4p66IS1Lnt6WkM6f202F7e3D25Q55ZIeUXRrHsRfv1nHpkNp3PrZam47J5Z/jO6Ip/vZP2dbG3ec+TuO4ma1cO/5bZ36ckRERERERESkflMFr9So1q1b06RJE3bv3g1As2bNOHLkSJljCgsLSUlJOW3fXoBHHnmEtLS0kkd8fHyNxi1yWscPmK1PKHgHlTz9bnH17thukcQ28TvltFZN/PjhzkHcMiQWgA8X7+OK95YSn5J9xsvlFhTx/G/bAZjYuzktw06dW0REREREREQaLyV4pUYdPHiQ5ORkIiMjARg0aBCpqamsWbOm5Jg///wTm83GgAEDTjuPl5cXgYGBZR4iLlFOe4b9x7KYsfEwAHeOaHPqOcW83N148pLOfHB9H4J8PNhwMI2xby7it00J5R6fnlvAjR+vZOX+FLzcrfz1PPXeFREREREREZGylOCVSsnMzGT9+vWsX78egH379rF+/Xri4uLIzMzkoYceYvny5ezfv5+5c+cyfvx42rZty6hRowDo1KkTo0ePZtKkSaxcuZIlS5Zwzz33cNVVVxEVFeXCVyZSQeUkeN9fuBebHUZ0aEqXqKByTzvRhV2a8dt9Q+kdE0xGbiF3fbWWJ6ZtJregqOSYI+m5/OX95azYl4K/lzuf3NyP6FBfJ78YEREREREREanvlOCVSlm9ejW9evWiV69eADzwwAP06tWLJ598Ejc3NzZu3Mi4ceNo3749t956K3369GHRokV4eXmVzPHVV1/RsWNHzj//fMaOHcs555zDBx984KqXJFI5JyV4k9Jz+XHNQQDuPrfi/XGbB/vw3e2DSip+v1h+gEv/byl7j2ay71gWE99byraEdJr4e/Ht5IEMbtPEma9CRERERERERBoILbImlTJixAjsdvtp98+aNeusc4SGhvL11187MyyR2nNSgvfjxfvIL7LRr1UI/VqFVmoqDzcrD4/uyIDYUB78fgPbEtK5+K3FeHu4kZKVT8swXz6/pb/67oqIiIiIiIjIaamCV0SkMk5I8BYU2fihuHp38rDT9949mxEdwvntvqEMbB1Kdn4RKVn5dIkK5Ic7Biu5KyIiIiIiIiJnpApeEZGKstkg9YAZh7Ri4c6jJGfl08Tfk3M7NK3W1BGB3nx120A+WbKP+JRs/j6qAwHeHk4IWkREREREREQaMiV4RUQqKiMBivLB6g6Bzfnp940AXNIjCne36n8hws1q4bahras9j4iIiIiIiIg0HmrRICJSUY72DEHRpBfYmbM1CYDLerVwXUwiIiIiIiIi0qgpwSsiUlEn9N+duSmRvEIbbcP96do80KVhiYiIiIiIiEjjpQSviEhFnZDg/WmdWVzt0l7NsVgsrotJRERERERERBo19eAVETmdokJI2AD7F8K+hXBgGQBpPs1ZvjcFgPE9o1wZoYiIiIiIiIg0ckrwiogcPwArP4Cso5CTCrmpZpt+GPIzyh4bEMWvuT2AAgbEhtIixLf24xURERERERERKaYEr4g0bjYbBd/fjEfCmvL3ewVBq3MgdhjEDsPetCMfv74IKOCy3s1rNVQRERERERERkZMpwSsijVaRzc7KH19jUMIaMu3evFV4Kan4k2b3Iw0/UghkWJ8h/GNsFzzcTMvyzQfT2H0kEy93K2O6Rbr4FYiIiIiIiIhIY6cEr4g0SpsPpfHCT0t469grYIEvfa5jW/hfSM8pID23gIzcQo5m5LFjSRwbDmfy9jW9CA/wZuq6QwCM7BxBoLeHi1+FiIiIiIiIiDR2SvCKSKOSmVfIa7N38smSfTzv9j7B7lmkBHRg0n3Pc4d72YTtzM0J/H3KRlbuS+HiNxfz5tW9mL7hMACX9lR7BhERERERERFxPSV4RaRRsNvtzNqSyNPTt5KYnktfy3audF8AQOiVb4P7qdW4o7tG0i4igDu/XMPOpEyu+mC5Od7Pk+EdmtZq/CIiIiIiIiIi5bG6OgARkZoWn5LNrZ+t5o4v15KYnktsiCefhn9rdva+AaL7n/bcNk39mXrXEC7pEVXy3CXdI0t68oqIiIiIiIiIuJIqeEWkwSoosvHhon28MXcnuQU2PNws3DG8Dff6zMRj7k7wCYWR/zrrPH5e7rx5VU/6tQph5uZEbhvauhaiFxERERERERE5OyV4RaRBWrU/hcembmJnUiYAA1uH8uyEbrT1SoO3XzAHXfAM+IZWaD6LxcINg1pxw6BWNRSxiIiIiIiIiEjlKcErIg3K8ax8nv99O9+tjgcgzM+Txy7qxKW9mmOxWOC7O6EgC6IHQM9rXRytiIiIiIiIiEj1KMErIg2C3W7nhzUH+e9v2zieXQDA1f2jeXh0R4J9Pc1Bu2bDtulgcYOLXgWr+uiKiIiIiIiISP2mBK+INAjvL9zL879vB6BjswD+c2lX+rQ8of1CQQ789nczHngnNOvqgihFRERERERERJxLCV4Rqfd2H8nk1dk7Abj3/Hb89by2eLidVJ27+DU4vh8ComDEP2s/SBERERERERGRGqAEr4jUa0U2Ow//uJH8QhvD2zflbyPbmV67J0reYxK8AKOfA6+A2g9URERERERERKQGqAGliNRrny/bz5oDx/HzdOO/l3U7Nblrt8OvD0JRPrQ5HzqPd02gIiIiIiIiIiI1QAleEam34lOyeXHmDgD+ObYTzYN9Tj1oy1TYOw/cvGDsS3ByAlhEREREREREpB5TiwYRqZSM3ALiU3KIP55NfEo2h1JzCPByp3NUEF2iAmkR4nNqFW0NsNvt/POnjeQUFNE/NpRr+8ecelBuOsx8xIyHPgBhbWo8LhERERERERGR2qQEr4hUSFZeIVe+v4wth9PPeFyQjwddogLpEhVI1+Ym6RvbxB83q3OTvt+timfJ7mS8Pay8OLE71vLmn/8cZCZCSCwMud+p1xcRERERERERqQuU4BWRCvlg4d6S5G6IrwfRob5Eh/jSPMSH41n5bDmczq4jGaTlFLB0TzJL9ySXnOvj4UbHyAC6Flf5dokKon0zf7zc3aoUS2JaLv/5dRsAD17QgVZN/E49KGEjrHjPjC96GTy8q3QtEREREREREZG6TAleETmrI+m5fLBwLwBvXd2LS3pElXtcXmERu5Iy2XI4jS2H09l8KI1tCRnkFBSxLi6VdXGpJce6Wy20iwgoU+3bKTIQf68z/7Vkt9t55KeNZOQV0iM6mFvOiT31IJvNLKxmt0HnCdB2ZFVfuoiIiIiIiIhInaYEr4ic1WtzdpJTUESvmGAu7h552uO83N3o2jyIrs2DSp4rstnZdyyrJOnr2KZmF7AtIZ1tCen8sMYca7FAbJgfd53blsv7tCj3GlPWHGTejqN4ull5+fLu5bd+WPcFHFwJnv4w+rlqvXYRERERERERkbpMCV4ROaOdSRl8tyoegMfGdqr0AmpuVgttw/1pG+7P+J7NAVOFeyg1pzjhm87Ww2lsPpROYnoue49l8dAPG/Byt55SKXw4NYd//7IVgAcubE+7iIBTL5iVDHOeMuNzH4XA8quNRUREREREREQaAiV4ReSMnv99OzY7jOoSQd9WoU6Z02Kx0CLElxYhvozq0qzk+eTMPF6bs5Mvl8fx4PcbCPPzZHDbJoBJCj/8o2nN0CsmmElDW5c/+ZwnIec4RHSF/rc7JV4RERERERERkbrK6uoARKTuWrrnGH9uP4K71cLDozvW+PXC/L3417iujO3WjPwiG5O/WMOWw2kAfLsqnkW7juHlbuXlK3qU35ohbjms+9KML3oF3PQZloiIiIiIiIg0bErwiki5bDY7//1tGwDXDIihdVP/Wrmum9XCq1f2ZEBsKJl5hdz0ySqW7Unm2RmmNcNDozrQprxYigpgxgNm3Ot6iBlYK/GKiIiIiIiIiLiSErwiQmp2PtsS0olLzuZYZh45+UX8vOEQmw+l4+/lzn3nt6vVeLw93Pjghr50bBbA0Yw8rv7fcrLyi+jbMoSbh8SWf9L6r+HIFvAJgZH/qtV4RURERERERERcRd9fFmnkjmflc8FrCzmWmVfu/jtHtCHM36uWo4IgHw8+u6U/l/3fUg6l5uDtYeWl07VmANg0xWyH3Ad+YbUXqIiIiIiIiIiIC6mCV6SRe3HWDo5l5uHlbsXX063MvtgmftxyuorZWhAR6M3nt/ZnVJcI3riqF7FN/Mo/MCMR9i82464Tay9AEREREREREREXUwWvSCO28WAq366KA+DzW/ozoHUYNpudnIIisvIKCfb1xNPdtZ8DtWnqz/vX9z3zQVunA3Zo0Q+CY2olLhERERERERGRukAVvCKNlM1m54mft2C3w4SeUQxobdoaWK0W/LzcCQ/0rv3kbnYKzH6ytBq3orZMNdsulzo/JhERERERERGROkwJXpFGasqaeDbEp+Lv5c6jYzu5OhzIy4SvroAlb5ht0taKnZd+GOKWmXHn8TUXn4iIiIiIiIhIHaQEr0gjlJqdzwszdwBw/8h2hAd6uzagwjz47lo4tNr8XJAN310HuelnP9fRniF6AAS1qNEwRURERERERETqGiV4ReqhnPwidiRmcCQjl8IiW6XPf+WPnaRk5dM+wp8bB7dyfoCVYSuCnybB3vng4QfXTIHAFpCyB36+C+z2M5+v9gwiIiIiIiIi0ohpkTWReiavsIjL31vKlsOmutVigWAfD5r4exHm70kTfy8z9vOkSYDZhvl70bR4/75jWXy14gAA/xrXFQ83F37OY7fDjPth68/g5glXfQVtzoUrP4OPR8O2X2DpWzDk3vLPTzsE8csBi9oziIiIiIiIiEijpASvSD3z+pxdbDmcjpvVgt1ux2aH49kFHM8uYNeRs59vsZi86iU9ohjUJqzmAz6TOU/D2s/BYoWJH5rkLkCLvjDmefj1QXNM897Q6pxTz9/6s9nGDILAqNqKWkRERERERESkzlCCV6QeWXMghfcX7AHg/67tzchOERzPzic5M5/kzDyOZuaZcVYexzKKtyf8nFNQhN0Owb4ePObqhdWWvAFLXjfji18/tQK3760Qvwo2fgtTbobbF0JgZNljtvxktmrPICIiIiIiIiKNlBK8IvVEdn4hD36/AZsdLuvdnFFdmgGUtGSAgArNcSwjnyBfD4J8PGo44jNY+znMftKMR/4L+tx46jEWC1z8GiRugiNb4JMxcOXnENnd7E+Ng4OrMO0ZxtVa6CIiIiIiIiIidYkWWROpJ57/fTv7k7OJDPLmqUu6VGkOX093YsJ8XZvc3TodfrnPjIfcB+fcf/pjPX3hqi8hKBqO74OPLoC1XxTPU9yeoeUQCGhWoyGLiIiIiIiIiNRVSvCK1AOLdx3j82VmYbQXL+/u2gRtdeyZBz/eCnYb9L7BVO+eTWhr056h3YVQmAvT74Fpd8OmKWZ/V7VnEBEREREREZHGSy0aROqQ537bxk/rDtEhIoBuLYLo3jyItuH+PPTDBgCuH9iSoe2aujjKKjq4Br69ForyodM403fXYqnYub6hcPV3sPhVmPcfWP+led5iNXOJiIiIiIiIiDRSSvCK1BHfrIzj/YV7ATiakcfi3cfK7G8V5ssjYzu6IrTqO7oDvpoIBVnQegRM/BCsbpWbw2qFYX+HFv1MFXDWUWh1DviH10jIIiIiIiIiIiL1gRK8InXAmgPHefLnzQDcPqw1LcP82HQolY0H09iRmIGb1cIrV/bA17Me/pFNjYPPJ0DOcWjeB/7yFbh7VX2+1sPh9kWw+iPodoXTwhQRERERERERqY/qYbZIpGE5kp7LnV+uoaDIzuguzfjnmI5YLBYgBoDcgiLyCm31s+9u5lGT3M04DE07wrU/gJd/9ecNjITzHq/+PCIiIiIiIiIi9ZwSvCIulF9o486v1nIkI4924f68fGWP4uRuKW8PN7w9KtnOoC7ITYMvL4OUPRAUA9dPNb10RURERERERETEaayuDkCkMXv6ly2sOXCcAG93PrihL/5eDeQzl4Ic+OZqSNwIvk3ghmkQGOXqqEREREREREREGhwleEVc5JuVcXy9Ig6LBd68uhexTfxcHZJzFBXAlJvhwBLwCoTrf4KwNq6OSkRERERERESkQVKCV8QF8gttvL9gDwB/v7AD53YId3FETmKzwc/3wM7fwd0brv4WInu4OioRERERERERkQargXwfXKR+8XS38uOdg/l6RRx3jWgg1a12O8x6FDZ+CxY3uOJTaDXE1VGJiIiIiIiIiDRoSvCKuEiYvxd/Pb+dq8M4vewUOLQWju2Ao8WP5F0Q2hrOexxajyh7/MKXYMW7ZjzhXegwptZDFhERERERERFpbJTgFZFTZafA230hO7mcfcnw+XhodyFc8AyEd4KV/4N5/zH7R78APf5Su/GKiIiIiIiIiDRSSvCKyKlWfmASuT6h0OocaNoBmnaEkFjY9D2s+hB2/QG750C7UbBzpjlv+MMw8A7Xxi4iIiIiIiIi0ogowSsiZeVlwPLiVgtjX4Jul5fd36IP9J8Mc56GbdPNgmpgnhvxSK2GKiIiIiIiIiLS2CnBKyJlrf4YclMhtA10ubT8Y8LawF++gLgVsOgVaNIOLvg3WCy1GqqIiIiIiIiISGOnBK+IlCrIgaVvm/HQB8DqdubjYwbAtd/XfFwiIiIiIiIiIlIuq6sDEJE6ZN2XkHUEgqKhuxZKExERERERERGp65TgFRGjMB+WvGHGQ+4DNw/XxiMiIiIiIiIiImelBK9IY2O3m8fJNn4HafHgHwG9rqv9uEREREREREREpNKU4BVpTLKS4YPh8HI7+PNZyEg0z9uKYPFrZjzoHvDwcV2MIiIiIiIiIiJSYVpkTaSxyE2HLy+DhA3m54UvweLXoetlENYWUvaATwj0vcWlYYqIiIiIiIiISMUpwSvSGORnwzdXQcJ68A2D8x6Hjd9D3DLTmsFhwJ3g5e+yMEVEREREREREpHKU4BVp6Arz4fsb4MAS8AqE636CqJ6mUvfQWljxHmz+ySR+B0x2dbQiIiIiIiIiIlIJFru9vNWWROq29PR0goKCSEtLIzAw0NXh1F22IvjxVtgyFdx94Pqp0HLQqcflHAcs4BNc2xGKiIiIiIiIyAmU85DKUgWvSENlt8OM+01y1+oBV31ZfnIXTO9dERERERERERGpd6yuDkBEaoDdDn88Dms/B4sVLv8I2o50dVQiIiIiIiIiIuJkSvCKNEQLX4Jlb5vxuLeh83jXxiMiIiIiIiIiIjVCCV6Rhmb5uzDvP2Y8+nnoda1r4xERERERERERkRqjBK9IQ7LuS5j5TzMe8SgMvNO18YiIiIiIiIiISI1Sglekodj6M0z/qxkPugeG/8O18YiIiIiIiIiISI1TglekIdg9B364Few26HU9XPgsWCyujkpERERERERERGqYErwi9d2BZfDtdWArgC6XwiVvKLkrIiIiIiIiItJIKMErUp8dXg9fXwmFOdD2Arj0A7C6uToqERERERERERGpJUrwitQlh9bAwpehIPfsxx7dCV9eBnnp0HIIXPk5uHvWfIwiIiIiIiIiIlJnuLs6ABEpZrebPrrH90HOcRj1n9Mfe/wAfD4espMhsidc/S14+tZaqCIiIiIiIiIiUjeoglekrjiw1CR3AZb/HxxeV/5xeRnw1eWQcRiadoTrfgLvwNqLU0RERERERERE6gwleEXqinVfmq2bJ9htMP1eKCose4zdDj/fA8d2QkAUXD8V/MJqP1YREREREREREakTlOAVqQvyMmDrNDO+/GPwDobEjbD8nbLHLX/XHGf1MD13A6NqOVAREREREREREalLlOAVqQu2TIOCbAhrBx0vLu2/O+85SClu23BgGcx+woxH/Rei+7kkVBERERERERERqTuU4BWpC9Z/ZbY9rwGLBXpeC7HDoDAHZtwPGUkw5SawFULXy6H/JFdGKyIiIiIiIiIidYQSvCKulrwH4paBxQo9rjbPWSxw8evg7g1758P/zoPMRGjSAS55w+wXEREREREREZFGTwleEVdzVO+2OR8CI0ufD2sDwx824/SD4OkPf/kSvPxrP0YREREREREREamTlOAVcSVbEaz/xox7XXfq/sF/hcgegAXGvQVN29dqeCIiIiIiIiIiUre5uzoAkUZtzzzIOAw+IdBhzKn73TzgxhmQeQSatK39+EREREREREREpE5TglfEldZ/abbdrgR3r/KP8Q40DxERERERERERkZOoRYOIq2SnwPZfzbjXta6NRURERERERERE6iUleEVcZfOPUJQPEd2K++yKiIiIiIiIiIhUjhK8Iq6yrrg9g6p3RURERERERESkipTgFXEFux2GPwydLjH9d0VERERERERERKpAi6yJuILFAh3HmoeIiIiIiIiIiEgVqYJXREREREREREREpJ5SgldERERERERERESknlKCV0RERERERERERKSeUoJXREREREREREREpJ5SgldERERERERERESknlKCV0RERERERERERKSeUoJXREREREREREREpJ5SgldERERERERERESknlKCV0RERERERERERKSeUoJXREREREREREREpJ5SgldERERERERERESknlKCV0RERERERERERKSeUoJXKmXhwoVccsklREVFYbFYmDZtWpn9drudJ598ksjISHx8fBg5ciS7du0qc0xKSgrXXnstgYGBBAcHc+utt5KZmVmLr0JERERERERERKRhUIJXKiUrK4sePXrwzjvvlLv/xRdf5M033+S9995jxYoV+Pn5MWrUKHJzc0uOufbaa9myZQuzZ89mxowZLFy4kMmTJ9fWSxAREREREREREWkwLHa73e7qIKR+slgsTJ06lQkTJgCmejcqKooHH3yQv//97wCkpaURERHBp59+ylVXXcW2bdvo3Lkzq1atom/fvgDMnDmTsWPHcvDgQaKioip07fT0dIKCgkhLSyMwMLBGXp+IiIiIiIiISG1TzkMqSxW84jT79u0jMTGRkSNHljwXFBTEgAEDWLZsGQDLli0jODi4JLkLMHLkSKxWKytWrKj1mEVEREREREREROozd1cHIA1HYmIiABEREWWej4iIKNmXmJhIeHh4mf3u7u6EhoaWHFOevLw88vLySn5OT093VtgiIiIiIiIiIiL1lip4pV547rnnCAoKKnlER0e7OiQRERERERERERGXU4JXnKZZs2YAJCUllXk+KSmpZF+zZs04cuRImf2FhYWkpKSUHFOeRx55hLS0tJJHfHy8k6MXERERERERERGpf5TgFaeJjY2lWbNmzJ07t+S59PR0VqxYwaBBgwAYNGgQqamprFmzpuSYP//8E5vNxoABA047t5eXF4GBgWUeIiIiIiIiIiIijZ168EqlZGZmsnv37pKf9+3bx/r16wkNDSUmJob777+fZ599lnbt2hEbG8sTTzxBVFQUEyZMAKBTp06MHj2aSZMm8d5771FQUMA999zDVVddRVRUlItelYiIiIiIiIiISP2kBK9UyurVqzn33HNLfn7ggQcAuPHGG/n000/5xz/+QVZWFpMnTyY1NZVzzjmHmTNn4u3tXXLOV199xT333MP555+P1Wpl4sSJvPnmm5WKw263A1psTUREREREREQaFkeuw5H7EDkbi113i9RDBw8e1EJrIiIiIiIiItJgxcfH06JFC1eHIfWAErxSL9lsNg4fPkxAQAAWi8XV4ZSRnp5OdHQ08fHx6hUsNUb3mVSU7hWpabrHxNl0T0lt0H0mzqZ7SpzJbreTkZFBVFQUVquWz5KzU4sGqZesVmud/xRLi8FJbdB9JhWle0Vqmu4xcTbdU1IbdJ+Js+meEmcJCgpydQhSj+hjABEREREREREREZF6SgleERERERERERERkXpKCV4RJ/Py8uKpp57Cy8vL1aFIA6b7TCpK94rUNN1j4my6p6Q26D4TZ9M9JSKupEXWREREREREREREROopVfCKiIiIiIiIiIiI1FNK8IqIiIiIiIiIiIjUU0rwioiIiIiIiIiIiNRTSvCKiIiIiIiIiIiI1FNK8Eqj8dxzz9GvXz8CAgIIDw9nwoQJ7Nixo8wxubm53H333YSFheHv78/EiRNJSkoq2b9hwwauvvpqoqOj8fHxoVOnTrzxxhtl5li8eDFDhgwhLCwMHx8fOnbsyGuvvXbW+Ox2O08++SSRkZH4+PgwcuRIdu3aVeaY//znPwwePBhfX1+Cg4Or/suQGlHf77H9+/dz6623Ehsbi4+PD23atOGpp54iPz+/mr8ZOVl9v1cAxo0bR0xMDN7e3kRGRnL99ddz+PDhavxWxNkawn3mkJeXR8+ePbFYLKxfv77yvwxxioZwT7Vq1QqLxVLm8fzzz1fjtyLO1BDuMYBff/2VAQMG4OPjQ0hICBMmTKjaL0Sqrb7fU/Pnzz/l7yzHY9WqVdX87YhIg2IXaSRGjRpl/+STT+ybN2+2r1+/3j527Fh7TEyMPTMzs+SYO+64wx4dHW2fO3euffXq1faBAwfaBw8eXLL/o48+st977732+fPn2/fs2WP/4osv7D4+Pva33nqr5Ji1a9fav/76a/vmzZvt+/bts3/xxRd2X19f+/vvv3/G+J5//nl7UFCQfdq0afYNGzbYx40bZ4+NjbXn5OSUHPPkk0/aX331VfsDDzxgDwoKct4vR5yivt9jv//+u/2mm26yz5o1y75nzx77zz//bA8PD7c/+OCDTv5NSX2/V+x2u/3VV1+1L1u2zL5//377kiVL7IMGDbIPGjTIib8lqa6GcJ853HvvvfYxY8bYAfu6deuq/8uRKmkI91TLli3tzzzzjD0hIaHkcWL84loN4R774Ycf7CEhIfZ3333XvmPHDvuWLVvs3333nRN/S1IZ9f2eysvLK/P3VUJCgv22226zx8bG2m02m5N/WyJSnynBK43WkSNH7IB9wYIFdrvdbk9NTbV7eHjYp0yZUnLMtm3b7IB92bJlp53nrrvusp977rlnvNall15qv+66606732az2Zs1a2Z/6aWXSp5LTU21e3l52b/55ptTjv/kk0+U4K0H6vM95vDiiy/aY2Njz3htqb6GcK/8/PPPdovFYs/Pzz/j9cV16ut99ttvv9k7duxo37JlixK8dUx9vKdatmxpf+2118720qSOqG/3WEFBgb158+b2Dz/8sEKvT2pffbunTpafn29v2rSp/ZlnnjnjtUWk8VGLBmm00tLSAAgNDQVgzZo1FBQUMHLkyJJjOnbsSExMDMuWLTvjPI45yrNu3TqWLl3K8OHDT3vMvn37SExMLHPtoKAgBgwYcMZrS93WEO6xs11bnKO+3yspKSl89dVXDB48GA8Pj9POLa5VH++zpKQkJk2axBdffIGvr+/ZX6TUqvp4TwE8//zzhIWF0atXL1566SUKCwvP/ELFZerbPbZ27VoOHTqE1WqlV69eREZGMmbMGDZv3lyxFyw1rr7dUyebPn06ycnJ3HzzzaedV0QaJ3dXByDiCjabjfvvv58hQ4bQtWtXABITE/H09Dylt21ERASJiYnlzrN06VK+++47fv3111P2tWjRgqNHj1JYWMjTTz/Nbbfddtp4HPNHRERU+NpStzWEe2z37t289dZbvPzyy6edV6qvPt8rDz/8MG+//TbZ2dkMHDiQGTNmnPX1imvUx/vMbrdz0003cccdd9C3b1/2799f0ZcrtaA+3lMA9957L7179yY0NJSlS5fyyCOPkJCQwKuvvlqh1y21pz7eY3v37gXg6aef5tVXX6VVq1a88sorjBgxgp07d+pDcxerj/fUyT766CNGjRpFixYtTjuviDROquCVRunuu+9m8+bNfPvtt1WeY/PmzYwfP56nnnqKCy+88JT9ixYtYvXq1bz33nu8/vrrfPPNNwB89dVX+Pv7lzwWLVpU5Rik7qrv99ihQ4cYPXo0V1xxBZMmTarya5Czq8/3ykMPPcS6dev4448/cHNz44YbbsBut1f5dUjNqY/32VtvvUVGRgaPPPJIlWOWmlMf7ymABx54gBEjRtC9e3fuuOMOXnnlFd566y3y8vKq/DqkZtTHe8xmswHw2GOPMXHiRPr06cMnn3yCxWJhypQpVX4d4hz18Z460cGDB5k1axa33nprleMXkYZLFbzS6Nxzzz3MmDGDhQsXlvnks1mzZuTn55OamlrmE9ykpCSaNWtWZo6tW7dy/vnnM3nyZB5//PFyrxMbGwtAt27dSEpK4umnn+bqq69m3LhxDBgwoOS45s2bk5CQUHKtyMjIMtfu2bNndV+y1LL6fo8dPnyYc889l8GDB/PBBx9U6XcgFVPf75UmTZrQpEkT2rdvT6dOnYiOjmb5/7d3f6FdlX8cwD/bfrWYf1M2zZFtVkp/xyIaDrowDQatfxeRYSzDm2mBxayLIsqLXEVazIiCaAoGERLZjQpu7qJSqLHYVq5FtK3ByiK0RJ1te34X0WhlMW22jnu94FzsOc/O+TwPn6v393DOwYOxdOnSs9oPzo2s9llzc3McOHAg8vPzx9znxhtvjFWrVsX27dvPfDOYEFntqdOpqKiIoaGh6OnpiSVLlox7Dzi3stpjv41fffXVo+fz8/Nj0aJF0dfXdxY7wUTJak/9XmNjY8ydOzfuuOOOM14/MAVM9kuA4d8yMjKSHnroobRgwYLU3d39p/O/vWB/586do2NdXV1/esF+Z2dnKioqSo899ti4771x48Z02WWX/W1t8+fPTy+++OLo2NGjR31kLWPOhx7r7+9PV155ZVq5cmUaGhoa9/05M+dDr/xRb29vioi0f//+cdfCuZX1Puvt7U0dHR2jx969e1NEpJ07d6Zvvvlm3LUwcbLeU6ezY8eOlJubm3788cdx18K5k/Ue++3v339k7dSpU6moqCi9/vrr466FiZP1nvr93NLS0lRXVzfu+wNTi4CXKWPt2rVp1qxZqaWlJQ0MDIwex48fH51TW1ubFi5cmJqbm9Mnn3ySli5dmpYuXTp6vqOjIxUWFqb7779/zDUOHz48GNNldwAABu1JREFUOueVV15J77//furu7k7d3d3pjTfeSDNmzEhPPvnk39b33HPPpdmzZ6ddu3al9vb2dOedd6bS0tJ04sSJ0Tm9vb2pra0tbdy4MU2fPj21tbWltra29PPPP0/gTnG2st5j/f396YorrkjLly9P/f39Y+7PxMp6rxw8eDBt3bo1tbW1pZ6entTU1JQqKyvT5Zdfnk6ePDnBu8XZynqf/dHXX3+dIiK1tbX9s43hrGW9pz766KP00ksvpU8//TR99dVXaceOHamwsDDV1NRM8E5xtrLeYymltH79+lRcXJz27t2burq60po1a1JRUZEfESbJ+dBTKaW0b9++FBHp0KFDE7QzwPlGwMuUERGnPRobG0fnnDhxIq1bty5dfPHFqaCgIN19991jwq2nn376tNf4/S+zDQ0N6ZprrkkFBQVp5syZqby8PL366qtpeHj4b+sbGRlJTz31VJo3b17Kz89Py5cvT1988cWYOQ888MBp7++Juf+GrPdYY2PjX66BiZX1Xmlvb0/Lli1Lc+bMSfn5+amkpCTV1tam/v7+Cdsj/rms99kfCXgnX9Z7qrW1NVVUVKRZs2aliy66KF111VVp06ZNfpj6D8l6j6X06xO7dXV1qaioKM2YMSOtWLEidXZ2Tsj+cObOh55KKaX77rsvVVZW/uP9AM5fOSn5GgoAAAAAQBblTnYBAAAAAACcHQEvAAAAAEBGCXgBAAAAADJKwAsAAAAAkFECXgAAAACAjBLwAgAAAABklIAXAAAAACCjBLwAAAAAABkl4AUAYEpYvXp15OTkRE5OTlxwwQUxb968uPXWW+PNN9+MkZGRcV9n27ZtMXv27HNXKAAAnAEBLwAAU0ZVVVUMDAxET09P7N69O5YtWxbr16+P6urqGBoamuzyAADgjAl4AQCYMvLz82P+/PlRXFwcN9xwQzzxxBOxa9eu2L17d2zbti0iIrZs2RLXXXddTJs2LS699NJYt25dHDt2LCIiWlpa4sEHH4yjR4+OPg38zDPPRETE4OBgbNiwIYqLi2PatGlRUVERLS0tk7NQAACmDAEvAABT2i233BJlZWXx7rvvRkREbm5uNDQ0xGeffRbbt2+P5ubmePzxxyMiorKyMl5++eWYOXNmDAwMxMDAQGzYsCEiIh5++OE4cOBAvP3229He3h733HNPVFVVxZdffjlpawMA4PyXk1JKk10EAACca6tXr44jR47Ee++996dzK1eujPb29vj888//dG7nzp1RW1sbP/zwQ0T8+g7eRx55JI4cOTI6p6+vLxYtWhR9fX2xYMGC0fEVK1bETTfdFJs2bZrw9QAAQETE/ya7AAAAmGwppcjJyYmIiH379kV9fX10dXXFTz/9FENDQ3Hy5Mk4fvx4FBQUnPb/Ozo6Ynh4OBYvXjxmfHBwMObOnXvO6wcAYOoS8AIAMOUdOnQoSktLo6enJ6qrq2Pt2rXx7LPPxpw5c+KDDz6INWvWxKlTp/4y4D127Fjk5eVFa2tr5OXljTk3ffr0f2MJAABMUQJeAACmtObm5ujo6IhHH300WltbY2RkJDZv3hy5ub9+ruKdd94ZM//CCy+M4eHhMWPl5eUxPDwchw8fjptvvvlfqx0AAAS8AABMGYODg/Htt9/G8PBwfPfdd7Fnz56or6+P6urqqKmpic7Ozvjll19i69atcfvtt8eHH34Yr7322phrlJSUxLFjx6KpqSnKysqioKAgFi9eHKtWrYqamprYvHlzlJeXx/fffx9NTU1x/fXXx2233TZJKwYA4HyXO9kFAADAv2XPnj1xySWXRElJSVRVVcX+/fujoaEhdu3aFXl5eVFWVhZbtmyJ559/Pq699tp46623or6+fsw1Kisro7a2Nu69994oLCyMF154ISIiGhsbo6amJurq6mLJkiVx1113xccffxwLFy6cjKUCADBF5KSU0mQXAQAAAADAmfMELwAAAABARgl4AQAAAAAySsALAAAAAJBRAl4AAAAAgIwS8AIAAAAAZJSAFwAAAAAgowS8AAAAAAAZJeAFAAAAAMgoAS8AAAAAQEYJeAEAAAAAMkrACwAAAACQUQJeAAAAAICMEvACAAAAAGSUgBcAAAAAIKMEvAAAAAAAGSXgBQAAAADIKAEvAAAAAEBGCXgBAAAAADJKwAsAAAAAkFECXgAAAACAjBLwAgAAAABklIAXAAAAACCjBLwAAAAAABkl4AUAAAAAyCgBLwAAAABARgl4AQAAAAAySsALAAAAAJBRAl4AAAAAgIwS8AIAAAAAZJSAFwAAAAAgowS8AAAAAAAZJeAFAAAAAMgoAS8AAAAAQEYJeAEAAAAAMkrACwAAAACQUQJeAAAAAICM+j9TnV/VhaxogQAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<IPython.core.display.Image object>"
|
||
]
|
||
},
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"from IPython.display import Image\n",
|
||
"\n",
|
||
"Image(filename='coding/stock_price_ytd.png')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Use a Different Code Execution Environment\n",
|
||
"\n",
|
||
"The code execution happened in a separate process, so the plot is not directly displayed in the notebook. Is it possible to change the code execution environment into IPython?\n",
|
||
"\n",
|
||
"Yes! In the following we demonstrate how to extend the `UserProxyAgent` to use a different code execution environment."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from typing import Dict, Union\n",
|
||
"from IPython import get_ipython\n",
|
||
"\n",
|
||
"class IPythonUserProxyAgent(UserProxyAgent):\n",
|
||
" def __init__(self, name: str, **kwargs):\n",
|
||
" super().__init__(name, **kwargs)\n",
|
||
" self._ipython = get_ipython()\n",
|
||
"\n",
|
||
" def generate_init_message(self, *args, **kwargs) -> Union[str, Dict]:\n",
|
||
" return super().generate_init_message(*args, **kwargs) + \"\"\"\n",
|
||
"If you suggest code, the code will be executed in IPython.\"\"\"\n",
|
||
"\n",
|
||
" def _run_code(self, code, **kwargs):\n",
|
||
" result = self._ipython.run_cell(code)\n",
|
||
" log = str(result.result)\n",
|
||
" exitcode = 0 if result.success else 1\n",
|
||
" if result.error_before_exec is not None:\n",
|
||
" log += f\"\\n{result.error_before_exec}\"\n",
|
||
" exitcode = 1\n",
|
||
" if result.error_in_exec is not None:\n",
|
||
" log += f\"\\n{result.error_in_exec}\"\n",
|
||
" exitcode = 1\n",
|
||
" return exitcode, bytes(log, \"utf-8\"), None"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The implementation overrides three functions in `UserProxyAgent`:\n",
|
||
"* constructor. We get the ipython instance as the code execution environment.\n",
|
||
"* `generate_init_prompt`. \n",
|
||
"With the new `IPythonUserProxyAgent`, we are able to run the code within the current notebook environment and display plot directly."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"ipython_user (to assistant):\n",
|
||
"\n",
|
||
"Plot a chart of META and TESLA stock price change YTD\n",
|
||
"If you suggest code, the code will be executed in IPython.\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"assistant (to ipython_user):\n",
|
||
"\n",
|
||
"Sure, we can use the `yfinance` library in Python to download the stock price data and `matplotlib` to plot the data. If you don't have `yfinance` installed, you can install it using pip:\n",
|
||
"\n",
|
||
"```python\n",
|
||
"!pip install yfinance\n",
|
||
"```\n",
|
||
"\n",
|
||
"Here is the Python code to plot the YTD stock price change for META (Facebook) and TESLA.\n",
|
||
"\n",
|
||
"```python\n",
|
||
"# Python code\n",
|
||
"import yfinance as yf\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"from datetime import datetime\n",
|
||
"\n",
|
||
"# Define the ticker symbol\n",
|
||
"tickerSymbols = ['META', 'TSLA']\n",
|
||
"\n",
|
||
"# Get data on this ticker\n",
|
||
"start_date = datetime(datetime.now().year, 1, 1)\n",
|
||
"end_date = datetime.now()\n",
|
||
"\n",
|
||
"# Fetch the data\n",
|
||
"data = yf.download(tickerSymbols, start=start_date, end=end_date)\n",
|
||
"\n",
|
||
"# Plot the close prices\n",
|
||
"plt.figure(figsize=(14,7))\n",
|
||
"plt.plot(data['Close'])\n",
|
||
"plt.title('YTD Stock Price Change for META and TESLA')\n",
|
||
"plt.xlabel('Date')\n",
|
||
"plt.ylabel('Price (USD)')\n",
|
||
"plt.legend(tickerSymbols)\n",
|
||
"plt.grid(True)\n",
|
||
"plt.show()\n",
|
||
"```\n",
|
||
"\n",
|
||
"This code will plot the closing prices of META and TESLA stocks from the start of this year to the current date. The prices are in USD.\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"\n",
|
||
">>>>>>>> USING AUTO REPLY FOR THE USER...\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Defaulting to user installation because normal site-packages is not writeable\n",
|
||
"Requirement already satisfied: yfinance in /home/vscode/.local/lib/python3.9/site-packages (0.2.26)\n",
|
||
"Requirement already satisfied: appdirs>=1.4.4 in /home/vscode/.local/lib/python3.9/site-packages (from yfinance) (1.4.4)\n",
|
||
"Requirement already satisfied: beautifulsoup4>=4.11.1 in /home/vscode/.local/lib/python3.9/site-packages (from yfinance) (4.12.2)\n",
|
||
"Requirement already satisfied: numpy>=1.16.5 in /home/vscode/.local/lib/python3.9/site-packages (from yfinance) (1.25.1)\n",
|
||
"Requirement already satisfied: requests>=2.31 in /usr/local/lib/python3.9/site-packages (from yfinance) (2.31.0)\n",
|
||
"Requirement already satisfied: pytz>=2022.5 in /home/vscode/.local/lib/python3.9/site-packages (from yfinance) (2023.3)\n",
|
||
"Requirement already satisfied: frozendict>=2.3.4 in /home/vscode/.local/lib/python3.9/site-packages (from yfinance) (2.3.8)\n",
|
||
"Requirement already satisfied: html5lib>=1.1 in /home/vscode/.local/lib/python3.9/site-packages (from yfinance) (1.1)\n",
|
||
"Requirement already satisfied: multitasking>=0.0.7 in /home/vscode/.local/lib/python3.9/site-packages (from yfinance) (0.0.11)\n",
|
||
"Requirement already satisfied: pandas>=1.3.0 in /home/vscode/.local/lib/python3.9/site-packages (from yfinance) (2.0.3)\n",
|
||
"Requirement already satisfied: lxml>=4.9.1 in /home/vscode/.local/lib/python3.9/site-packages (from yfinance) (4.9.3)\n",
|
||
"Requirement already satisfied: soupsieve>1.2 in /home/vscode/.local/lib/python3.9/site-packages (from beautifulsoup4>=4.11.1->yfinance) (2.4.1)\n",
|
||
"Requirement already satisfied: six>=1.9 in /usr/local/lib/python3.9/site-packages (from html5lib>=1.1->yfinance) (1.16.0)\n",
|
||
"Requirement already satisfied: webencodings in /home/vscode/.local/lib/python3.9/site-packages (from html5lib>=1.1->yfinance) (0.5.1)\n",
|
||
"Requirement already satisfied: python-dateutil>=2.8.2 in /home/vscode/.local/lib/python3.9/site-packages (from pandas>=1.3.0->yfinance) (2.8.2)\n",
|
||
"Requirement already satisfied: tzdata>=2022.1 in /home/vscode/.local/lib/python3.9/site-packages (from pandas>=1.3.0->yfinance) (2023.3)\n",
|
||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.9/site-packages (from requests>=2.31->yfinance) (2.0.3)\n",
|
||
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/site-packages (from requests>=2.31->yfinance) (3.4)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/site-packages (from requests>=2.31->yfinance) (2023.5.7)\n",
|
||
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.9/site-packages (from requests>=2.31->yfinance) (3.2.0)\n",
|
||
"\n",
|
||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.2\u001b[0m\n",
|
||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||
"[*********************100%***********************] 2 of 2 completed\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIgAAAJwCAYAAADiPVqNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZdrH8e9Meu8hgUCA0Kv0ohQVAUUQEQtYQMS2urr2de297NpfuwgoTVHsCAIiHWnSewuEEhJI75k57x+HDMQESMIkk/L7XFeuOXPOc865JzlxNzf3cz8WwzAMRERERERERESkzrK6OgAREREREREREXEtJYhEREREREREROo4JYhEREREREREROo4JYhEREREREREROo4JYhEREREREREROo4JYhEREREREREROo4JYhEREREREREROo4JYhEREREREREROo4JYhEREREREREROo4JYhERERqsP79+9OuXTuX3b9x48aMHTvWZfc/lz/++AOLxcI333zj6lAqVWZmJuPHjycqKgqLxcK//vUvV4ckf2OxWHj22WddHYaIiMgZKUEkIiLVzuWXX05ISAiJiYkljqWlpREdHU29evWwWCzn/Jo0aRJAsX3u7u6EhobSpUsX7r//frZu3Vrm2PLz83nnnXfo1KkTgYGBBAcH07ZtW+644w62b9/uGLd8+XKeffZZUlNTz/fbUWnGjh1b7PsSGBhIx44deeONN8jLy3N1eOf0xx9/MGLECKKiovD09CQyMpKhQ4cya9YsV4dW5V5++WUmTZrE3XffzZdffsnNN99cqfdr3LgxFouFAQMGlHr8008/dTxXa9ascex/9tlnz/r7evToUfr371+m3+3Tky3btm3DYrHg7e1drX/nzqa8n7voZ1Da1+DBg4tde+nSpVx++eU0aNAAb29vGjVqxNChQ5k2bVqxcRaLhXvvvbfMMX/wwQdYLBZ69Ohx3p9fRERcz93VAYiIiPzdBx98QLt27XjggQdK/AHzn//8h+TkZJ588kni4uIc+2fPns306dN56623CA8Pd+zv3bu3Y/uyyy7jlltuwTAM0tLS2LBhA5MnT+aDDz7gtdde48EHHzxnbNdccw2//voro0aN4vbbb6egoIDt27fz888/07t3b1q1agWYCaLnnnuOsWPHEhwcfJ7fkcrj5eXFZ599BkBqairffvstDz/8MKtXr2bGjBnnPH/Hjh1YrVX/703PPPMMzz//PM2bN+fOO+8kNjaW48ePM3v2bK655hqmTp3K6NGjqzwuV/n999/p2bMnzzzzTJXd09vbm4ULF3L06FGioqKKHZs6dSre3t7k5uaWeu6HH36Iv79/if3BwcE88cQTjB8/3rFv9erVvPvuu/znP/+hdevWjv0dOnRwbE+ZMoWoqChSUlL45ptvip1fU1Tkc19wwQU89NBDJa5Vv359x/bMmTO5/vrrueCCC7j//vsJCQlh3759LF68mE8//fS8fk+mTp1K48aNWbVqFbt376ZZs2YVvpaIiFQDhoiISDX02muvGYAxd+5cx75Vq1YZVqvVePTRR0uM/+9//2sAxr59+0q9HmDcc889JfYnJycbvXr1MgDjl19+OWtMq1atMgDjpZdeKnGssLDQSE5OLnM8ztKvXz+jbdu2FTp3zJgxhp+fX7F9NpvN6Nq1qwEYhw4dKvU8u91uZGdnV+iezjBz5kwDMEaOHGnk5+eXOD5nzhzjp59+MgzDMBYuXGgAxsyZM6s6zCrVpEkTY8iQIU67XkFBgZGXl3fG47Gxscall15qBAYGGm+//XaxYwcPHjSsVqtxzTXXGICxevVqx7FnnnnGAIykpKQyx1L08164cGGpx+12u9G4cWPjwQcfNK6++mqjf//+Zb52VQKMZ555pszjz/W5Y2Njy/Qzb9OmjdG2bdtSf56JiYklYiztv5Ol2bt3rwEYs2bNMiIiIoxnn322TOeJiEj1pSlmIiJSLT344IN06NCBf/zjH+Tm5mKz2bjrrruIjY11apVEWFgYM2bMwN3dnZdeeumsY/fs2QPAhRdeWOKYm5sbYWFhgDmN5pFHHgGgSZMmjmkf+/fvB6CwsJAXXniBuLg4vLy8aNy4Mf/5z39Kndb166+/0q9fPwICAggMDKRbt24lqqr+7rfffsPX15dRo0ZRWFh4zu/B6axWK/379wdwxNu4cWOuvPJK5s6dS9euXfHx8eHjjz92HPt7D6LU1FQeeOABGjdujJeXFzExMdxyyy0kJyc7xuTl5fHMM8/QrFkzvLy8aNiwIY8++miZprY99dRThIaG8vnnn+Ph4VHi+KBBg7jyyiuL7bPb7bz00kvExMTg7e3NpZdeyu7du4uNWbJkCddeey2NGjVyxPTAAw+Qk5NTbNzYsWPx9/fn0KFDDB8+HH9/fyIiInj44Yex2WzFxh4/fpybb77ZMR1xzJgxbNiwodj0xyLbt29n5MiRhIaG4u3tTdeuXfnxxx/P+r0o6rG0b98+fvnllxLP2rFjx7jtttuoV68e3t7edOzYkcmTJxe7xv79+7FYLPzvf//j7bffdjyX55p66e3tzYgRI0o8j9OnTyckJIRBgwad9XxnWbZsGfv37+eGG27ghhtuYPHixSQkJJTp3I0bNzJ27FiaNm2Kt7c3UVFRjBs3juPHjxcbVzQ1bvfu3Y6qwKCgIG699Vays7OLjc3Ly+OBBx4gIiKCgIAAhg0bVuZ4KsOePXvo1q0bnp6eJY5FRkZW+LpTp04lJCSEIUOGMHLkSKZOnXo+YYqISDWgKWYiIlItubu788knn9C7d29eeOEFIiMjWbduHXPmzMHX19ep92rUqBH9+vVj4cKFpKenExgYWOq42NhYwPzD6MILL8TdvfT/GR0xYgQ7d+4sMeUtIiICgPHjxzN58mRGjhzJQw89xJ9//skrr7zCtm3b+O677xzXmTRpEuPGjaNt27Y8/vjjBAcH89dffzFnzpwzTgv5+eefGTlyJNdffz2ff/45bm5u5f5+FCXCihJeYE4lGzVqFHfeeSe33347LVu2LPXczMxM+vTpw7Zt2xg3bhydO3cmOTmZH3/8kYSEBMLDw7Hb7QwbNoylS5dyxx130Lp1azZt2sRbb73Fzp07+f77788Y265du9i+fTvjxo0jICCgzJ/p1VdfxWq18vDDD5OWlsbrr7/OjTfeyJ9//ukYM3PmTLKzs7n77rsJCwtj1apVvPfeeyQkJDBz5sxi17PZbAwaNIgePXrwv//9j/nz5/PGG28QFxfH3XffDZhJqaFDh7Jq1SruvvtuWrVqxQ8//MCYMWNKxLdlyxYuvPBCGjRowL///W/8/Pz4+uuvGT58ON9++y1XX311qZ+rdevWfPnllzzwwAPExMQ4phtFRESQk5ND//792b17N/feey9NmjRh5syZjB07ltTUVO6///5i15o4cSK5ubnccccdeHl5ERoaes7v6+jRoxk4cCB79uxxTPmcNm0aI0eOLDV5V+TEiRMl9rm7u1doOubUqVOJi4ujW7dutGvXDl9fX6ZPn+5I0p7NvHnz2Lt3L7feeitRUVFs2bKFTz75hC1btrBy5UosFkux8ddddx1NmjThlVdeYd26dXz22WdERkby2muvOcaMHz+eKVOmMHr0aHr37s3vv//OkCFDyv25yqKgoKBY4rWIn58fPj4+gPnfrQULFpCQkEBMTIzT7j116lRGjBiBp6cno0aN4sMPP2T16tV069bNafcQEZEq5uoSJhERkbO59957DQ8PD8Pf398YNWrUGcdVdIpZkfvvv98AjA0bNpxxjN1uN/r162cARr169YxRo0YZ77//vhEfH1/meNavX28Axvjx44vtf/jhhw3A+P333w3DMIzU1FQjICDA6NGjh5GTk1MijiKnTzH79ttvDQ8PD+P22283bDbbGT9HkaIpZklJSUZSUpKxe/du4+WXXzYsFovRoUMHx7jY2FgDMObMmVPiGrGxscaYMWMc759++mnHtJO/K4r7yy+/NKxWq7FkyZJixz/66CMDMJYtW3bGmH/44QcDMN56661zfj7DODXFrHXr1sWm2LzzzjsGYGzatMmxr7Rpc6+88ophsViK/YzHjBljAMbzzz9fbGynTp2MLl26ON5/++23BlBsCpbNZjMuueQSAzAmTpzo2H/ppZca7du3N3Jzcx377Ha70bt3b6N58+bn/JylTTd6++23DcCYMmWKY19+fr7Rq1cvw9/f30hPTzcMwzD27dtnAEZgYKBx7Nixc97r9PsVFhYaUVFRxgsvvGAYhmFs3brVAIxFixYZEydOPOMUs9K+WrZsWeq9zjbVKj8/3wgLCzOeeOIJx77Ro0cbHTt2LNPnKO1nPn36dAMwFi9eXCLucePGFRt79dVXG2FhYY73Rb/f//jHP4qNGz16dKVMMTvT9/KVV15xjJswYYIBGJ6ensbFF19sPPXUU8aSJUtK/W/Euf47WWTNmjUGYMybN88wDPNZjYmJMe6///4yfz4REal+NMVMRESqtZdeeomwsDCsVitvvfVWpd2nqGFuRkbGGcdYLBbmzp3Liy++SEhICNOnT+eee+4hNjaW66+/vkyrJ82ePRugREPsosqPX375BTArGzIyMvj3v/+Nt7d3iTj+bvr06Vx//fXceeedfPzxx2VuHJ2VlUVERAQRERE0a9aM//znP/Tq1atYJROYU+XKMmXo22+/pWPHjqVWvBTFPXPmTFq3bk2rVq1ITk52fF1yySUALFy48IzXT09PByhX9RDArbfeWmyKTZ8+fQDYu3evY19RxQWY35fk5GR69+6NYRj89ddfJa551113FXvfp0+fYtebM2cOHh4e3H777Y59VquVe+65p9h5J06c4Pfff+e6664jIyPD8f04fvw4gwYNYteuXRw6dKhcnxfMZy0qKopRo0Y59nl4eHDfffeRmZnJokWLio2/5pprHFVuZeXm5sZ1113H9OnTAbOqpGHDho7v75l8++23zJs3r9jXxIkTy3VvMKdgHj9+vNhnHDVqFBs2bGDLli3nPP/0n3lubi7Jycn07NkTgHXr1pUYX9rP/Pjx447nsuj3+7777is27l//+lfZPlA59ejRo8T3cd68ecW+H+PGjWPOnDn079+fpUuX8sILL9CnTx+aN2/O8uXLK3TfqVOnUq9ePS6++GLA/N2+/vrrmTFjRolpliIiUnNoipmIiFRrgYGBtGzZkuTkZOrVq1dp98nMzATOnXjw8vLiiSee4IknnuDIkSMsWrSId955h6+//hoPDw+mTJly1vPj4+OxWq0lVvuJiooiODiY+Ph44NQ0r3bt2p0z9n379nHTTTdx7bXX8t57751z/Om8vb356aefHJ+tSZMmpU5DadKkSZmut2fPHq655pqzjtm1axfbtm07YzLi2LFjZzy3aPrf2RJ5pWnUqFGx9yEhIQCkpKQ49h04cICnn36aH3/8sdh+gLS0tGLvvb29S8QfEhJS7Lz4+Hiio6NLTIn8+89+9+7dGIbBU089xVNPPVVq/MeOHaNBgwZn+4glxMfH07x58xLJwqIVsYqetSJl/Rn/3ejRo3n33XfZsGED06ZN44Ybbig1iXm6vn37FlttsKKmTJlCkyZN8PLycvSUiouLw9fXl6lTp/Lyyy+f9fwTJ07w3HPPMWPGjBLP3d9/5nD25ygwMNDx+336CovAGadknq/w8HAGDBhwznGDBg1i0KBBZGdns3btWr766is++ugjrrzySrZv316uXkQ2m40ZM2Zw8cUXs2/fPsf+Hj168MYbb7BgwQIGDhxYoc8jIiKupQSRiIgIsHnzZtzc3Mr1R3J0dDQ33HAD11xzDW3btuXrr79m0qRJZ+xNdLpz/QFdHtHR0URHRzN79mzWrFlD165dy3yum5tbmf7APL3S4nzZ7Xbat2/Pm2++Werxhg0bnvHcVq1aAbBp06Zy3fNMvZgMwwDMP3ovu+wyTpw4wWOPPUarVq3w8/Pj0KFDjB07FrvdXqbrVUTRtR9++OEzVmlVxfLhFf0Z9+jRg7i4OP71r3+xb9++81o2vTzS09P56aefyM3NpXnz5iWOT5s2jZdeeumsv2vXXXcdy5cv55FHHuGCCy7A398fu93O4MGDS/zM4dzPUXXn6+tLnz596NOnD+Hh4Tz33HP8+uuvpfbFOpPff/+dI0eOMGPGDGbMmFHi+NSpU5UgEhGpoZQgEhGROu/AgQMsWrSIXr16lXvqEpjTdjp06MCuXbtITk4mKirqjH+UxsbGYrfb2bVrl6OSAyAxMZHU1FRHI+yiCoTNmzefMzng7e3Nzz//zCWXXMLgwYNZtGgRbdu2LffncIa4uDg2b958zjEbNmzg0ksvLXeirEWLFrRs2ZIffviBd955xzE18Hxt2rSJnTt3MnnyZG655RbH/nnz5lX4mrGxsSxcuJDs7OxiVUR/Xz2tadOmgPkclSVZV577b9y4EbvdXqyKaPv27Y7jzjJq1ChefPFFWrduzQUXXOC0657NrFmzyM3N5cMPPyxRjbRjxw6efPJJli1bxkUXXVTq+SkpKSxYsIDnnnuOp59+2rF/165dFY6p6Pd7z549xaqGduzYUeFrVpaiRPKRI0fKdd7UqVOJjIzk/fffL3Fs1qxZfPfdd3z00UdOTSqLiEjVUA8iERGp006cOMGoUaOw2Ww88cQTZx27a9cuDhw4UGJ/amoqK1asICQkxDHtyM/Pz3HsdFdccQUAb7/9drH9RdU0RasdDRw4kICAAF555RVyc3OLjS2tWiEoKIi5c+cSGRnJZZdd5piiVtWuueYaNmzYUKKHEZyK+7rrruPQoUN8+umnJcbk5OSQlZV11ns899xzHD9+nPHjx1NYWFji+G+//cbPP/9crriLKkNO/94ahsE777xTruucbtCgQRQUFBT7nHa7vcQf1pGRkfTv35+PP/641D/Wk5KSKnT/K664gqNHj/LVV1859hUWFvLee+/h7+9Pv379KnTd0owfP55nnnmGN954w2nXPJcpU6bQtGlT7rrrLkaOHFns6+GHH8bf3/+sS6+X9jOHkr+b5XH55ZcD8O677zrtmudrwYIFpe4v6pdUnulvOTk5zJo1iyuvvLLE93zkyJHce++9ZGRk8OOPPzoldhERqVqqIBIRkTpj586dTJkyBcMwSE9PZ8OGDcycOZPMzEzefPNNBg8efNbzN2zYwOjRo7n88svp06cPoaGhHDp0iMmTJ3P48GHefvttxx+dXbp0AeCJJ57ghhtuwMPDg6FDh9KxY0fGjBnDJ598QmpqKv369WPVqlVMnjyZ4cOHO5q+BgYG8tZbbzF+/Hi6devG6NGjCQkJYcOGDWRnZzN58uQS8YWHhzNv3jwuuugiBgwYwNKlS8vdt+Z8PfLII3zzzTdce+21jBs3ji5dunDixAl+/PFHPvroIzp27MjNN9/M119/zV133cXChQu58MILsdlsbN++na+//pq5c+eedZrc9ddfz6ZNm3jppZf466+/GDVqFLGxsRw/fpw5c+awYMECpk2bVq64W7VqRVxcHA8//DCHDh0iMDCQb7/9tkQvovIYPnw43bt356GHHmL37t20atWKH3/80bHE++nVU++//z4XXXQR7du35/bbb6dp06YkJiayYsUKEhIS2LBhQ7nvf8cdd/Dxxx8zduxY1q5dS+PGjfnmm29YtmwZb7/9doWq5c4kNjaWZ599tszjv/nmm1Krvy677LIy9Ro7fPgwCxcuLNEMuoiXlxeDBg1i5syZvPvuu3h4eJQYExgYSN++fXn99dcpKCigQYMG/Pbbb8X66pTXBRdcwKhRo/jggw9IS0ujd+/eLFiwoETVmLMcOnSo1L5n/v7+DB8+HICrrrqKJk2aMHToUOLi4sjKymL+/Pn89NNPdOvWjaFDhxY7d82aNbz44oslrtm/f38OHTpERkYGw4YNKzWenj17EhERwdSpU7n++uvP/wOKiEjVctXyaSIiImV1+lLuZ1KWZe6LvqxWqxEcHGx06tTJuP/++40tW7aUKY7ExETj1VdfNfr162dER0cb7u7uRkhIiHHJJZcY33zzTYnxL7zwgtGgQQPDarUWi62goMB47rnnjCZNmhgeHh5Gw4YNjccff7zYEudFfvzxR6N3796Gj4+PERgYaHTv3t2YPn36Wb83u3fvNqKjo43WrVsbSUlJZ/w8Rcvcn0tpS6iffuz0Ze4NwzCOHz9u3HvvvUaDBg0MT09PIyYmxhgzZoyRnJzsGJOfn2+89tprRtu2bQ0vLy8jJCTE6NKli/Hcc88ZaWlp54zJMAxjwYIFxlVXXWVERkYa7u7uRkREhDF06FDjhx9+cIwpWuZ+5syZxc4tWtr99KXmt27dagwYMMDw9/c3wsPDjdtvv93YsGFDiXFn+r4VLYV+uqSkJGP06NFGQECAERQUZIwdO9ZYtmyZARgzZswoNnbPnj3GLbfcYkRFRRkeHh5GgwYNjCuvvLLUZ+vvzvQzSkxMNG699VYjPDzc8PT0NNq3b1/ss5z+vfjvf/97zvuc636nK+8y95xhSffSlnt/4403DMBYsGDBGe8/adIkAyj2PPxdQkKCcfXVVxvBwcFGUFCQce211xqHDx8usSR9Udx//30q+oyn/3cnJyfHuO+++4ywsDDDz8/PGDp0qHHw4MEqXeY+NjbWMW769OnGDTfcYMTFxRk+Pj6Gt7e30aZNG+OJJ54w0tPTi13zbD+bF154wRg6dKjh7e1tZGVlnTHusWPHGh4eHsV+30VEpGawGEYN6aonIiIiUgt8//33XH311SxdupQLL7zQ1eGIiIiIAKAEkYiIiEglycnJKdas12azMXDgQNasWcPRo0fVyFdERESqDfUgEhEREakk//znP8nJyaFXr17k5eUxa9Ysli9fzssvv6zkkIiIiFQrqiASERERqSTTpk3jjTfeYPfu3eTm5tKsWTPuvvtu7r33XleHJiIiIlKMEkQiIiIiIiIiInWc1dUBiIiIiIiIiIiIaylBJCIiIiIiIiJSx6lJNWC32zl8+DABAQFYLBZXhyMiIiIiIiIi4hSGYZCRkUH9+vWxWs9cJ6QEEXD48GEaNmzo6jBERERERERERCrFwYMHiYmJOeNxJYiAgIAAwPxmBQYGujia4goKCvjtt98YOHAgHh4erg5Haik9Z1IWek6kKug5E2fTMyVVQc+ZOJOeJ3G29PR0GjZs6Mh9nIkSROCYVhYYGFgtE0S+vr4EBgbqPw5SafScSVnoOZGqoOdMnE3PlFQFPWfiTHqepLKcq6WOmlSLiIiIiIiIiNRxShCJiIiIiIiIiNRxShCJiIiIiIiIiNRx6kFURjabjYKCgiq/b0FBAe7u7uTm5mKz2ar8/pXFzc0Nd3f3c86BFBEREREREZHKpwRRGWRmZpKQkIBhGFV+b8MwiIqK4uDBg7UumeLr60t0dDSenp6uDkVERERERESkTlOC6BxsNhsJCQn4+voSERFR5Ukau91OZmYm/v7+WK21Y0agYRjk5+eTlJTEvn37aN68ea35bCIiIiIiIiI1kRJE51BQUIBhGERERODj41Pl97fb7eTn5+Pt7V2rkig+Pj54eHgQHx/v+HwiIiIiIiIi4hq1J+NQyWrb9K7qoDYlvERERERERERqMv2FLiIiIiIiIiJSxylBJCIiIiIiIiJSxylBJCIiIiIiIiJSxylBVEuNHTsWi8XCXXfdVeLYPffcg8ViYezYscXG/v1r8ODB/PHHH6UeO/3rjz/+ACAhIQFPT0/atWtXhZ9URERERERERM6XVjGrxRo2bMiMGTN46623HCuw5ebmMm3aNBo1alRs7ODBg5k4cWKxfV5eXvj5+XHkyBHHvvvvv5/09PRiY0NDQwGYNGkS1113HYsXL+bPP/+kR48elfXRRERERERERMSJlCAqJ8MwyCmwVdn97HY7Ofk23PML8fPyKNdqap07d2bPnj3MmjWLG2+8EYBZs2bRqFEjmjRpUmysl5cXUVFRpV7n9P0+Pj7k5eWVGGsYBhMnTuSDDz4gJiaGCRMmKEEkIiIiIiIiUkMoQVROOQU22jw91yX33vr8IHw9y/cjGzduHBMnTnQkiD7//HNuvfVWx7QwZ1m4cCHZ2dkMGDCABg0a0Lt3b9566y38/Pyceh8RERERERERcT71IKrlbrrpJpYuXUp8fDzx8fEsW7aMm266qcS4n3/+GX9//2JfL7/8cpnvM2HCBG644Qbc3Nxo164dTZs2ZebMmc78KCIiIiIiIiJSSVRBVE4+Hm5sfX5Qld3PbreTkZ5BQGAAPh5u5T4/IiKCIUOGMGnSJAzDYMiQIYSHh5cYd/HFF/Phhx8W21fUW+hcUlNTmTVrFkuXLnXsu+mmm5gwYYKjEbaIiIiIiIiIVF9KEJWTxWIp9zSv82G32yn0dMPX071c/YdON27cOO69914A3n///VLH+Pn50axZswpdf9q0aeTm5hbrOWQYBna7nZ07d9KiRYsKXVdEREREREREqoammNUBgwcPJj8/n4KCAgYNcn7104QJE3jooYdYv36942vDhg306dOHzz//3On3ExERERERERHnUgVRHeDm5sa2bdsc26XJy8vj6NGjxfa5u7uXOh3tdOvXr2fdunVMnTqVVq1aFTs2atQonn/+eV588UXc3fWoiYiIiIiIiFRXqiCqIwIDAwkMDDzj8Tlz5hAdHV3s66KLLjrndSdMmECbNm1KJIcArr76ao4dO8bs2bPPK3YRERERERERZ1m+J5mbJ/zJgePZrg6lWlFZRy01adKksx7//vvvi4091/gzXfe9994749ioqChsNluZrisiIiIiIiJS2XILbDz89QYOp+Xy9ZqDPDyopatDqjZUQSQiIiIiIiIidcKUlfEcTssFYE9SpoujqV6UIBIRERERERGRWi8jt4D3F+52vFeCqDgliERERERERESk1vt0yT5SsgsI9/cCYH9yNoU2u4ujqj6UIBIRERERERGRWi05M48JS/YC8OywNnh7WMm32UlIyXFxZNWHEkQiIiIiIiIiUuXScgp46vvNrNx7vNLv9f7C3WTl22jfIIgh7aNpEu4PaJrZ6ZQgEhEREREREZEq99a8nXy5Mp4Hv1pPQSVO9Tp4IpupKw8A8NjgVlgsFuIi/ADYm5RVafetaZQgEhEREREREZEqdSg1h2l/mkmbw2m5/LThcKXd6+35u8i32bmwWRgXNQ8HIC5CFUR/pwSRiIiIiIiIiFSp//vdTNp4uZtpiY8X7cUwDKffZ+vhdGb9lQDAo4NaOfbHRSpB9HdKEImIiIiIiIhIldmfnMXXa8ykzUc3dcHP040diRn8sSPJafcwDINv1iZw/ccrMAy4vF0UHRsGO44XTTHboylmDkoQiYiIiIiIiEiVeWfBLmx2g4tbRnBxq0hGdW8EwIeL9jjl+scycrn9i7U8PHMDGXmFdGoUzLPD2hYb0/Rkk+oTWfmcyMp3yn1rOiWIaiGLxXLWr2effRaA7777jp49exIUFERAQABt27blX//6l+M6kyZNIjg4uEz3bNWqFV5eXhw9etT5H0hERERERERqhV2JGXy//hAADw1sCcBtfZrg4WZh1b4TrDuQUuFrG4bBLxuPMOitxczfloiHm4VHB7dk5p29qBfoXWysj6cbDYJ9ANiraWYAuLs6AHG+I0eOOLa/+uornn76aXbs2OHY5+/vz4IFC7j++ut56aWXGDZsGBaLha1btzJv3rxy32/p0qXk5OQwcuRIJk+ezGOPPeaUzyEiIiIiIiK1y1vzdzqmfLVrEARAdJAPV13QgG/WJvDxoj18fHPXMl8vLaeA5buTWbwricU7kzmUmgNAm+hA3ry+I62iAs94blykP4dSc9iTlEnXxqHn98FqASWIysswoCC76u5nt5v3y3cDL3+wWM55SlRUlGM7KCgIi8VSbB/ATz/9xIUXXsgjjzzi2NeiRQuGDx9e7hAnTJjA6NGj6devH/fff78SRCIiIiIiIlLC5kNpzN50FIsFHrisRbFjd/ZtyjdrE/htayJ7kjIdq4z9nc1usDEhlcU7zaTQ+oOp2Oynmlt7ulu5q29T7r2kOZ7uZ5801TTcj8U7k9SH6CQliMqrIBterl9lt7MCwUVv/nMYPP2cct2oqCimTZvG5s2badeuXYWvk5GRwcyZM/nzzz9p1aoVaWlpLFmyhD59+jglThEREREREakd3py3E4CrOtanRb2AYsea1wtgQOtI5m87xqeL9/LqNR0cx46k5bBkZzKLdiWxbHcyqdkFxc6Ni/Cjb4sI+raIoGeTMHw83coUj2Mls2OaYgZKENVZ//znP1myZAnt27cnNjaWnj17MnDgQG688Ua8vLzKfJ0ZM2bQvHlz2rY1G37dcMMNTJgwQQkiERERERERcdh8KI3ftx/DzWrhXwNalDrmzn5xzN92jFnrDtG3RQRr41NYvDOJXX9L4AR4u3NRs3D6toigT/NwYkJ8KxTTqZXMlCACJYjKz8PXrOSpIna7nfSMDAIDArB6VOyhL42fnx+//PILe/bsYeHChaxcuZKHHnqId955hxUrVuDrW7Z7ff7559x0002O9zfddBP9+vXjvffeIyAg4CxnioiIiIiISF2xcu9xAC5uGUnj8NJnxnRrHEqX2BDWxqfwj6nrHPstFugYE0zfFhH0axFOx5hg3N3Of82tZiensR04kU1eoQ0v97JVHtVWShCVl8XitGleZWK3g4fNvGcZ+g+VV1xcHHFxcYwfP54nnniCFi1a8NVXX3Hrrbee89ytW7eycuVKVq1aVazvkM1mY8aMGdx+++1Oj1dERERERERqnq2H0wHoEBN01nEPDWzBLRNWEebvSd/m5rSxi5qFE+Ln6fSYIgK8CPByJyOvkPjj2SWmvdU1ShCJQ+PGjfH19SUrq2wNuiZMmEDfvn15//33i+2fOHEiEyZMUIJIREREREREANhyMkHUtv6ZVxUD6B0XztbnB+PhZsFSCUUSp7NYLDSN9GfDwVT2JmUqQeTqAMQ1nn32WbKzs7niiiuIjY0lNTWVd999l4KCAi677DLHOJvNxvr164ud6+XlRbNmzfjyyy95/vnnSzS5Hj9+PG+++SZbtmxx9CYSERERERGRuim3wMbuk31+2tY/ewURcM7Vx5wpLsKPDQdTtZIZShDVWf369eP999/nlltuITExkZCQEDp16sRvv/1Gy5YtHeMyMzPp1KlTsXPj4uJ47bXXOH78OFdffXWJa7du3ZrWrVszYcIE3nzzzUr/LCIiIiIiIlJ97UzMwGY3CPXzpF5g2RdFqgpxEVrJrIgSRLXc2LFjGTt2bIn9F198MRdffHGFzi1is9nOeGzr1q1lDVFERERERERqsdOnl1X2tLHyciSItJIZVVe3JSIiIiIiIiJ1zpbDaQC0OUf/IVc4tdR9FoZhuDga11KCSEREREREREQqTVEFUZvo6pcgahTmi5vVQmZeIccy8lwdjkspQSQiIiIiIiIilcJmN9h+JAMoW4Pqqubl7kajUF9AfYiUIBIRERERERGRSrEvOYucAhs+Hm40CfdzdTilOjXNTAkiKYO6PhexMuh7KiIiIiIiUrsV9R9qHR2Am7V6NagucqpRdd1e6l4JonNwc3MDID8/38WR1D7Z2dkAeHh4uDgSERERERERqQxbi/oPVcMG1UW0kplJy9yfg7u7O76+viQlJeHh4YHVWrU5NbvdTn5+Prm5uVV+78piGAbZ2dkcO3aM4OBgRxJOREREREREapetR4qWuK9+/YeKxEWenGJWx3sQKUF0DhaLhejoaPbt20d8fHyV398wDHJycvDx8cFiqZ7leBUVHBxMVFSUq8MQERERERGRSmAYhmMFs7bVuIKoabhZQXQ4LZfs/EJ8PetmqqRufupy8vT0pHnz5i6ZZlZQUMDixYvp27dvrZqK5eHhocohERERERGRWuxoei4nsvJxs1poUS/A1eGcUYifJ2F+nhzPymdvUhbtGlTfaqfKpARRGVmtVry9vav8vm5ubhQWFuLt7V2rEkQiIiIiIiJSuxX1H2oW4Y+3R/UuEGga4cfxrHz2JGXW2QRR7WhqIyIiIiIiIiLVSk2YXlakTbQZ47r4FBdH4jpKEImIiIiIiIiI0xUtcV+dVzAr0rNpGAAr9h53cSSu49IE0YcffkiHDh0IDAwkMDCQXr168euvvzqO5+bmcs899xAWFoa/vz/XXHMNiYmJxa5x4MABhgwZgq+vL5GRkTzyyCMUFhZW9UcRERERERERkdNsqQFL3BfpcTJBtDMxk6SMPBdH4xouTRDFxMTw6quvsnbtWtasWcMll1zCVVddxZYtWwB44IEH+Omnn5g5cyaLFi3i8OHDjBgxwnG+zWZjyJAh5Ofns3z5ciZPnsykSZN4+umnXfWRREREREREROq8tJwCElJyAGgbXf17+oT6edIqymykvbKOVhG5NEE0dOhQrrjiCpo3b06LFi146aWX8Pf3Z+XKlaSlpTFhwgTefPNNLrnkErp06cLEiRNZvnw5K1euBOC3335j69atTJkyhQsuuIDLL7+cF154gffff98lK46JiIiIiIiIyKkG1TEhPgT51owFl3rHhQN1d5pZtVnFzGazMXPmTLKysujVqxdr166loKCAAQMGOMa0atWKRo0asWLFCnr27MmKFSto37499erVc4wZNGgQd999N1u2bKFTp06l3isvL4+8vFMlY+np5oNbUFBAQUFBJX3CiimKp7rFJbWLnjMpCz0nUhX0nImz6ZmSqqDnTJyptjxPmxLMZs+towJqzGfpHhvE58tgxe7kGhNzWZT1s7g8QbRp0yZ69epFbm4u/v7+fPfdd7Rp04b169fj6elJcHBwsfH16tXj6NGjABw9erRYcqjoeNGxM3nllVd47rnnSuz/7bff8PX1Pc9PVDnmzZvn6hCkDtBzJmWh50Sqgp4zcTY9U1IV9JyJM9X052nebitgxT3jCLNnH3Z1OGWSXQgW3Nh3PJtp380m2MvVETlHdnZ2mca5PEHUsmVL1q9fT1paGt988w1jxoxh0aJFlXrPxx9/nAcffNDxPj09nYYNGzJw4EACA6tX86yCggLmzZvHZZddhodHzSjLk5pHz5mUhZ4TqQp6zsTZ9ExJVdBzJs5UW56nD/5vOZDJVf26cGmrSFeHU2ZTD61k8+F0/JpcwBUX1Hd1OE5RNGvqXFyeIPL09KRZs2YAdOnShdWrV/POO+9w/fXXk5+fT2pqarEqosTERKKiogCIiopi1apVxa5XtMpZ0ZjSeHl54eVVMhXo4eFRbX8Bq3NsUnvoOZOy0HMiVUHPmTibnimpCnrOxJlq8vOUW2Bjd1IWAB0ahtaoz9G7WTibD6ezKj6Vkd1iXR2OU5T1++/SJtWlsdvt5OXl0aVLFzw8PFiwYIHj2I4dOzhw4AC9evUCoFevXmzatIljx445xsybN4/AwEDatGlT5bGLiIiIiIiI1HVbDqdjsxuE+HoQHeTt6nDKpVecudx9XWxU7dIKoscff5zLL7+cRo0akZGRwbRp0/jjjz+YO3cuQUFB3HbbbTz44IOEhoYSGBjIP//5T3r16kXPnj0BGDhwIG3atOHmm2/m9ddf5+jRozz55JPcc889pVYIiYiIiIiIiEjlmrhsHwAXNgvHYrG4OJry6dY4FDerhYMnckhIySYmpHr2Ka4MLk0QHTt2jFtuuYUjR44QFBREhw4dmDt3LpdddhkAb731FlarlWuuuYa8vDwGDRrEBx984Djfzc2Nn3/+mbvvvptevXrh5+fHmDFjeP755131kURERERERETqrJ2JGfyy6QgA91zczMXRlJ+/lzsdYoL460AqK/Yc59quShBViQkTJpz1uLe3N++//z7vv//+GcfExsYye/ZsZ4cmIiIiIiIiIuX0zoJdGAZc3i6K1tHVaxGosurVNOy0BFFDV4dTZapdDyIRERERERERqXl2HM1g9snqofsHNHdxNBV3eh8iwzBcHE3VUYJIRERERERERM7buyerh65oH0WrqJpZPQTQNTYUDzcLR9JyiT+e7epwqowSRCIiIiIiIiJyXrYfTXf0Hrr/0hYujub8+Hi60alhCFC3VjNTgkhEREREREREzsu7C3YBMKR9NC2jAlwczfnrWTTNbI8SRCIiIiIiIiIi57TtSDqzNx3FYoH7Lq25vYdO16upmSBavqfu9CFSgkhERERERESkFjIMg+d+2sIjMzeQV2irtPsUVQ9dUUuqhwA6NQrG091KcmYee5IyXR1OlVCCSERERERERKQWWrQziYnL9jNzbQIPfb0Bu925lTBJGXk8PmsTv242q4furyXVQwDeHm50jT3Zh6iOTDNzd3UAIiIiIiIiIuJchmHw1vxdjvc/bzxCdJA3Twxpc97Xzi2w8fmyfXywcA+ZeYUA3NG3KS3qVcPqocI82LcEGl8EHt7lOnVklxg6Nwqha+PQSgquelGCSERERERERKSW+WNHEhsOpuLtYeXhgS158ZdtfLpkH9FBPoy7qEmFrmkYBr9sOsKrv24nISUHgA4xQTx1ZRu6VcckimHAVzfDrrkQeyGM/hq8/Mt8+ojOMZUYXPWjBJGIiIiIiIhILWJWD+0E4JZejRnfpyn5Njuvz9nBC79sJTrIm8vbR5frmusPpvLCz1tZG58CQFSgN48ObsnwCxpgtVqc/hmcYs3nZnIIIH4ZTL0WbvwavKphpVM1oASRiIiIiIiISC3y+/ZjbExIw8fDjTv6NgXg7n5xHE7NYcrKA9z/1XrCA7zKVPVzODWH1+ds5/v1hwHw8XDjrn5x3N63Cb6e1TilkLQT5j5hbne5FTbPggPLYcpIuHEmeAe6Nr5qSE2qRURERERERGoJwzB4+2TvoVt6xxLu7wWAxWLhuWHtGNC6HvmFdsZ8voqvVh844xLuWXmFvPnbDi554w9HcuiazjEsfLg/9w9oXr2TQ4X5MGs8FOZA0/4w5E245TvwDoKDK2HKNZCb7uooqx0liERERERERERqifnbjrHpUBq+nm7c2Teu2DE3q4X3RnWid1wY2fk2Hvt2E7d/sYakjDzHGLvdYOaag1z8vz949/fd5BbY6d44lJ/uvYg3rutIVFD5Gj27xKJX4cgG8A6G4R+C1QoNusAtP5j7ElbBl1dDXoarI61WlCASERERERERqQXM6iGz99CY3o0J9fMsMcbH040vb+vB45e3wsPNwvxtxxj89mJ+23KUlXuPM/T/lvLINxs5lpFHo1BfPryxM1/d2ZP2MUFV/XEqJn45LHnT3B76DgTWP3WsficY8yP4hMChNbBhhmtirKaqcU2YiIiIiIiIiJTVb1sT2XI4HT9PN27v0/SM49ysFu7sF0ef5hE8+PV6th/N4I4v1zqOB3i5c+8lzRh7YWO83N2qInTnyE2DWXcCBnQcDW2HlxwT3RE6joKVH0DawaqOsFpTBZGIiIiIiIhIDWcYBu+c7D10puqhv2tTP5Af7r2QO/s2xWIBqwVu7NGIhY/0585+cTUrOQTw62OQdgCCY+Hy1848zudkc+7sE1UTVw2hCiIRERERERGRGm7ulkS2HknH38v9rNVDf+fl7sbjV7Tmmi4xeLlbiQ3zq8QoK9HmWbBhOlisMOKTs69S5htivuakVE1sNYQSRCIiIiIiIiI1mN1+qvfQ2N6NCSlD9dDftagX4Oywqk7aIfj5AXO7z0PQqOfZx6uCqFSaYiYiIiIiIiJ1RkZuAZ8t2cuxjFxXh+I0c7ccZfvRDAK83Bnfp4mrw6ladjt8fzfkpppNqPs9du5zfE8miHKUIDqdEkQiIiIiIiJSZzzz4xZe/GUb90xdh91uuDqc82ZWD5m9h269sDHBvuWvHqrR/vwQ9i0CD18Y8Rm4eZz7HFUQlUoJIhEREREREakTthxO47u/DgGwen8K36xLcHFE5+/XzUfZkZhBgLc7t11U9t5DtULiFpj/rLk96CUIb1a2806vIDJqfpLQWZQgEhERERERkTrh1V+3YxgQEeAFwCuzt5GSle/iqCrObjd4Z4HZe2jchU0I8i1D9UxtUZAL394OtnxoMRi63Fr2c4sqiOyFkJdROfHVQEoQiYiIiIiISK23eGcSS3Yl4+Fm4as7etKyXgAp2QW8+uv287ruvuQs3l+4mxMVSDQdTs3hh/WHWBt/okKJql82HWFnYiYB3u6Mu6iO9R76/QU4tgX8ImDY/4HFUvZzPX3B3dvcVh8iB61iJiIiIiIiIrWa3W7wyslE0M09G9M0wp8Xr27HtR+t4Ks1B7m2awxdG4dW6Nov/bKV+duOMWP1AT4f043mZVwNzDAMbv9iDVsOpzv2hfh60CTcD48cKwcX76NZvUDiIvyIDfPD0714fYfNbvDOArP30PiLmhLkU4eqh/b+ASv+z9we9n/gH1H+a/iEQsZhsw9RSGNnRldjKUEkIiIiIiIitdr36w+x7Ug6Ad7u/PMSs09Nt8ahXNc1hq/XJPDk95v56Z8X4eFWvkk2NrvBn3vNCpSDJ3IY8cFy3hvdif4tI8957saENLYcTsfDzUK4vxdH0nJJyS4g5UAqYOXPebscY60WaBjqS9NwP5pG+NM0wo+UrHx2H8sk0NudWy9qXK64a7TsE/Dd3eZ213HQcnDFruN7MkGkCiIHJYhERERERESk1sotsPHGb2afnn/0b0aI36lVvv59eWvmbU1k+9EMJi7bxx1948p17a2H08nIKyTAy53W9QNZte8E4yat5qkr2zC2d2MsZ5n29NWagwBc0T6ad27oRHZ+IXuTsth1NI25K9bjEdqA/cdz2JuUSVa+jfjj2cQfz2bhjqRi17m9T1MCvetI9ZBhwM8PmImdsGYw8MWKX8snxHzNTnFObLWAEkQiIiIiIiJSa32xYj+HUnOIDvLm1gsbFzsW6ufJ45e35tFvN/L2/F0M6VCfBsE+Zb72n/uOA9C1cQgf39yVJ77bxMy1CTz301Z2Hcvk+WFtcS+lKikn38ZP6w8DcF3XhgD4errTrkEQLSN9sSb8xRVXdMDDwwPDMDiWkceepEz2JmWZX8nmdpi/J2P/9plqtY1fwdbvweoOIz4FT7+KX+v0lcwEUIJIREREREREaqnU7Hz+7/fdADx4WQu8PdxKjBnZJYaZaw+yen8Kz/24hU9u6Vrm6/+5z0wu9Ggahqe7lddHdqBFvQBe/nUb0/48QGyoL3f2K1mV9OvmI2TkFdIw1IdeTcPOeg+LxUK9QG/qBXrTOy68zLHVOin74ZeHze3+j0ODzud3vaKVzLKVICqiVcxERERERESkxjmemYfdbpx1zOtzd5CeW0irqABGdI4pdYzVauHF4e1xt1r4bWsiC7Yllun+drvB6v0nE0RNzGSDxWLh9r5NeXF4OwD+7/fdHM/MK3HuV6vN6WXXdmmI1VqO1bfqKrsNZt0J+RnQsCdc9MD5X1MVRCUoQSQiIiIiIiI1Qk6+jZlrDnLNh8vp8uJ8/jF13RmTRCv2HGfanwcAeGZoW9zOkohpGRXAbSeXiX/6hy3k5NvOGcuOxAxSswvw9XSjXYOgYsdGdWtEm+hAMvIKHSuNFdmfnMWf+05gsZjVS1IGS9+CgyvBMwBGfAzWkpVg5aYKohKUIBIREREREZFqbcvhNJ76fjPdX5rPI99sZG282Vh4zpajfPDH7hLjc/JtPD5rIwCjezSiV9zZp3EB3D+gOQ2CfTiUmsO7v+865/hVJ6eXdYkNKbH6mdVq4ckhrQGY+ucBdh/LdBybudasHurbPIL65eh3VGcdWgd/vGJuX/Ff5y1JrwqiEpQgEhERERERkWonM6+Q6asOMOz/ljLk3aV8uTKejLxCGoX68siglo4EzBvzdrJ4Z/GVvd6ev5P9x7OJCvTm35e3KtP9fD3deWZoGwA+XbyXnYkZZx1f1KC6aHrZ3/VuFs6A1pHY7Aav/roNgEKbnW/WJgCnmlPLWeRnwazbwV4IbYZDxxucd21VEJWgJtUiIiIiIiJSLRiGwcaENKavOsCPGw6TfXKql4ebhYFtoxjVrRG948IcfXv2JGUyfdVB7pvxFz/dexENQ33ZmJDKp0v2AvDi8HblWgJ+YNsoBrSux/xtiTz5/Wa+uqNnqUvVG4bhqCDqcZYm0/++vDULdyQxf9sxlu9OJrfQRmJ6HiG+HgxoE1nmuOqs356C47shIBqufAtK+VlUmCqISlCCSERERERERFwqLaeAH9YfYvqqg2w7ku7Y3zTcj1HdGzGicwPC/L1KnPfssLZsPZzOhoQ07p66lhl39OLRbzZiN2BYx/oMaFOv3LE8O6wNy3Yns2rfCb5dd6jUPkF7kjJJzszHy91Kh5igUq5iahbpz409GvHFinhe/GUbDULMKWVXd4rBy90JfXTOJSMRFr0GXv4w4DnnJlgq2865sGaCuT38w1MJHWdxVBClOPe6NZgSRCIiIiIiIuJUR9NysVigXqD3GccYhsHa+BSmrzrIL5sOk1tgB8DT3coV7aIY1b0R3ZuEllrBU8TL3Y0PburCle8uYfOhdC5/ZzEHT+QQ6ufpmC5WXjEhvtw/oDmv/rqdl2dvY0DrSIJ9PYuNKVrevlOj4HMmeu6/tDnfrTvE1iPpbD2Z/Lq+WyVPL7Pb4a8vYd5TkJtm7mt1JTTsXrn3dZbMJPjhHnO75z0Qd7Hz71GUcMrPgMJ8cPc8+/g6QAkiERERERERcZpjGbkMeHMRWfmF9G0ewajuDbm0dT1HI+eUrHxm/XWIGasOsOu05s0t6vkzqnsjru7UoERC5mwaBPvw3qjO3PL5nxw8kQPAM0PblFpxVFa3XdSEWesS2JmYyWtztvPKiA7Fjv+5t2h5+3M3vw7z9+KeS5rx6q/bAejYMJiWUQEVju2cknbCT/fDgeXmezdPsOXDxq9rRoLIMODHf0JWEkS2gUufrpz7eAcBFsCAnBQIKH+1WW2jBJGIiIiIiIg4zbLdyWTmFQKwaGcSi3YmEe7vxTVdGnAkNZc5m4+SbzOrhbw9rAztUJ8bujeic6Pgs1YLnc1FzcN5eFBLXp+zg8va1GNYx/rn9Rk83Ky8OLw91328gumrDjKySwxdYs2KE8MwTjWoblq2aU9jezdmysp4ElJyuKGyqocK88zl4Je8YSaEPHzhkichrBlMuw62zILBr4Bb2XsyucT6abDzVzOxNeJT8DhzFdp5sbqBT7CZHMo5oQQRShCJiIiIiIiIExVV11zdqQH1Ar35Zm0CyZl5fLxor2NMm+hARvVoxFUX1C9XE+mz+Uf/ZlzSKpIm4X4VTjSdrnuTUK7tEsPMtQk88d1mfv7nRbi7WYk/nk1ieh4ebhY6Nwop07W8PdyYPK47K/Ycr5zVy+KXm1VDyTvN980ugyFvQEgs2ArBL8KsyNn7BzS/zPn3d5acFHNaHMDF/4GodpV7P59Q855ayQxQgkhEREREREScaOVes7pmaMdoLmlVj4cGtmDBtkR+2niEYB8Pru/WkPYNgpySxPm7VlGBTr3e41e0Zt62RLYfzWDS8v2M79PUsXpZx5hgvD3K3mg6LsKfuAh/p8ZHTirMfwbWTjLf+0XA5a9B2xGnGlK7uZvvV31sTjOrzgmiBS9A9nGIaAW97q38+/mGwok9WsnsJCWIRERERERExCmOpuWy/3g2Vgt0bWxOv/JwszK4XTSD20W7OLryC/Xz5PHLW/HYt5t4c95OrmgfzcpyTi+rNLvmww//gMxE833nMXDZc+BTSlVT+2vNBNH2XyA/Czz9qjbWsji0DtZ8bm5f8b+qmQrnWMlMCSIAq6sDEBERERERkdqhqDdP2/pBTps65mrXdmlIl9gQsvNtPP/T1nI1qK40+dnwza1mciisOYydDcPeLT05BBDTFUIaQ0EW7Pi1SkMtE7sNfnkIMKD9ddCkT9Xct2glM1UQAUoQiYiIiIiIiJOsdCRPXFxd40RWq4WXrm6Hm9XCnC1HOZSag5vVQpfYsvUfqhQ750BeOgQ1gruXQeMLzz7eYjGriMCcZlbdrJsMh9eBVyAMfKHq7qsKomKUIBIRERERERGn+PNk/6GeTV1YXVMJWkUFcttFTRzv2zUIws/LhR1bNn9rvrYfCe5eZTun/XXm654FkHW8cuKqiKzjMP85c/vi/0BAVNXd2/dkkk8VRIASRCIiIiIiIuIEx9Jz2ZuchcUC3WpRBVGR+y9tTv0gc8n1nq78fDmpsOs3c7v9yLKfF9ECojuCvRC2flcpoVXI/GcgNxXqtYNut1ftvR0VRClVe99qSgkiEREREREROW8rT67u1SY6kCCf2tF/6HR+Xu58cFMXrrqgPrde2OTcJ1SWbT+BLR8i20C9tuU71zHNbKbz46qIw3/BX1+a20PeMFdcq0rqQVSMEkQiIiIiIiJy3oqml7m0eXMlu6BhMO/c0Imok5VELrHpZHKn3TXlP7fdNYAFDq6ElHinhlUhayebr21HQKOeVX9/9SAqRgkiEREREREROW8rHf2Hat/0smojIxH2LzG3yzO9rEhgfWh8kbm9+RvnxVURhfmw9Xtzu/PNrolBFUTFKEEkIiIiIiIi5yUpI489SWb/oe61sP9QtbHlOzDsENPNXLa+IjqcbFa9YYaZpHGV3fMhJwX860GTfq6JoaiCKCcFDMM1MVQjShCJiIiIiIjIeflzn1k91LJeAMG+ni6OphYrml5W1EuoIloPA09/SN4JM8e4Lkm06Wvztd01YHVzTQxFFUT2QshLd00M1YgSRCIiIiIiInJe/txrTtGpbcvbVysn9sGhNWCxQturK34dn2C47gtw84Ids2Hm2KpPEuWmw45fze2iiiZX8PABdx9zW32IlCASERERERGR86P+Q1WgqGdQk77gH3l+12p2KYyafjJJ9At8c2vVJom2/wyFuRDWHKIvqLr7lkZ9iByUIBIREREREZEKS87MY9exTAC61+IVzFzKMGDTyQTR+UwvO12zS2HUNDNJtP1nM0lkK3DOtc9l48npZR2uA4ulau55Jo6VzFJcG0c1oASRiIiIiIiIVNiqfWblRct6AYT6VVH/oRN7YdKVsPnbqrmfqyVugaTt4OYJra503nWbDYAbTksSfXWzOf2rMmUkwr5F5nZFVmJzNt8Q81UVREoQiYiIiIiISMX9WdXTywwDfrrfXO595YdVc09XK5pe1nyg2UPImZqfliTa+St80h+ObnbuPU63+dtTK7GFNq28+5SVo4JICSIliERERERERKTCVp5sUN2jqhpUb/4W9i02t0/sq5p7upJhwKaTlVKVVXHTfACM/QUCY+DEHvjsUvhrauXcq2j1svYubE59OvUgclCCSERERERERCpkzuaj7EjMAKB7kyqoIMpNh7lPnHqfnQy5aZV/X1c6uArSDphL07cYXHn3adgN7lwMcZeaDaR/+Af8cA8U5DjvHsm74fBfYHE7v5XYnEkVRA7urg5ARERERESkpjqemcfkZfvYEm9l89ydWN3Mf4N3t1poHhlA2/qBNI3wx83q4ka8leCH9Yd48OsNAFzbJYZwf6/Kv+kfr0LmUXNqUm4aZB83q4jqX1D593aVTTPN11ZXmsuyVya/MLjxG1jyBix8Cf6aAoc3wHWTISzu/K9fVD0Udwn4R5z/9ZxBFUQOShCJiIiIiIhU0Hu/72bS8v2AlQWH95c6xsfDjVbRAbSrH0Tb+oG0axBE83r+eLm7VWWoTjVzzUEe/XYjhgEjOjfg1Ws6VP5NE7fAnx+Z21f8Fxb992SCaG/tTRDZCmHLd+a2s1YvOxerFfo9AjFd4dvxkLjJ7Et01fvQZljFr2sYp61edr1TQnUKVRA5KEEkIiIiIiJSQYt3JQHQKcxO51ZNsFrNCqKcAhvbj2Sw9Ug62fk2/jqQyl8HUh3nebidqjBq18BMHLWODsTPq/r/iTZlZTxPfm82MR7VvREvDW+HtbIrpAwDfnkIDBu0HmauvrXpWzi40kwQ1Vb7/jCn0fmGQdN+VXvvuIvhriXwzTg4sAK+vhl6/gMGPAfuFVitbttPkLIPPPyg1RXOj7eiVEHkUP3/6yMiIiIiIlINHU7NYW9SFlYLXNfUzsjBLfHw8Cg2xmY32H88i82H0th6OJ3Nh9PYcjid1OwCth5JZ+uRdGauTQDAYoEm4X60jg4kNtSXhqG+NAzxpWGoD/WDffBwc00L2fTcAg6eyObgiRzWHUjhk8VmQmZs78Y8M7QNFksVTJ/bMMNMUnj4wuBXzH2hTczX2tyouqg5ddurwc3j7GMrQ2B9GPMTLHgOlr8HKz+AhDVw7UQIiin7dfb+YVYjAXS+GTz9KiXcCnFUEKW4No5qQAkiERERERGRCli2OxmA9g2C8HU/XuoYN6uFuAh/4iL8ueqCBgAYhsGh1By2HE5nyyEzYbT5cBqJ6XnsTcpib1JWiesEervz3T0XEhfhX3kf6DQ5+TYen7WR37cfIz23sMTxu/vH8eigllWTHMpJhXlPmdv9Hj2VmChaIr22VhAV5JhVNwDtKmn1srJw84CBL0KjXvDd3ZCwCj7qA9d8alZyncuBlTB9FNjyzD5KA1+s/JjLQxVEDkoQiYiIiIiIVEBRgqh3XCjkl54gKo3FYiEmxJeYEF8GtY1y7E/KyGPL4TR2JmZw8EQOB1OyzcqdlBzScwv5cf1hHrishdM/x99l5hUybtJqVu079QdzqJ8nDUN8iAn1pX+LCEZ2iama5BDA7y9CVhKEt4Se95za76ggqp0JIsue+ZCfAUENoWEPV4cDrYbAnYvg61vg6EaYMhL6PWYm7axn6Kd1+C+Yei0UZJuro4383DWVUGfjE2K+5mdCYX7Fps/VEkoQiYiIiIiIlJNhGCzdbSaFLowL4/i2Xed9zYgAL/q3jKR/y8hi+79ebTaEXrQzqdITRGk5BYyduIq/DqQS4OXOe6M70a1xqOt6Ix1eD2smmNtD/lf8j/eiCqLMo5CfVb2mLTmBdfPJ6WXtRpiNo6uD0CZw2zyY8xisnQSLXjX7QI34rOSqZIlb4curIS8dYi+E66eAexWsdFde3sFgsYJhN6uIAqLOeUptpQSRiIiIiIhIOe1IzCA5Mw8fDzcuaBjMgm2Vd68+LcIB2JCQSkpWPiF+lVPhkJKVz82f/8nmQ+kE+Xjw5W3d6RATXCn3KhO7/WRjars5xapJ3+LHfULMr5wUsw9RVDvXxFkJ3G3ZWHbPM99U1eplZeXhDUPfMaec/fyA2V/o4z5mnNknzKbaWUmQtNOsgGrQFUZ/BZ6+ro68dFarmSTKOWHGX4cTRNUkDSkiIiIiIlJzLN1lTi/r3iQUL/fK/bMqOsiHlvUCMAxYenJam7MlZ+Yx6tOVbD6UTpifJ9Nv7+na5BDAX1/CoTXgGXDmvjW1tA9RdOpaLLY8c1pdvWqa+Op4A9z+O4Q1h4wjsPxdWD8Fds6BQ2vN5FBUB7jpG/AKcHW0Z+foQ1S3G1WrgkhERERERKScivoPXdQsvEru169lBDsSM1i0M4mhHes79dqJ6bmM/nQle5KyiAzwYur4HjSv5+I/6LNPwPxnze2LH4fA6NLHhTY1kxG1LEEUk7LC3Gh/rbm8XXUV2RruWAgrPjCTK37h4Bdx6qt+J3CrAWkHHzWqBiWIREREREREyiW/0M6fJxs4X1hFCaK+zSP4ZPFeFu9MwjAMpzWIPpSaw+hPVxJ/PJv6Qd5Mvb0nTcKrQS+f+c+af6xHtoXud555XG2sIMo8RkTGFnO73QjXxlIWXgHQ/zFXR3F+iiqIsut2gkhTzERERERERMrhrwMpZOfbCPPzpFVU1VTadG0cgo+HG8cy8th+NMMp14w/nsV1H60g/ng2DUN9+OrOXtUjOZSwBtZ9YW4PeePsFSi1MEFk3fYjFgzs9TtDWJyrw6kbVEEEKEEkIiIiIiJSLo7l7ZuFY7VWzfQfbw83ejY1/4hdtDPpvK+3JymT6z5ewaHUHJqE+/H1nb1oGFoNmgjbbfDLg4ABHUdDbK+zjy9KEKXsr+zIqoxl6ywAjLY1oHqotlAFEaAEkYiIiIiISLkUNYruU0XTy4r0a2EuI774PBNEO45mcP3HK0lMz6N5pD9f3dGT6CAfZ4R4/tZ8Dkc2gFcQXPb8uccXJYjSEqAgt3Jjqwop8VgTVmFgwd56uKujqTt8QsxXVRCJiIiIiIhIWaTnFrAhIQ2AC5tXcYKoZSQAq/efICuvsELX2HwojRs+WUFyZh5togOZcUdPIgO9nRlmxWUegwUvmNuXPgX+Eec+xzcMvAIBA1LjKzW8KrH5WwCS/VvX6eXWq5yjgqhur2KmBJGIiIiIiEgZrdxzHJvdoEm4Hw2Cq7bqpnGYLw1DfSiwGazYc7zc5/91IIXRn64kJbuAjjFBTL+9J2H+XpUQaQXNewby0iC6I3QdV7ZzLBYIbWJu14Y+RJu+ASAh9BxT68S51IMIUIJIRERERESkzIr6D13YLKzK722xWE5NM9tVvmlmq/ef4OYJq0jPLaRrbAhTxvcgyNejMsKsmPgVsGEaYIEhb4LVreznhtSSBFHiVji2BcPqwZGgrq6Opm5RDyJACSIREREREZEyK+o/dFGzMkx/qgT9WpjTzMrTqHr57mRumbCKzLxCejUNY/K47gR4V6PkkK0QfnnI3O58C8SUMzlSW1Yy22xWDxnNBlDgXg1Wk6tLVEEEwFnWCxQREREREZEiR9Jy2JOUhdUCvZpWfQURQK+4MNytFuKPZ7M/OYvGZ1iWPju/kJ2Jmfx1IIVXf91OXqGdvi0i+OTmLnh7lKM6pyqs+hiObTEbBQ94tvzn14YEkWE4ppfZ246A/a4Np84pqiDKSTF/FpaqWZ2wulGCSEREREREpAxmbzoKQPuYYJdNz/L3cqdr4xBW7j3B4l1JjgRRXqGN79Yd4vftx9iRmMGBE9kYxqnzBrSux/s3dsLLvZolh9KPwMJXzO0Bz576Q708zpYgykqGRa9Bl1uhXpsKh1npEtaYTbY9/DCaD4L9f7g6orqlqILIXgh56eAd5Np4XEQJIhERERERkXOYvzWRV2ZvA+CKdq5dXapfi0hW7j3Boh1JDO/UgKkrD/D5sn0kZeQVGxfu70nLqAB6Ngnjrv5xeLhVww4jvz0B+RnQoCt0uqVi1yhKEKUegMJ8cPc8dWzhS7Dmc0jZDzfOPO9wK83J6WW0GgIevq6NpS7y8Da/7wXZZh8iJYhERERERETk75buSuYfU9dRaDe46oL6jO/T1KXx9G0RzmtzYMnuZC585XcyTi55Hx3kzU09Y7mgYTAtowIIr04rlJVm7yJzWXeLFYa8AdYKJrACosDdBwpzIO0ghMWZ+/MyYOPX5nb8crAVgFs16r1UxFYIm2eZ2+1HujaWuswn1EwQ5ZwAmrg6GpdQgkhEREREROQMVu8/we1frCHfZmdQ23q8cW1H3Kyu7U/SJjqQiAAvkjLyyC+00yzSn7v6xTGsY3083athlVBpCvNh9sPmdtfboP4FFb+WxWJWER3bYk4zK0oQbfwa8jPN7fxMOLQWGvU8r7Arxf4lkHXMTFDEXQJ2VwdUR/mGQHoCZKe4OhKXUYJIRERERESkFBsOpnLrxNXkFNjo1yKCd0d1wr0aTNOyWCw8M7QNv246yvBODbi0VSRWFyetym3l+5C8E3zD4ZInz/96oU1OJYjAbDS85nNzu6i6aO8f1TNBdLI5NW2uMiuc7AWujaeu0kpmShCJiIiIiEjtV2izk5lXSEZu0VfBae8LyDi5nVn0PreQ1ftPkJlXSI8moXx0U5dq1eD5yg71ubJDfVeHUTGpB2HR6+b2wBfAJ/j8r/n3RtUJqyFxM7h7Q//HYP6z5pS2/v8+/3s5U0EubPvJ3G5/rWtjqeuCYszXdV9Au2vAWn1+36uKEkQiIiIiIlLjFdrsvDV/J/uSs8jILSQ9t5DMk4mejNxCcgpsFbpup0bBTBjbDR/PuvfHYqWZ+7jZ66VRL+g4yjnX/HuCaPUE87XdNWZlzvxnzaRRfhZ4+jnnns6wex7kpUFgA/P7Ia5z0QOw5Xtzyt/St6Dvw66OqMopQSQiIiIiIjXe/G3HeH/hnnOO83K3EuDtQaC3O/7e7gR4u+Pv5U6AtwcB3u4EnNz293Yn1M+Tfi0i8PZQcshpds03K2YsbmZjaouTpsadniDKPgFbvjPfd70NQppAUCNIOwDxK6D5AOfc0xmKmmi3G1HxJt3iHOHN4Yr/wg//gIUvQ+M+0KiHq6OqUkoQiYiIiIhIjbc23uwbclGzcEZ0bmAmebzMBFDgyYSPv5d7zWniXBsV5J5qTN3jLqjX1nnXLkoQpcSbU4RseRDVARp0NpNQTfvCX1Ng3x/VJ0GUvBu2/2xuO6uSSs7PBaNh70LYNBO+HQ93LXHOFMgaQgkiERERERGp8dbGmysPjejcgBGdY1wcjZRq+buQsg/8o5zfCyiwAbh5mYmhZW+b+7rddqpCqUl/M0G0d5Fz73s+lvwPDDu0vMK5yTKpOIsFhrwJCWvMZ/Wn++Dayc6rdKvmlD4XEREREZEaLa/QxuZD6QB0bhTi4mikVOmHYckb5vagl8A70LnXt1ohJNbczkkBr0BoN/LU8ab9zNejGyHruHPvXRHH95yaXtb3EdfGIsV5B8LICWB1h60/wNpJro6oyihBJCIiIiIiNdrmQ+nk2+yE+XkSG+br6nCkNCs/hMJcaNjTbBxdGYqmmQF0uB68/E+994+EyDbm9v7FlXP/8lj6Jhg2aD7QnAYn1UuDLnDpM+b2nH/DsW2ujaeKKEEkIiIiIiI12rqT08s6x4ZgqSNTQWqU3PRTVRgXPVB503VOTxB1HVfyeJOTVUSunmaWsh82zDC3+z7q0lDkLHrdC3GXmonNbT+5OpoqoQSRiIiIiIjUaOsOnEwQaXpZ9bTuC8hLh/AWZsVMZYlsbb426g312pQ8XjTNbJ+LE0RL3wJ7IcRdAg27uTYWOTOrFa7+GEZOhH51I5GnJtUiIiIiIlJjGYbhaFDdJVYJokplGDD/GbAVwIBnwd3r3OfYCszpZWBWZFTmUu4dboD8bGg9tPTjsReCxQ1O7IXUAxDcqPJiOZPUg/DXVHO732NVf38pH/8IaDfC1VFUGVUQiYiIiIhIjXUoNYdjGXm4Wy10iAlydTi124m9sOwdWPkBTB0JeRnnPmfL95CeAH4RZl+gyuTuCT3vgqAGpR/3DjR7y4DrppktexvsBdCkLzTq6ZoYRM5ACSIREREREamxiqqH2tYPxNvDzcXR1HLxy09t71sMk66EzKQzjzcMc2l7gO53god35cZXFq6cZpZ+2JxuB6oekmpJCSIREREREamxTm9QLZXswArzteUV4BsGR9bD54PMpsul2bfYXFbe3Qe63VZVUZ5dUaPqfYvNBFZVyTwGP90Ptnxzqlvji6ru3iJlpASRiIiIiIjUWOsOpAJqUF0lihJEXW6Fcb9BUCM4sQcmDIKjm0qOX/6e+drpJvANrbo4z6ZhdzNhlZkISdsr/362Qlj5EbzXFXb9BhYrXPJk5d9XpAKUIBIRERERkRopO7+QrUfSATWornQZiWYPIixmkiW8Gdz2G0S2gcyj8HFfmHGj2dvHMCBxK+yeZ47v9Q9XR3+KuxfE9jK39/5RufeKXwGf9IM5j0FeGkRfALfNg9jelXtfkQrSKmYiIiIiIlIjbTiYhs1uEBXoTf1gH1eHU7sdONl/qF478Ak2twOj4dbZ8N1dsHMObP/Z/IpoBd4nG4a3HgqhTV0S8hnFXQp7fofN30LPuyvnHn9+DL+eXBrdJwQufRo6jwGr+mRJ9aUKIhERERERqZHWHdDy9lXmwErz9e8rb/mEwOiv4B9/Qrfx4OFnTt06+Kd5vPd9VRtnWXS4DqwekLAajmx0/vVthbD4f+b2BTfCP9dB13FKDkm1pwSRiIiIiIjUSGpQXYWKVjArmp71d5GtYMgb8NA2uPx1czpVl7HQsFtVRVh2/pFmZRPA2onOv/7+JZB1DHxCYeg71af/ksg5KEEkIiIiIiI1jmEYjgqizo2CXRtMbZebDombze1GZ0gQFfEOgh53wp2LzORIddV1nPm68WvIy3DutTd9Y762uQrcPJx7bZFKpASRiIiIiIjUOPuSs0jJLsDT3Urb+kGuDqd2S1gFhh2CYyGwvqujcY7GF0FYc8jPPJXQcYbCPNj2k7ndfqTzritSBZQgEhERERGRGmftyellHRoE4emuP2sqVfzJ5e1r0+pbFgt0vdXcXvO5ufKaM+yaZ65YFlAfGtWi75fUCfovqYiIiIiI1DjrDqQCalBdJRwNqs8xvaym6TgK3Lzg6EY4tM4519x8shqp3Qiw6s9tqVn0xIqIiIiISI2jBtVVpDAPDq0xt2tbgsg31EzkgFlFdL7yMmDHr+a2ppdJDaQEkYiIiIiI1CjpuQXsPGY2Fu7cSAmiSnV4PRTmgm84hDd3dTTOV9SsevO3kJNyftfaPtv8XoU1M1dxE6lhlCASEREREZEa5evVBzEMiA3zJSLAy9Xh1G4HTvYfatTT7NtT28R0g3rtoDAHNnx1ftdyTC8bWTu/V1LrKUEkIiIiIiI1RmJ6Lm/P3wXA3f3iXBxNHeBIENWy6WVFnNWsOvsE7Pnd3Nb0MqmhlCASEREREZEa46VftpGZV8gFDYO5rmtDV4dTu9ntpxpUx9bSBBFA++vAww+Sd0D88opdY+v3YC+EqA61cyqe1AkuTRC98sordOvWjYCAACIjIxk+fDg7duwoNqZ///5YLJZiX3fddVexMQcOHGDIkCH4+voSGRnJI488QmFhYVV+FBERERERqWTLdyfz44bDWC3w4vB2WK2axlOpkrZDbqqZPInq6OpoKo934Kmqn7UTK3aNTSenl7W/1jkxibiASxNEixYt4p577mHlypXMmzePgoICBg4cSFZWVrFxt99+O0eOHHF8vf76645jNpuNIUOGkJ+fz/Lly5k8eTKTJk3i6aefruqPIyIiIiIilSS/0M5TP2wG4KaesbRrEOTiiOqAAyeraWK6gpu7a2OpbEXTzLb+AFnJ5Ts37dCpyqOiVdFEaiCX/pbPmTOn2PtJkyYRGRnJ2rVr6du3r2O/r68vUVFRpV7jt99+Y+vWrcyfP5969epxwQUX8MILL/DYY4/x7LPP4unpWamfQUREREREKt/ny/axJymLMD9PHrqspavDqRviT/Yfiu3t2jiqQv1OUL8zHF4H66fChfeX/dwtswADGvWGoJhKC1GkslWrNHBaWhoAoaGhxfZPnTqVKVOmEBUVxdChQ3nqqafw9fUFYMWKFbRv35569eo5xg8aNIi7776bLVu20KlTpxL3ycvLIy8vz/E+PT0dgIKCAgoKCpz+uc5HUTzVLS6pXfScSVnoOZGqoOdMnE3PVO1wJC2Xd+bvBODRQc3x9aheP9Na+ZzlZeC+fwkWoLBBN4za9NnOwNJpDO6H12GsmUhht7vAUrYJN2475mAFbK2GYXfC96lWPk/iUmV9liyGUdE27c5lt9sZNmwYqampLF261LH/k08+ITY2lvr167Nx40Yee+wxunfvzqxZswC44447iI+PZ+7cuY5zsrOz8fPzY/bs2Vx++eUl7vXss8/y3HPPldg/bdo0R+JJRERERESqh893WNlwwkrTAIP72tq0gngl884/Ts89bxKUe5B8Nz9+a/s2NjcvV4dV6dxseQzacj8etmyWxz1KUmC7c55jMQq5YuNduNvz+b3Vy2T4qIJIqp/s7GxGjx5NWloagYGBZxxXbSqI7rnnHjZv3lwsOQRmAqhI+/btiY6O5tJLL2XPnj3ExVVsWcvHH3+cBx980PE+PT2dhg0bMnDgwLN+s1yhoKCAefPmcdlll+Hh4eHqcKSW0nMmZaHnRKqCnjNxNj1TNd/XaxLYsGIrblYL79zSi1ZRAa4OqYRa9Zwd2YD7149gyU3E8IvEet1UBtUvOSujtrJ6roI1n9LTfSu2Kx4953jL4b9wX5+P4R1EnxHjy1x1dDa16nmSaqFo1tS5VIsE0b333svPP//M4sWLiYk5e8a1R48eAOzevZu4uDiioqJYtWpVsTGJiYkAZ+xb5OXlhZdXyQy4h4dHtf0FrM6xSe2h50zKQs+JVAU9Z+Jseqaqp12JGfh5uVM/2KfU48t2J/PMT9sAuO+S5rRvGFrquOqixj9nO36Fb8ZBQTZEtMZy49e4BzdydVRVq/ttsOZTrDt/xZqTDIHRZx9/ZC0AlpjueHg6t8qqxj9PUm2U9Tly6SpmhmFw77338t133/H777/TpEmTc56zfv16AKKjzV/UXr16sWnTJo4dO+YYM2/ePAIDA2nTpk2lxC0iIiIiIhWTX2jnh/WHGPHBMi57azGXvPEHM9ccLDFu97EM7pqylkK7wbCO9bnv0mYuiLYOWfkRzBhtJoeaXgy3zYW6lhwCiGwNjXqBYYO/vjz3+IN/mq+NelRuXCJVwKUVRPfccw/Tpk3jhx9+ICAggKNHjwIQFBSEj48Pe/bsYdq0aVxxxRWEhYWxceNGHnjgAfr27UuHDh0AGDhwIG3atOHmm2/m9ddf5+jRozz55JPcc889pVYJiYiIiIhI1TuWnsvUPw8wbdUBkjJOLRiTW2DnkW82snLvCV4Y3hZfT3eOZ+YxbtIaMnIL6RIbwusjO2BR46HKYbfBnMdh1cfm+863wJA3wa0OV650HQcHVsDaydDnIbC6lT7OMODAyQRRw55VF59IJXFpgujDDz8EoH///sX2T5w4kbFjx+Lp6cn8+fN5++23ycrKomHDhlxzzTU8+eSTjrFubm78/PPP3H333fTq1Qs/Pz/GjBnD888/X5UfRURERERE/sYwDNYdSGXy8v3M3nSEQru5Pk5kgBc39ojlhu4N+WZtAm/8toNv1yWwISGVt6+/gGd/3MKBE9k0DPXhk5u74O1xhj/Q5fzkZcK342Hnr+b7Ac/Chf+izncBbz0MfB6D9ATYNQ9aDi59XNpByDgMVndo0KVqYxSpBC5NEJ1rAbWGDRuyaNGic14nNjaW2bNnOyssEREREREpxXsLdrH1SDr3XNyMdg2Czjgut8DGTxsOM3nFfjYfOtUctWtsCLf0bszgtlF4upvdLu65uBldY0P45/S/2H0skyvfMxetCfB2Z+LYboT5a1ZApUg/AtOug6Mbwc0LRnwMba92dVTVg4c3dLoRlr8Haz4/c4Lo4MleuFEdwFOrYUvNVy2aVIuIiIiISPW25XAab8zbCcCcLUe5tksMDw9qSWSAt2PModQcpq6MZ8bqg5zIygfA093KVR3rM6Z34zMmlXo0DWP2/X144Kv1LNmVjLvVwkc3daFZZPVbsaxWOLrZTA6lHwLfcBg1HRp2d3VU1UuXW80E0a7fIPVA6f2YDqw0Xxuq/5DUDkoQiYiIiIjIOX2wcA8AUYHeHE3P5es1CczedJR7Lm5Gx5ggvlgRz29bj3JyFhn1g7y5qVcsN3RrRKif5zmvH+7vxeRbu/PjhsNEB3nTo2lYZX6cumvXfJg5FvIzILwFjP4aQs+9WFCdExYHTfrBvkVmL6JLnyo55uDJBJEaVEstoQSRiIiIiIic1e5jmczefASAyeO6k5lXwHM/bWVjQhqvzdlebGyvpmGM6d2YAa0jcXcr36LJVquF4Z0aOC1u+Zs1n8MvD5srdDXuA9d/CT4hro6q+uo6zkwQrfsC+v+7eOPuvAxI3GJuq0G11BJKEImIiIiIyFl98MduDAMGtqlHyyhz2tf3/7iQWX8d4r9zt5OeU8iIzg24pVdjx3GpRux2mP+0OWUKoONoGPoOuJ+7sqtOazUE/OtBZiJs/wXaDj91LGENGHZz6llgtMtCFHEmJYhEREREROSMDp7I5of1hwG495Jmjv1Wq4WRXWIY2SUGu93Aaq3jK19VV/nZ8N0dsO0n8/3FT0DfR7RSWVm4eUCnm2HJ/8zqq9MTRAe1vL3UPuWr+RQRERERkTrlw0V7sNkN+raIoENMcKljlByqxmbdbiaH3DxhxKfQ71Elh8qjyxjAYk41S959ar+jQbWae0vtoQSRiIiIiIiU6mhaLt+sSQDg3oubnWO0VDv5WbDjV3P7xm+gw3WujacmCm4EzQea22snmq92mznFDKCRKoik9lCCSERERERqrbScAgrsro6i5vpk8V7ybXa6Nwmle5NQV4cj5XV4vdmQOqA+NO3n6mhqrq7jzNf106AgF45tNVeB8wqEyDaujU3EidSDSERERERqnb8OpPDpkr3M2XyUhn5uXHmFgce5T5PTJGfmMW1VPKDqoRorYZX5GtPVtXHUdM0vg8AYSE+AbT9Cbpq5P6YrWN1cG5uIEylBJCIiIiK1gt1uMH9bIp8u2cvq/SmO/fGZFn7YcJjruzd2XXA10OdL95FbYKdDTBB9moe7OhypiKJpUOqTc36sbmYvooUvmc2qg2LM/Q17uDYuESdTgkhEREREarTcAhvfrktgwpJ97E3OAsDDzcJVFzTAx8PKlysP8M6CPQzv3BAvd/1rf1kkpucyafl+AO65uBkWNTWueQwDDhZVEHVzbSy1Qaeb4Y9X4cAKc2oZKEEktY4SRCIiIiJSI53IyufLFfF8sWI/x7PyAQj0dufGnrGM7d2YeoHepGfl8uPaeA6n5TJl5QFuu6iJi6OuGV6fs4PsfBudGgUzsE09V4cjFZF6ALKOgdUDoju6OpqaLzAaWl1hrgiXlw4Wq6buSa2jBJGIiIiI1Cj7krOYsHQvM9ckkFdodqBuEOzDbRc14bpuDfH3OvV/cX083Rjc0M5Xe914f+FurusaQ4C3uhGdzYaDqXy7zly57JmhbVU9VFMlrDZfo9qDh49rY6ktuo4zE0QA9dqBV4Br4xFxMiWIRERERKRGWBt/gk8W7+W3rYkYhrmvfYMg7ujblMvbReHuVvoCvT0iDVal+bLveDafLtnHg5e1qMKoaxbDMHj+560AjOjUgAsaBrs2IKm4ogSRppc5T5P+ENIEUvZpeXuplZQgEhEREZFqbeGOY7y3YBfrDqQ69l3aKpLb+zalR5PQc1a4uFnggQHNuO+rjXy2ZC8394wlIsCrkqOumX7aeIS18Sn4eLjx6OBWrg5HzkdRgkgNqp3HaoWBL8LvL0LnMa6ORsTplCASERERkWrJbjd4c95O/m/hbgA83ayM6NyA8X2a0CyyfFM7BretR4eYIDYmpPH+wt08O6xtZYRco+Xk23h19jYA7u4fR1SQt4sjkgoryIUjG81t9clxrtZXml8itVDpdbgiIiIiIi6UnV/IP6aucySHxvZuzNJ/X8yr13Qod3IIwGKx8NjJipipf8Zz4Hi2U+OtDT5ZvJfDabk0CPbhjr5NXR2OnI8jG8BeAH6REBzr6mhEpIZQgkhEREREqpUjaTlc9/EK5mw5iqeblTeu7cizw9oSGXB+FS0XNgunT/NwCmwGL83eit1uOCnimu9IWg4fLdoDwL8vb4W3h5uLI5LzknDa8vZqMi4iZaQpZiIiIiJSbWw4mMrtX6zhWEYeYX6efHxzF7o2DnXa9R8b3Irle5Yxd0siz/20hWeH1a1VujJyC3h81ibmbD6K1WLB3c2Cu9WCzW6QU2CjW+MQruwQ7eow5Xw5+g+pQbWIlJ0qiERERESkWrDZDe740kwOtawXwPf3XOjU5BBAuwZB/O/aDlgsMHlFPP+du8Op16/Odh/L5Kr3l/HzxiMU2g3ybXay822k5xaSlW/D083K01fWrYRZrXVQK5iJSPmpgkhEREREqoW0nAIS0/MAmHl3LwK9PSrlPld3iiE738YT323mgz/24Oflzj0XN6uUe1UX87Ym8sBX68nMKyQq0Jt3briAhqG+FNoMCux2Cm0GIb4eRAaqMXWNl3YIMg6DxQ3qd3J1NCJSgyhBJCIiIiLVQmp2PgABXu6VlhwqcmOPWLLzbLw0exv/nbsDHw83xl3UpFLv6Qp2u8G7v+/i7fm7AOjeOJT3b+xMRICXiyOTSlM0vaxeW/D0c20sIlKjKEEkIiIiItVCSnYBAEG+lZscKnJ736Zk5Rfy9vxdPP/zVgJ9PBjZJaZK7l0VMnILeOCrDczflgjAmF6xPHllGzzc1GWiVnP0H+ru2jhEpMZRgkhEREREqoW0HLOCKMTXs8ruef+lzcnOt/HJ4r08/cNmLmwWRnSQT5Xdv7LsScrkji/WsCcpC093Ky8Nb8e1XRu6OiypCgnqPyQiFaN/PhARERGRaiEly6wgCq6iCiIAi8XCvwe3oktsCNn5Nl78ZVuV3buyzN+ayPD/W8aepCyiAr2ZeWcvJYfqisJ8OLze3FaCSETKSQkiEREREakWUnOKEkRVV0EEYLVaeP6qtlgt8MvGIyzbnVyl9z+XVftOcN/0v9h6OP2s4+x2g3fm72L8F2vIyCuke+NQfvrnRXRsGFw1gYrrHd0EtjzwDYPQpq6ORkRqGCWIRERERKRaKGpSHexTdRVERdrWD+LmnrEAPP3DZvIL7VUeQ2n2J2dx2+TV/LjhMNd/soI1+0+UOi4jt4A7p6zlrfk7AbilVyxTxvdQM+q6JmGV+RrTDSwW18YiIjWOEkQiIiIiUi2knmxSHVKFU8xO9+DAloT5ebInKYuJy/a5JIbT5eTbuGvKWjJyC/Fws5CRW8jNE1axeGdSsXF7kjIZ/v4y5m1NxNPNyusjO/D8Ve3wdNf/1a9zHP2Huro2DhGpkfS/GiIiIiJSLaScrCAKquIpZkWCfDz49+WtAHhnwS6OpOW4JA4AwzB44vtNbD+aQbi/J/Me6Ee/FhHkFNgYP3kNczYfAWDBtuL9hr6+qxfXqd9Q3ZWwxnxV/yERqQAliERERESkWkjLcW0FEcA1nWPo3CiY7HwbL7mwYfW0VQeYte4QVgu8O6oTjcP9+PSWrgxpH02+zc4/pq7jvul/cdvk4v2GLlC/obor6zikxpvb9Tu5NhYRqZGUIBIRERGRaqGogqgqVzH7O7NhdTusFvh54xHmbjmKYRiVcq9Cm52cfFuJ/RsOpvLcj1sBeHRwK3rHhQPg6W7l3VGduK5rDHYDftxwGFC/ITnpyF/ma1gz8A5ybSwiUiO5uzoAERERERE41YOoqlcx+7t2DYK4qWcsX6yI584v19I03I9hF9Tnqgsa0CTcr9hYwzDIzreRkp1PSlYBJ7LzScnK50RWvrmvaP/J91n5hWTn2cjMKyTvZCPsIB8PYsN8aRTqS2yYL9//dZh8m52BbepxZ9/iK1G5WS28OqIDYf5ezFqXwEOXteS6bppSJsDhkwkiVQ+JSAUpQSQiIiIi1UJaUYLIBauY/d2jg1uRmVfILxuPsDc5i7fn7+Lt+bto1yCQIB8PTmQVmImg7PzzXvEsLaeAjQlpbExIc+xrEu7H/67riKWUlaisVguPDW7FY4Nbndd9pZY5VJQg6uzaOESkxlKCSERERERcrsBmJyOvEIAQF1cQAfh7ufPmdRfw/FXt+G3LUX5Yf5ilu5PZfCi91PGeblZC/TwJ8fMk1M+DEF9P872vJyG+HoSc3Pb3dsfP0x0/Lzf8PN1xc7NwODWH+OPZxB/PIv54Nqk5BTwwoAWB3q5PlEkNogoiETlPShCJiIiIiMsVNai2WCCwGlQQFfH3cmdE5xhGdI4hOTOPRTuSsFoplgAK9fPE19Ot1GqfsgiM8qBVVKCTI5c6JeMoZBwGixWi2rs6GhGpoZQgEhERERGXSz3ZoDrQ2wM3a8USLZUt3N+La7rEuDoMkZKKqofCW4KXv2tjEZEaS6uYiYiIiIjLnWpQXX2qh0RqjKIEUQP1HxKRilOCSERERERcLqUaNagWqXHUf0hEnEAJIhERERFxuaIpZq5e4l6kxjEMOLTO3FaCSETOgxJEIiIiIuJymmImUkFpCZCdDFZ3qNfO1dGISA2mBJGIiIiIuFxqjllBVB2WuBepUQ6frB6KbAMe3q6NRURqNCWIRERERMTlinoQBakHkUj5qP+QiDiJEkQiIiIi4nJpJxNEIZpiJlI+WsFMRJxECSIRERERcbkUNakWKT/DUAWRiDiNEkQiIiIi4nJqUi1SASf2Qm4auHlBRGtXRyMiNZx7RU7at28fS5YsIT4+nuzsbCIiIujUqRO9evXC21uN0URERESkfNJyihJEqiASKbOi6qGoduCu3x0ROT/lShBNnTqVd955hzVr1lCvXj3q16+Pj48PJ06cYM+ePXh7e3PjjTfy2GOPERsbW1kxi4iIiEgtUzTFTD2IRMrBMb1M/YdE5PyVOUHUqVMnPD09GTt2LN9++y0NGzYsdjwvL48VK1YwY8YMunbtygcffMC1117r9IBFREREpHbJK7SRnW8DINhHVRAiZab+QyLiRGVOEL366qsMGjTojMe9vLzo378//fv356WXXmL//v3OiE9EREREarmiFcysFgjwrlAHBJG6x26DIxvMbSWIRMQJyvy/wGdLDv1dWFgYYWFhFQpIREREROqW1JP9h4J8PLBaLS6ORqSGSN4F+Zng4QsRLV0djYjUAhX6J5q0tDTmzZvH/v37sVgsNGnShAEDBhAYGOjs+ERERESklkvJKuo/pOllImVWNL0suiNY3Vwbi4jUCuVOEE2ZMoV7772X9PT0YvuDgoL46KOPuP76650WnIiIiIjUfo4KIjWoFik79R8SESezlmfwunXruPXWWxk+fDh//fUXOTk5ZGdns2bNGoYOHcrNN9/Mhg0bKitWEREREamFUk+uYBbsowSRSJkU5sPu+ea2EkQi4iTlqiB67733GD58OJMmTSq2v3PnznzxxRdkZ2fzzjvv8PnnnzszRhERERGpxVJPNqnWFDORMlr6JpzYA77h0PwyV0cjIrVEuSqIli1bxp133nnG43fddRdLly4976BEREREpO5IydYUM5EyO7YNFv/P3L7idfAJcW08IlJrlCtBdPjwYVq0aHHG4y1atODQoUPnHZSIiIiI1B1pOWpSLVImdhv8cC/YC6DF5dB2hKsjEpFapFwJouzsbLy9vc943MvLi9zc3PMOSkRERETqjpQss4IoWBVEIme36hM4tAY8A2DIG2CxuDoiEalFyr2K2dy5cwkKCir1WGpq6vnGIyIiIiJ1TOrJCqJgVRCJnFlKPCx43ty+7DkIauDaeESk1il3gmjMmDFnPW5RFltEREREyqGoSbVWMRM5A8OAn/8FBdkQeyF0udXVEYlILVSuBJHdbq+sOERERETqtCNpObw1bye/bDxC6+hAbu4Vy+XtovF0L1dHgBpJq5iJnMOGGbDnd3DzgqHvgrX2/3dBRKpeuSuIRERERMR50nIK+PCPPUxcto+8QvMf49bEp7AmPoUX/LdyQ7dGjO7RiPrBPi6OtPKcmmKmCiKREnLT4Lcnze3+/4bwZq6NR0RqrXKlnnfu3MmqVauK7VuwYAEXX3wx3bt35+WXX3ZqcCIiIiK1lWEYTFi6j37/XchHi/aQV2inW+MQJt3ajX8NaE5kgBfJmfn838LdXPTa79z55RqW7krGMAxXh+5UuQU2cgvMxJgSRCKlWPIGZCdDWDPo/U9XRyMitVi5Kogee+wx2rdvT/fu3QHYt28fQ4cOpU+fPnTo0IFXXnkFX19f/vWvf1VGrCIiIiK1xsw1Cbzw81YAmkf689jgVlzaOhKLxUL/lpHcc3EzftuSyJcr97Ny7wnmbklk7pZEmkb4cXPPWK7pEkOgd81PqBRNL3O3WvD3UnG7SDEn9sHKD83tgS+BW83/nReR6qtc/yu8Zs0aHn30Ucf7qVOn0qJFC+bOnQtAhw4deO+995QgEhERETmHWX8lAHDbRU34zxWtcbMWX+jDw83KkA7RDOkQzc7EDKasjOfbtQnsTcriuZ+28vqcHQzv1IBbesXSOjrQFR/BKVKyT00v02InIn8z/xmw5UPT/tBikKujEZFarlxTzJKTk4mJiXG8X7hwIUOHDnW879+/P/v373dacCIiIiK1UVJGHqv2nQBgbO/GJZJDf9eiXgDPX9WOP58YwAtXtaV5pD85BTamrzrA5e8s4dqPlvPjhsPkF9a8BUWKKoiCtIKZSHH7l8HWH8BihUEvgxKoIlLJypUgCg0N5ciRI4C5otmaNWvo2bOn43h+fn6tmxcvIiIi4mxztxzFbkDHmCAahvqW+Tx/L3du7tWY3x7oy4w7ejKkfTTuVgur96dw3/S/6P3q77y3YBepJ6tyaoKiWLWCmchp7HaY+7i53XkM1Gvr2nhEpE4o1xSz/v3788ILL/DBBx8wc+ZM7HY7/fv3dxzfunUrjRs3dnKIIiIiIrXL7E3mP7hd0T66QudbLBZ6Ng2jZ9MwEtNzmb7qANP+PMCxjDzemLeTDxft4fpuDbntoibEhJQ9AeUKqTlmBZEaVIucZsN0OLIBvALh4idcHY2I1BHlShC99NJLXHbZZcTGxuLm5sa7776Ln5+f4/iXX37JJZdc4vQgRURERGqL5Mw8Vu49DlQ8QXS6eoHe/GtAC+65uBmzNx3h40V72XoknYnL9vPFiniGdazPk0NaE+bvdd73qgxFPYiCfFRBJAJAXiYseN7c7vsw+Ee4Nh4RqTPKlSBq3Lgx27ZtY8uWLURERFC/fv1ix5977rliPYpEREREpLjftiRiN6B9g/JNLzsXDzcrV13QgGEd67N0dzIfL9rL0t3JfPfXIbYdSWfGHT0JrobTuNJO9iAKUQWRCGQlw+yHIfMohDSGHne5OiIRqUPKvZaou7s7HTt2LPXYmfaLiIiIiOl8p5edi8VioU/zCPo0j2DDwVRu/2IN249mcMvnq5gyvgeB3tUrEXP6KmYidVZhPqz+FP54DfLSzH2DXwX36ln5JyK1U7kSRCNGjCh1f1BQEC1atGD8+PFERKgEUkRERKQ0J7LyWeGYXhZV6ffr2DCYqeN7cP0nK9mYkMa4iav54rbu+HqW+98IK03RKmbVsbpJpErsmgdzHofju8z3UR3g8tcgtrdr4xKROqdcq5gFBQWV+pWamsqnn35Ky5Yt2bx5c2XFKiIiInLeth1JZ9HOJA6l5lT56qtztxzFZjdoWz+Q2DC/c5/gBM3rBfDFuO4EeruzJj6F8ZPXkFtgq5J7l4WaVEudlbQTpoyEqSPN5JBfBAx7D+74Q8khEXGJcv3z0cSJE894zG63c/vtt/P444/z008/nXdgIiIiIs4WfzyLq/5vGfk2OwC+nm7ERfjTLNL8KtqODfPFw61c/45WJpU9vexM2jUIYvK47tz02Z8s33Ocu6es5eObu+Lp7vzPWF5a5l7qnJxUWPQ6rPoY7IVg9YCed0PfR8A70NXRiUgd5rT6YqvVyn333cfll1/urEuKiIiIONVnS/aRb7MT4OVOToGN7Hwbmw6lselQWrFxHm4WGof5ORJHRcmjuAh/fDzdKnTvlKx8lu8xp5cNqeIEEUCnRiFMGNuNsRNXsXBHEs/8uIVXRrSv8jj+rmiKWZCPKoiklrPbYN1k+P1FyDb/W0DLK2DgixAW59rYRERwYoIIwM/Pj+zsbGdeUkRERKRMDMOg0G6csfLnRFY+M9ceBODjW7rQrXEo8cez2X0skz1Jmew+lunYzs63setYJruOZRa7hsUCDYJ9zKTRyWqj5vX8aVs/CG+PsyeOfttqTi9rEx1I4/CqmV72dz2bhvHhjV0YN3k101cdoH2DIEb3aOSSWMD8mRUliEL8VEEktdi+JWafocRN5vuIVjDoZWh2qWvjEhE5jVMTRPPmzaNFixbOvKSIiIjIOa07kMJ90//C083KrH/0LrXh8Zcr4sktsNOuQSC9moZhsVgc1UGns9sNjqTnsisxo0TyKCW7gISUHBJScvhjR5LjnFA/T0Z1b8hNPWOJDvIpNcZfNh0FqqY59dlc3CqShwe25L9zd/DMj5tpGeVPl9hQl8SSU2BzTPcLVgWR1EYp++G3p2Dbj+Z772C4+D/QdRy46ZkXkeqlXAmiH3/8sdT9aWlprF27ls8++4zPPvvMKYGJiLjU9/8w/0/dTbPAw9vV0YjIGRiGwZQ/D/D8T1sosJkNp1/8ZRv/u7ZjsXG5BTa+WLEfgDv6xmGxWM54TavVQoNgHxoE+9C/ZWSxY8cz88xk0WlJo21H0knOzOf9hXv4aNFeBreNYkzvxsSE+JCaXUBqTj7HM/NZvjsZqPr+Q6X5R/84thxOY/amo9w1ZR0///Mi6gVW/X/rUk5WD3m6WfGt4NQ9kWqpMM/sM7T8PbDlgcXNTApd/B/wdU1CVkTkXMqVIBo+fHip+wMCAmjZsiWfffYZN9xwgzPiEhFxnYS1sH6quX34L4jt5dp4RKRUuQU2nvhuM9+uSwCgd1wYK/Ye55u1CQztWJ9+LSIcY79dl8DxrHwaBPtwRbuKV/CE+XsR5u9Fj6Zhjn2FNjvztyUyafl+Vu49wS+bjvDLyWbUf9cqKoCmEf6lHqtKFouF/47syO5jmexMzOTuKWuZfkdPvNyrNklT1KA6yNfjrEk7kRpn4cuw7G1zu0k/GPwq1Gvj0pBERM6lXAkiu91eWXGIiFQfqz89tX1sqxJEItWM3W6w61gmD369ni2H07Fa4LHBrbijb1Oe/3krE5ft5z+zNjH3gb74e7ljsxt8tmQfALdd1AR3J69O5u5mZXC7aAa3i2bbkXS+WLGf7/86TIHNTrCvJ8G+HgT7eBDq58n4Pk2deu/z4eflzic3d2XY/y1l3YFUnv5+C/cNaE6Yn+c5+yk5i6P/kJa4l9rEboeNX5vbV/wPuo03G5iJiFRzTu1BJCJS42Ulw+ZvT70/ts11sYgI6bkF7DiawfYj6Ww/msH2oxnsOJpBZl4hAGF+nrw3qhO9m4UD8MiglszbmkhCSg7/m7uDZ4e1Zf62RPYlZxHo7c713RpWarytowN5ZUQHXhreHouFal8V0zjcj3dHdeLWSav5as1BvlpjNvH293InzN+TYB8P3N2suFktuFstp71azVc3Cx5/e180rmmEPzf1aHTW70FRgijYRw2qpRY5tBYyDoNnAHS+RckhEakxypwgmjFjRpmnjx08eJADBw5w4YUXVjgwERGXWDcZbPlmrwDDZlYQiUilK7TZ2X88iy0JqfxywMoPU/5iR2Imh1JzSh3v6WalZ1wYr45oT/3gU02hfT3deXVEB26a8CeTV+znyg7RfLJ4LwA39YzFz6tq/m3Maq05fxD2bxnJK1e3573fd5OUkUe+zU5mXiGZeYXEn+e1G4aU7ON0upSTU8yCVUEktcnW783XloPB3culoYiIlEeZ/1/Shx9+yHPPPcett97K0KFDad26dbHjaWlpLFu2jClTpjBv3jwmTJjg9GBFRCqVrRBWf25u97gTVn5gJogMQ//6J1IJthxOY+Ky/Ww/ms7OxEzyC4umsluBUyuE1Q/yplV0IK2iAmgZFUDr6ECahPudcTn7i5qHc13XGL5ek8BdU9aRnJmHp5uVsb0bV/pnqqlu6N6IG7o3wjAMMvIKOZ6Zz/HMPFKzCyi0G9jsBoV2+8lX49SrzV78/cnX1ftOsGLvcaavOnDWBFFazskKIiWIpLYwjFMrlrUe5tpYRETKqcwJokWLFvHjjz/y3nvv8fjjj+Pn50e9evXw9vYmJSWFo0ePEh4eztixY9m8eTP16tWrzLhFRJxv56+QngC+YdDvMfjzI8hJgcxECHDtstQitU1GbgE3fvanY4oRgK+nGy3q+eObl8Jl3dvQpn4wraICCapA8uCJK9qwcEcSSRl5AAzvVJ9IF6zSVdNYLBYCvT0I9PagSbhfha+zKzGDy95azPxtx0hMzz3jCmkpWUUVRJpiJrXE0Q2QegA8fKHZAFdHIyJSLuWqsx42bBjDhg0jOTmZpUuXEh8fT05ODuHh4XTq1IlOnTphtTq38aOISJVZ9Yn52nkM+ARDaFM4vtusIlKCSMSpPl+6n9TsApqE+/Hvy1vRKiqAhiG+2GyFzJ49myt6NMLDo+JVJUG+HrxwVTvumrIWgDv6Vp/m0HVB83oBdGscwur9KXy9+iD/vLR5qeNSVUEktYx1+8/mRvPLwNPXtcGIiJRThSbih4eHn3HJexGRGunYdti3GCxW6DrO3BfZ5mSCaBvEXeLa+ERqkdTsfD5bYvYFemhgCwa1PZWAtdmcd5/B7aJ4ZUR7vD2sNIsMcN6FpUxGdW/E6v0pzFh9kH9c3Ay3UvoyqUm11CqGgXW7ppeJSM2lch8REYDVn5mvLa+A4JOrHEW2MV/VqFrEqT5dspeMvEJaRQVwRbvoSr3XqO6NuLpTTKXeQ0p3Rftognw8OJSaw+JdSaWOST3ZpFrL3EttEJCbgOXEXnDzghaDXB2OiEi5KUEkIpKbDhumm9vdbz+1P/JkM34tdS/iNMcz85i4bD8AD17Wokat9iXl4+3hxjWdzeTctD8PlDqmaIpZRfpMiVQ39VNXmxvNLgUvVS2KSM2jBJGIyIYZkJ8J4S2gSb9T+x0VRNvBbi/9XBEpl48W7SE730aHmCAua6MFLWq70T3Miszftx/jaFpuieOnKog0xUxqPkeCqM1Vrg1ERKSClCASEVn3hfna/Y7iy9mHNgU3TyjIgrTS//VbRMruWHouX6yIB+CBy1pgsah6qLb7f/buOzzKMuvj+HcmvYckBAgh9N57EVEEkaKiYu+94bquvrqrrl1X3bX33rD3ggUQpEmR3nsLAQIESO+Z5/3jzqRAAimTmUny+1zXXPNk5ilnwk2SOXOfc3eIDWNQmyiKHBZfLt1d8rjDYfHUrxtJyczHboPYsAAPRiniAilbCM/dg2X3g05jPR2NiEiN1CpBlJ+fz6ZNmygsLHRVPCIi7lVUUNpjqPP48s/5+EJMZ7O9X32IRGrrtdnbyCt00L91E07t1NTT4YibXDo4AYDP/0qkyGGRV1jEHV+s5I052wC4+4wuRIcqQST1m33jTwBYbU8xK6GKiNRDNUoQZWdnc9111xEcHEz37t1JTDSfrP/tb3/jqaeecmmAIiJ16sgusIrALxjC4459vqQPUQUJIocDppwL75wOuWl1G6dIPbcnNaekD81dmj3UqIzt0ZwmwX7sTcvlp1V7ueq9v/hx1V587TaevaA3t5za3tMhitSaM0Hk6HKmhyMREam5GiWI7r33XlatWsXs2bMJDAwseXz06NF88cUXLgtORKTOHTafYBPVrnx5mdPxGlXvXgzbZkHSX/DDZLCsuouzLjkc5nXkpns6EmnAnp2+ifwiB0PaRTGsQ4ynwxE3Ktus+o4vVrJo+2FCA3z54JpBTOqvFeakATi8A9v+NTiwY3Ua5+loRERqrEYJou+//55XXnmF4cOHl/sEsHv37mzbts1lwYmIsH8dTLsf8jLr5vyHyiSIKtKsu7mvKEG07rvS7Q0/wcJXXRubu8x61MyEevs0SFWvJXG9Dxfs5NvlewC4+4zOpU/MeBBeGwrpez0UmbjLxYMSSrabhwfy1c1DGd5RiUJpIFZ/CcCh0C4QHO3hYEREaq5GCaKDBw8SGxt7zONZWVmaMi4irvXj7bDwFVj2Qd2c//B2cx9dSYmDcwZRymbTr8jJ4YD1P5ht53TyGQ/CroV1E2ddSdkKC14x24e2wLtnVJwME6mh2ZsO8MhP6wD459gu9G8dZZ6wLFj6vinfnPesByMUd+gQG8r1w9tycscYvr11GF1bhHs6JBHXSN8HC14CYFf0CA8HIyJSOzVKEA0YMICff/655GtnUuidd95h6NChrolMROTwDtiz1GzvXV5H13DOIKokQRTRCvxDwVFQOtsIYPciyEyGgAg4/z3ocb7pZfTV1ZB5oG5idTXLgt/+ZV5bm5OhaRfI2AvvjYXExZ6OThqAzfsz+NunK3BYcH7/eG4+pcxMvfQ9kFdc1rj8I0jb45kgxW3+fWY3plw3mLjIIE+HIuI6vz8E+Zk4Wg5kT5Mhno5GRKRWapQg+s9//sN9993HLbfcQmFhIS+++CJjxozh/fff54knnnB1jCLSWK39unR774q6ucaJSsxstoobVTvLy7qeCb4BcNaLZsWzzGT4+looqgerO26eBltngN0PznwBrvkV4gdBbip8NNE8Lw1O4qFsnpuxmTVJddtYPSUzj2s/WEJGXiGD2kbxn3N7lp9lXHZlwKJ8+POFOo1HRMTlEhfB6i8AG44x/wFbrRaIFhHxuBr9FBs+fDgrV66ksLCQnj17Mn36dGJjY1m4cCH9+/d3dYwi0lit+aZ0+/B2yEl17fkL8yFtt9murMQMjm1U7SgqLS/rfq65DwiFi6aAXwjsnAd/eHmyvDDPzB4CGDoZYjpAcBRc+QN0HAOFOfDZJbBhqmfjFJdasDWFs16Zz0szt3DWK/O5/sOlrN3j+kRRbkERN01ZRtKRHFpHB/PG5f3x9z3qTw5nwjWytblf9oF6EYlI/eEogl/vMdv9rsCK6+vZeEREXKDGae727dvz9ttv89dff7F+/Xo+/vhjevbs6crYRKQx278ODm4AH38IbWYe27fKtdc4shMshykhc16jIrHdzL3zDW3iQsjcD4GR0PaU0v2adoaJL5vt+c/Bpl9dG68rLXwVjuyA0OYw4v9KH/cPhos/hV4XmZK572+F1N2ei1NcwrIsPlq4kyve+4u0nALimwRht8HvG/Zz5svzueGjpazb67pE0RM/b2DZriOEB/ry7lUDiQrxP3YnZ8K17xWQMNTMIpr/gstiEBGpUyummL9LAiLgtAc9HY2IiEvUKEH0yy+/MG3asaUH06ZN49dfvfgNkYjUH2u+Mvcdx0BCcU2/q8vMSvoPta14iXuno0vMnOVlXc4E36Pe+PaYBINuMtvf3WSSUN4mfS/MfcZsn/4oBISVf97HDya+Ci0HQF4afHuj+aRUqiQ1O5/Tn5vDP79e7elQAMgvdHD/92t58Id1FDkszu3bkt/vPIUZd57COX3isNtgxvr9THhpPje6IFG0Pz2Xz5eY1fBeuqQvHWJDK97R+f+pWTc4tXg227IPIGNfra4vIlLnco7AzEfN9sh7IbSpZ+MREXGRGiWI/vWvf1FUdOybBcuy+Ne//lXroESkkbMsWFtcXtZjEjinbe9b6drrOFcwq6xBtZNzBtHhHZCXcWx52dHGPA7xAyE3Db68EgpyXROvq8x4EAqyoNVg6HVhxfv4+MGkt83sqsQFZkaUVMn0dfvZciCTr5cnkZ3v2V5UadkFXP7uYj5dnIjNBv8a14XnLuxNoJ8P7ZuG8sLFfZn+j1OY2CcOmw2mFyeKbpqylA370mt0zQ8W7KSgyGJQmyhO7XzsiqeASTge3GS2Y7uamXithkBRHvaFr9Tw1YqIuMnspyD7kFncYeD1no5GRMRlapQg2rJlC926dTvm8S5durB169ZaByUijVzSEkhNNMmJTmNLE0SunkHkbFB9vP5DAKGxEBwDFC/LnXXQlJe1O6Xi/X394YIPIDjaTD//7Z8uDLqWdi0snp1lg3H/Pf7Mqah2ML54ptEfT2JzrignxzVro1nFrshhsWp33TaCPpH/Td/IXzsOExrgyztXDuDmU9qXbxSNWX78xYv7MuMfIzi7t0kUTVu3n3EvzuOWj5dVK1GUlVfIJ4t2AXD9yW0r3/HwdijKA98giGxjxuGp5v+JfcWHBBSkVvelioi4x/518NfbZnvsU+YDFRGRBqJGCaKIiAi2b99+zONbt24lJCSk1kGJSCPnLC/rMsH0xGnR23x9ZKeZ1u0qJ1rivixnmZlzpaWuZx3/j8KIeDjvbcBmymZWflaLQF3EUQS/3m22+18FcX1OfEzvi80sLqsIn+9vxrcop05DrO/yCx3M35pS8vXyRBeO12o6kJHLl0uTAHjziv6M6nqcPltAh9gwXrqkL9PvGMFZxYmiX9cmM+7Fedz6yTI2Jp84UfTl0t2k5xbSNiaE0ce7nrO8LLYL2Iv/FGk3EloNxlaYS8f9P1fpNYqIuFV+NnxzvenR1+VMaD/S0xGJiLhUjRJEEydO5I477mDbtm0lj23dupW77rqLs88+22XBiUgjVFRY2uOnx/nmPqgJNCmejbB3peuudchZYlbJEvdlOcvMsg+Z+8rKy8rqMKq0t8rUf5hPHT1p2QeQvAYCI+C0B6p2jM0GE56DiARsqTvpmfRRnYZY3y3ZeZjMvNKysuW7PJcgem/+TvILHfRLiGRY++gqH9exWRgvX9KXaXeMYEKvFths8MuaZMa+MI/JnyxnU3JGhccVOSze+3MHANcNb4vdfpzZac4G1bFlZiPbbHCKmUXUJmWWaQQvIuJNfvk/k+AOiYUJz3o6GhERl6tRgui///0vISEhdOnShbZt29K2bVu6du1KdHQ0zzzzjKtjFJHGZOdcU8IVFFX+kznnbBdXlZkV5FZtiXsn5wwiMAmrtiOqdp0R90D7UWbZ+C+uMH2JPCH7MMx6zGyPvB9CYqp+bFAknPcWls1OwuE/sW36pU5CbAic5WVdmpvG38sSj2BZltvjSM8tKCn1uuXUDseUlVVFp2ZhvHppP377+wgm9GwBwM9r9jH2xbl89lfiMftPW5fM7sM5NAn2Y1K/+OOfvGQG0VHl6u1Pw9FyAD5WAfZF6kUkIl5kxcew8hOw2eH8dyGsuacjEhFxuRqXmC1YsICff/6ZW2+9lbvuuouZM2cya9YsIiMjXRyiiDQqa742993PKV/C5epG1Ud2Ahb4h0FIFVYfKftG9kTlZWXZ7abULDzelLT9cJtpwl0blgUHNpqG2VX1x39MeV5sNxhwXfWv2XoojgGmEad9sxJElXEmiG4d2YEAXzup2QVsT8ly+XXyCouYsnAnSUeyK3x+ysJdZOQV0qlZKKO6VNIouoo6Nw/j1cv68dsdJ3N6t2ZYFtz33Rq+Wrq7ZB/LsnhrrpmRd8WQ1gT5+xz/pCUziLqWf9xmw3GyKYO0L/sAMg/UKnYREZdIXgs/32W2R95X9Q+JRETqmRoliABsNhtjxozh7rvv5rbbbmPECP2gFJFaKsiFDT+ZbWd5mZOrG1U7VzCLbnf8Rs1OsV1Kt6tSXlZWSDRc+BHY/WDDj7DoteodX9b+9TDlHHhtMHx+adWOSV4LS9812+OeBh/fGl3aSjgJAJtz9oeUsyMlix0pWfj52BjZuSm94iOAuikze3XWVh74YR0XvrGQfWnl+0LlFhTxfnGp182ntD9+qVc1dGkezltX9OfqYW2wLLjnm9X8sHIPAMt2HWHl7lT8fe1cMbTN8U9UkFvaIP7oGUSA1e40Dge3x1aYA3++6JLYRURqLDfdrEhamAsdRsPwuzwdkYhInanyu4SXXnqJG2+8kcDAQF566aXj7nv77bfXOjARaYS2zoC8dAhvCQlDyz/nbFSdmmjKpYKjanet6jSoBtO3Z/g/IGM/tKlBQjy+P4x90vQvmPEgtOwPCUOqfnz2YTMLaOl7pjkmwI65pqdQ856VH2dZ8Os9YDmg2zm1+tTTcs72OLjJ9IqqYaKpoXLOHhrYJoqwQD/6tW7Ckp1HWJ54hAsGtHLZddJzC3h/wU4A9qblcvV7S/jy5qFEBJlZbV8t3U1KZj4tI4M4q3ecy64L5sOhh87qRn6Rg08XJ3Lnl6vwtdv5cZVJFJ3XtyVNwwKOf5KUzWYMB0ZWXKJhs7Gp+TkM3f4sLHkXTroDQqswy09ExNUsC376u/mbIbwlnPtWaWN9EZEGqMo/4Z5//nmysrJKtiu7vfDCC1W++JNPPsnAgQMJCwsjNjaWc845h02bNpXbJzc3l8mTJxMdHU1oaCiTJk1i//7yjSsTExOZMGECwcHBxMbGcvfdd1NYWIiI1DPLixsg9zjv2D/AAiNKkzmumEVU1SXuyxr9MJz7es0TIwOvNzOjHIXw1dWQefDEx1gWLHkHXuoLS94uXTmlXXF/pqXvH//4dd/Crj/NcuJjHq9Z3E5N2lBo98dWlFc6A0tK/FGcIDqtuKSrf0ITwMyucaUpC3eRkVtIm+hgYsMC2LQ/gxs/WkpuQRGFRQ7eLC71unFEO/x8XP9Gxmaz8fjEHlzQP54ih8XfP1/B9PXm9/Jxl7Z3KtugupLZewfCe+Fo0df07lqgWUQi4gGWZT6YWfct2H3h/PfNjGARkQasyn857tixg+jo6JLtym7bt1f9TcOcOXOYPHkyixYtYsaMGRQUFDBmzJiSRBTAP/7xD3766Se++uor5syZw969eznvvPNKni8qKmLChAnk5+ezYMECPvzwQz744AMefPDBKschIl4geS1smQ7YoP81Fe/jykbVJTOIqrCCmavYbHDWixDTGTL2wTfXmqXnj2fN16bvQW4qNOsBV/0EF38CJ99pnl/9ReW9iPKzYHrxamUn3wmRtZzFYrOTEVjcfPiAh1dk8zKZeYUs3mFWuBtZnCDq19okiDbvzyQtp8Al18nOL+Sdeeb37B2jO/HBNYMIC/Bl8Y7D3PXlKn5ctZekIzlEh/hzoQtnLR3Nbrfx1KRenNu3JYUOC8syibEOsWEnPthZotjs2PKyEjYbjhH3mO0l71YtmSoi4iqWBdPuh7n/NV+f8SQkDPZsTCIiblDtjxYLCgpo3749GzZsqPXFf/vtN66++mq6d+9O7969+eCDD0hMTGTZsmUApKWl8e677/Lcc89x2mmn0b9/f95//30WLFjAokWLAJg+fTrr16/n448/pk+fPowbN47HHnuMV199lfz8/FrHKCJu4uw10m1i5bN6XNmoumSJ+2rMIHKFgFC4aAr4hZgSsT+eqHzf3HSYfr/ZHnob3DintESszckQ3QHyM0sbex9t/vOQvgciE2DY31wSfnpQcdJhvxJEZc3fkkJBkUXr6GDaxYQAEBMaQOvoYABW7k51yXU+XZzIkewCWkcHc2avFnSLC+fNK/rj52Pj5zX7+Ne3awC45qQ2J24UXUs+dhv/O78X5/VtSYCvnb+d1qFqB1bWoPooVvvR5v98QTYsfLmW0YqIVJGjyJSVLXrVfD3uvzD4Rs/GJCLiJtWuk/Dz8yM3N7cuYiEtzSz/HBVleossW7aMgoICRo8eXbJPly5dSEhIYOHChQwZMoSFCxfSs2dPmjVrVrLPGWecwS233MK6devo27fvMdfJy8sjLy+v5Ov09HTAJL8KClzzKa+rOOPxtrikYfH4OEvdhe/ab7ABBUP+BpXEYYvtiS9g7VlBYW1iLcjBLz3JbIYnVHq9OhPZDtuZL+D73Q0w71kKW/TH6jjmmN3ssx7HJ3M/VlQ7CkfcCw4LHKWx2vteic/vD2IteZfCXpeVL9c5shPfP1/CBhSOegwL31q/zoKCAtIDTYLIkbyWIv1cKjFzQzIAp3SMKVfi3Dc+gl2HslmyPYVhbSNrdY28gqKSlcJuOrkNlqOIAkcRA1tH8N/zevCPr9aQX+ggJMCHSwa0dNv/56fP684TE7vi62Ov0jV9968z4zKqE1YF+5f8PCosxDb8//D98jKsv96hcOAtEBLj6vClEfD47zipP4oK8PnpNuzrvsGy2Sma8AJW70ur9PtT40xcSeNJXK2qY6lGjTQmT57M008/zTvvvIOvr2ualDocDu644w5OOukkevToAUBycjL+/v5ERkaW27dZs2YkJyeX7FM2OeR83vlcRZ588kkeeeSRYx6fPn06wcHBtX0pdWLGjBmeDkEaAU+Ns567P6KdVcSBsB4sXLEHVuypcD/fohwmALb0JH7/4XPy/cJrdL2wnCROAwp8gvll9uKqrWLmcgH0bHo67Q7OwPHNDczu/Cg5AaWNeMNzEjll49sALGxyHgenzzzmDH6F0Zxh88Nn/xoWfP0qqSGl5XKDtr9Ai6I8DoR1Z+E2YLtrlqaPCTIlZjk7l/H7L1ruHoorEVb7ADaC03bwyy+lpdZ+6TbAh+krttIxb3OtrjM/2caBDB8i/S0C9q3ml19WlzxnB85rY+O7nXZOic1n/h/e+TvDtyiHCcXJ2ekrd1OwtvL+TDNmzADL4pSgNkTm7GTnp3exvuVF7gpVGiD9LSXHY3fkM2Dna7RIW44DH5a1vpm9eyJhT/V+12mciStpPImrZGdnV2m/GmV3lixZwsyZM5k+fTo9e/YkJCSk3PPffvtttc85efJk1q5dy/z582sSUrXce++93HnnnSVfp6en06pVK8aMGUN4eM3ecNaVgoICZsyYwemnn46fn5+nw5EGyqPjLOsgvq+YqdtRZz/G+DYnH3d3a8//sB3ayuk9mmK1H1WjS9o2/QIbwSe2E+MnTKjROVyiaDSOj87Cf+8yRh/+iKKrfgbfQLAsfKachR0Hji5nMXDSvyo9hY05sOZLTg7aQtH428xj22bhu2I5lt2XJpe+zfiYTi4Jt6CggDm/mn5HIfkHGD/qZAioQs+ZBm7d3nTSFy0iyM/ObReMIsCvtLSr7b4MvnptIXty/Dhj7Gn41HDJ+YIiB08/Px/I5fbTu3L2kIRj9hkPPJhXSLC/DzaPJD1PzJa0BFaDFdqc08++sMJ9jv55ZOvoA19dTocjs2lz2XMQrCaxUj36W0pOKD8Ln6+vwp62HMsnAMek9+nTcQx9qnEKjTNxJY0ncTVn1dSJ1ChBFBkZyaRJk2pyaIVuu+02pk6dyty5c4mPjy95vHnz5uTn55OamlpuFtH+/ftp3rx5yT5//fVXufM5Vzlz7nO0gIAAAgKOXYbXz8/Pa/8DenNs0nB4ZJwtexcKc6Flf3w7jDzxbJ64vnBoK77710CXsTW7ZtpOAOzRHbB78v+Vnx9c+CG8OQJ78irsvz8AZ70AKz+D3YvALxj7uKeOH+PA62DNl9jXfYt97H/ALxhmmL5FtkE34deiu0tDzvcNwwpthi1zP35HtkGrgS49f300d+thAE7q0JTQ4MByz3WPb0KIvw9Z+UVsP5RLt7iafQjx3ard7E3LJSY0gEuHtMHPr+L+QpHe/nvisJlFZWvW/YQ/a0p+HnU7E1r0xrZvFX5L3oTRD7kjUmmA9LeUVCg3DT6/qPj3bgi2Sz7Dt90pNT6dxpm4ksaTuEpVx1GNEkTvv3+CZZWryLIs/va3v/Hdd98xe/Zs2rYtvzxu//798fPzY+bMmSUJqU2bNpGYmMjQoUMBGDp0KE888QQHDhwgNtasHDNjxgzCw8Pp1u04K6SIiOflpsNfpoyK4f+oWqlXXF9Y81XtGlXXZIn7uhLZCia9Ax9PgmXvm8a9c/9nnjvlHoiIP/7xrQab5cIPrDcrmhXlw6EtENIUTv1nnYRsxXbDlrnfrGRWUYLIsiArxfSL8dKZLK4066jl7cvysdvom9CE+VtTWJ54pEYJosIiB6/PNmP2xhFtCawkOVQvVLFBdTk2G5zyT/j8UvjrLdNwPTiqbuITkcYl6xB8fJ75myIgAi7/GloN8nRUIiIeU61VzBwOB08//TQnnXQSAwcO5F//+hc5OTk1vvjkyZP5+OOP+fTTTwkLCyM5OZnk5OSSc0ZERHDddddx55138scff7Bs2TKuueYahg4dypAhQwAYM2YM3bp144orrmDVqlVMmzaNf//730yePLnCWUIi4kWWvQ95aRDTCTpXsdTLuZJZbZa6P+xcwcyNS9wfT4dRcGpxGdmv90DWQYjuCEMmn/hYmw0GXGu2F70Os58226MegsCIOgnXii1Ovle2ktncZ+CZDvDpRZCaWCcxeIu9qTmsSkoFYGSXphXu41zufvmuyvvtHM2yLFbtTuWxqes56elZ7EjJIjLYj8sGtzY75KbB1H/A3pW1Cd/9nEvcx1bzA5zO46F5T7Nq38JXXB+XiDQ+GcnwwXiTHAqOgaunKjkkIo1etRJETzzxBPfddx+hoaG0bNmSF198kcmTq/AGphKvv/46aWlpnHrqqbRo0aLk9sUXX5Ts8/zzz3PmmWcyadIkRowYQfPmzcv1OPLx8WHq1Kn4+PgwdOhQLr/8cq688koeffTRGsclIm5QkAsLi5eQPekOsFfxx1HzXoDNLN+eeaBm13bOIHL3EvfHM+IeKNtTafz/wNe/asf2utCUlh3ZAfkZENcP+lxWN3ECVlNngmh9BU9asOwDs71lGrw6xPw7FxUeu28D8Mz0TVgWDGobRYuIoAr36ZcQCcCyxBMniLYeyOC56ZsY+cxsJr76J+/O38H+9DzCA3154pyehAQUT/xd8TEsfQ9+vstVL8U9nGOmOjOIoHgWUXESdfFbkH3YtXGJSOOSmgjvjYWDGyGsBVzzK7To5emoREQ8rlolZh999BGvvfYaN910EwC///47EyZM4J133sFe1Td3ZViWdcJ9AgMDefXVV3n11Vcr3ad169b8otV0ROqXv96CzP0Q3hJ6XlD14wJCzYyjlE3w1dXQ93LoelbVmyXnZ0PGXrPtDSVmTnY7nPc2fHs9tOgN7UdW/djACOgxCVZMMV+P/1/VE241YDnf3O9faxJCZcvIktdAepJJWLXoA4kLYNp9pvztrJcgrk+dxeVuq5NS+Xa5WXHvvvGVJzz6JpgZRLsOZZOSmUdMaPnZrXtSc/hp1V5+WLmXDftKGwgG+tk5vVtzzu4dx4hOMQT4liktSyleEW3PUkhLOnEpojfIPAjZKYANmnap/vFdJkCznrB/DSx6DU77t8tDFJFGIGUrfHS2+aApsjVc+QNEtT3xcSIijUC1EkSJiYmMHz++5OvRo0djs9nYu3dvuebSIiLHteRdmPGA2R7+j6rPlHHqfRHMfBR2/WluU++EzuPMTJr2o45/viM7zH1gpPf1MQmJhiu+q9mxw/4Gm3+D3hdD/ADXxnW0mE5g84HcVMjYB+Fxpc9t+tXctz8NLpxiklYzHoB9q+DtkTDkVjj1XpPoq8csy+Lxn00/nXP6xNGnVWSl+0YE+dGpWSib92eyfNcRxnRvzqHMPH5Zs48fVu5laZnSM1+7jVM6NeXsPnGM7tqsdMbQ0Zyz4AA2/ARDbnHFy6pbzvKyqLbgH1z9420201fri8th0RtmLHnb/2ER8W7Ja2HKOaaUO6aTSQ6V/R0mItLIVStBVFhYSGBg+RVa/Pz8KCgocGlQItKALXoDfitunjzkVhh4ffXPcfJd0P1cWPO1mZlyaCus+9bcgqLMc70uNA2cj26S7E0Nql2paWe4e6t7ruUbCNEdzCyu/euPShAVz+bsPM7MYup/FXQaC9PuhbXfmP4x63+ECc9CpzHuibcOTFuXzF87DhPga+eesSeeDdO/dRM2789kyqJdfLw4kT+3plDkMLNobTYY3DaKs3u3ZFyP5jQJqULCtGyCaP0P9SRB5GxQXYsFJDpPgGY9zOy1Ra/Dafe7JjYRafiSlpmG1LmppqfZFd+bxRRERKREtRJElmVx9dVXl2v+nJuby80330xISEjJY2V7BImIlPjzRZjxoNk+6e8w+pGar3IV1c6s8jXibtOwes1XJmGUdQCWvmtukQnQ80KTLGra2Rx32Av7D9VHzboVJ4jWQsfR5rG0PcWry9mg4xml+4Y1g/Pfg96XmNleaYnw6QUmkTf2afN8PZJXWMSTv24E4MYR7YiLrLj3UFn9Eprw2V+7mbclpeSxXvERnN07jjN7xdE8IvA4Rx8lP6u0TBIgcZFpthrWvOrn8IQDNew/VJbdbv7ff3klLH4Dht4KQU1cE5+INFw755uFE/IzIX4QXPYVBEV6OioREa9TrQTRVVdddcxjl19+ucuCEZEGbO7/YNbjZnvEPTDyPtcsgW6zQct+5nb6Y7BjjkkWbfjJNKGc94y5Ne9lEkV7lpnjGtoMIndr1h3WfVf6ph9gc3F5WatBEFrBil4dT4fJi+CP/5geMuu+g22zTKKw31V12jfJlaYs3MWuQ9k0DQvg5lOqNo5O6xJLm+hgfH3snNUrjrP7xNE2JuTEB1bEuQpfUJRJlO5Zasb7oBtqdr66Zllmdt/6783XtUkQAXQ5y8xCOrDezEgceW+tQxSRBmzL7/DFZVCYC21HwMWf1fsyZxGRulKtBNH7779fV3GISENVmAfT7oclb5uvR/4bTrm7bq7l42uWjO8wCiY8Z8qd1nwFW3+H5NXm5uQtS9zXV7HdzX3Zlcyc/Yc6j6v8OP8QOOMJ05j8p7+bGUdT7yhuYv1i6UwvL3U4K58XZ24B4O4xnSvvEXSU6NAAZt9djcbjx3OouJQwuj10PdskiNb/4J0JoswD8POdJoEFpgF7p+OMj6qw2+GUf8JXV5lEY4/zvH7ciIiHrP8Bvr4OHAWm3PmCD8GvGjM2RUQamfrxca2I1E9HdsJ7Z5Qmh05/tO6SQ0fzD4ae58OlX8Bdm03Pm1aDzXN2X2jZ3z1xNFTNihNEBzdCUQHkZcCOueaxzuMrP84prg9cPxPOeBL8QiBxIbx+kpldVJBbZ2HX1ou/byYjt5CuLcKZ1N9DizOU9NHqAN3ONtu7/oSslMqPcTfLMiWfrw42ySG7r1mm/rrfa9ag+mhdz4b4gZCXDh9NLJ1VJSLitPIzs9qpo8CUNF/0sZJDIiInoASRiNSNjb/AmyNMf6CgJnDpV6bvkCeERJtm2NdNh7+vhlsXq8SstiITwD/M/OF9aKspFSvKNzOzYjpV7Rw+vqaHzOTF5pNdRwHMedqMm6xDdRt/DaRm5/PJ4kQAHpjQFR+7C0oka6Jso/UmbcysHMsBG6d6Jp6KzHwUvrkOcg6bpelv+MOUglV3xcLK2O1wyRfQtKtZSe/DiZC62zXnFpH6b8k78P3N5mdj38th0rvg4+fpqEREvJ4SRCLiWkUFMP3f8PklkJtmPuW/aZ73rFjVpDXEdPB0FPWfzVbaS2b/ujLlZeOr31sqshVc8rmZ+h8Sa5pfL/O+kuaNyRkUOixaRQUxrIMHV75xlpg5G613m2ju1//gmXiOlrHfrFYHpt/YDbOgRS/XXyck2ixRHdXeND7/6GzTrFtEGrc/X4Sf7zLbg2+Gs14Gu49nYxIRqSeUIBIR10nbAx9MgAUvm6+HTIarfzEJAGl4nGVmyath8zSzXZXysorYbND9HBhVvMrdWu9bDXPLgUwAOsaGeTaQw2VKzAC6FieIdsyF7MOeiamsJW+b2WTxA80y9K6aNVSRsGZw1Y9mRtvh7abczJtK7UTEvZKWlq6WevJdMPaperMAgoiIN9BPTBFxjS2/wxvDYfdiCIgwtf5j/1O3bw7Fs5wJopWfmVKioCalfZ5qquuZYPeDA+vgwIbax+hC24oTRB1iPbj6Tc4RyC4uv3M2Wo/pAM16gKOwdCZXWUUF7osvPxuWvGu2h97mnmtGxMOVP0JYnOmJ9cn54Chyz7VFxLtsnWnuu5xpPnBwxWqpIiKNiBJEIlI7jiKzfP0n55skQfNecNNs6HqWpyOTuhbbzdxnHTD3Hc8wfYVqI6gJdBhtttd+U7tzudhWZ4KoqQcTRIeKmzGHtSi/THNFZWb718MXV8DjsfDL3VBUWPvrOxymIXllVhUnCyNbu/dnQFRbU27mH2r6nu1Z7r5ri4j32PWnuW/volUjRUQaGSWIRKTmMvabko65/wMsGHAdXDejSkvIJx7K5pGf1pGSmVf3cUrdaNat/NfHW96+OnpMMvdrvzGrYXkJZ4KovSdnEB3df8ipa/FqZttmmRKLr66B14fBhh9Nk9a/3jJ9wY6X3KlITips/R3+eBKmnAtPt4GnWpsVyo7mcJhl5wGG3Or+nh9NO0HH08325t/ce20R8bzCfNj9l9lufZJnYxERqadq+VGviDRaO+bC19eZ2SN+IXD2S2ZZ+Sp68Me1zN50ELvNxgNndjvxAeJ9gppAeEtI3wM+/tBhlGvO23kc+AaZnjL7VkJcX9ectxYycgtITs8FPFxidrjMCmZlxXaBmM6mwfc7Zf4dup0DbYbD9Adgy3R4bxxc+gVEtDz23A6HOX73X5D0l0k0HdxYcRw/TDY9kOL6lD62+TeTwAqIgL6X1eZV1lyncbDuOxPLqAc8E4OIeMa+VVCYA0FR5uehiIhUmxJEIlI9DgfMfxb++I+ZmRDbzaw+1bSKS5sDyWm5zN18EIAF27xvOXOphmbdTYKozckQ4KLmzQGh0HmseaO/5muvSBBtO5gFQNOwACKCPLhUsnMGUXQFK/F1PxfmPGW2u5wJp94LzXuYr+P6wWcXwf41JoF06ZemeXzSMkhaUpwQWgZ5aceet0lbaDXINJ2OH2D+72+ZDl9cDjfOhpDiFd2cK5cNuNp1Y6G6OowGmx32rzXL3qtBvkjj4Swvaz1MjalFRGpICSIRqbqsQ/DtDbCtuAlkn8th/P/AP7hap/luxR4cxZVDG/alczgrn6gQNbOul7qeDVtmwMDrXXveHpNMgmjdd3D6Yx7/Y98r+g8BHKpkBhHA8H9AcDS0GnhsUi2+P1w/Ez690MwKevs0cFTQvNovGFr2N4mg+OKkUGjT8vuc97Y5/vA2+OpquOI7SF5j3pzZfWHQTS55qTUSEm3i3r0Itkxz/bgUEe+1a4G5bz3Ms3GIiNRjShCJSNUkLTUNbzP2mvKfCc9A38urfRrLsvhq2W7ALC5iWbBo+yHG92zh6ojFHfpdAb0vBh8Xz6rpcDoEhJvZSbsXQ+uhrj1/NW31hhXMLKtMgqiCGUR+gTD4xsqPb9Iarp0GX10F22ebx6LaFSeCBphZQrHdT9xoPCgSLv7UzETaOc+UrzkblfeYVHH5mjt1HmsSRJuVIBJpNBxFkLjIbCtBJCJSY0oQiciJrfwUfvo7FOVDdEe48MPSJc6raXliKtsPZhHk58OEXi34elkSC7cpQVSvuTo5BCbZ0eVMWPWpaVatBBFkHoD8DFNC1aRNzc4RFAmXf2tmEYU2Ky0Pq67YLnDum/DFZbD4daB4Kemhk2t2PlfqNBZ+fxi2z4H8LPAP8XREIlLX9q8zJbL+YdCsp6ejERGpt1SgKyKVKyqE3+6F728xyaHOE+DGP2qcHAL4unj20LiezTm9WzMAFmxLcUm40sA4VzNb/71rlmivhW0HvSBB5GxQHdEKfANqfh67j/k/XNPkkFPXM+GUfxZ/YZk+VC161+6crtC0C0QmQFGeSRKJiHfLSYW8zNqdw1leljD4xLMgRUSkUkoQicgxEg9lc94zP7H75XGly1af8k+46ONaNZ/NyS/ip1X7ALigfyuGtI3GZjMNgPcXrxAlUqLdKWY1mqyDsHOux8LIKyxi1yHTpNqjCaKSBtUV9B/ylFP+ZfpQ2exwyj2ejsaw2cwsItBy9yLe7tA2eKkPvD7MJIpqqmyDahERqTEliETkGEvWbeT59DtplfoXBfYguPAjGHlfrRsFT1uXTGZeIfFNghjcNoqIYD+6x4UDpg+RSDk+ftBtotle+43HwtiZko3DgrAAX2LDajFzp7aO13/IU+x28/Ph7m3QdoSnoylVkiCaZno3iYj3KcyHb66DnCOQusvMWK4JyyrToPok18UnItIIKUEkIsdI2P4Fre0HSLJiOCvnIaakuaZsxNmc+vz+8djtpmfJsPamzGXBViWIpAI9zzf3G36CwjyPhODsP9Q+NhSbzeaRGIDSGURRXjSDCMyMneAoT0dRXpvh4BcCmcmwb6WnoxGRivzxOOxdYRYksNlNz7mNP1f/PIe2QnYK+AQcu4KjiIhUixJEInKMVgf/AOBd+wVstBJ44Id1fLciqVbnTDqSzYJtJgk0qV98yeND20cDsGC7+hBJBRKGQlgLyE2DLTM8EoJXNKgGOLzd3HvTDCJv5RsA7Uea7c3TPBuLiBxr2x/w54tm+5zXYNjfzPZPf4esan5g5Cwvix9Yu/5sIiKiBJGIHCVtD82zNuGwbDTtP5Grh7UB4P++Ws2M9ftrfNpvlu3BsmBY+2haRQWXPD6wTRS+dhu7D+ew+3B2baOXhsbuU9qsetVnHglhqzc0qHY4yiSIvGwGkbfqPM7ce6oP0YGNtW+8W1WFebB5OvxwG7x1amm5jYg3ykqB724y2/2vga5nwan3QdOupufcL3dV73wl5WXqPyQiUltq8y8i5W3+FYDlVkd8w2N5cHg7MnIL+WZ5EpM/Xc55fVvSJMSfJsF+RAb70yS47LYfEUF++PqUzz07HBZfLzflZRcMiC/3XGiAL73iI1iemMrC7YfKJY9EAOhzKSx8xcwEyT7s9nKmkhlETT2YIErfA4W5YPczq5jJiXUcY+73roD0fRDewn3X/vNFmPGgWfnxkk/r5hr52bBtJqz/0STB8tJLn/viCrh5HoTH1c21RWrKsuD7WyFzv1lx8Iz/mMf9AuHc1+HtUbDuO5M0cn44cCJKEImIuIwSRCJS3sZfAJhR1J82gX7Y7TaentSTzLwCpq3bz+dLdp/wFOGBvjQJ8S9JGvn52Nl9OIewAF/Gdj/2Tdqw9jEmQbTtEBcO0JtfOUqz7tC8JySvMc2qB93gtksXOSzvWOK+pP9QWy3hXFWhsdCyP+xZBlumQ/+r3HPd5R+Z5BCYxE1WCoTEVL5/VgoERlbt3zU33byW9T/A1t+hoMysy9Dm0PVMSFwE+9fCV1fD1T+bZu8i3uKvt2DLNNMvaNK74F/mQ6G4vjDibpjzFPx8F7QeDmHNjn++1ERI2w12X2g1qG5jFxFpBPRXpoiUysuAHWY58d8d/fhHoPkR4etj5+VL+vHLmn0kHs7mSHY+qdkFHMnO50hWPkeKtzNyCwFIzy0kPbeQXYfKl4yd2TuOIH+fYy47rH00r/yxlQXbUrAsy7ONgMU79b7EJIhWfe7WBFHSkWzyCx34+9o9O7vtcPEKZt7WoNrbdRprEkQbp0Kfy+o+ubbhJ9NDBcwb4KI889iAayref/N0+PRCCG8JA6+DfldBSHT5fbIPw6ZfzEyh7X9AUX7pcxEJ0O1s6Hq26b9it5tSxDdPhd2LTaJq7JN18lJFqi15LUx/wGyPeQya9zh2nxH/Z8Z78mr48W9w6RemEX5lnLOHWvQB/xCXhywi0tgoQSQiJWzbZ4GjgCR7S7ZZLQkLLP3k2d/Xzjl9Wx73+MIiB6k5BaRmFyeNskoTSQVFDi4d3LrC4/q1boK/j5396XlsT8mivSdLeaTWtuzP4N35O/Cx2wgN9CUswJewQD9CA3xLvg4NLH0sLNCXAF/78RODPS8wbyz2LIWULRDT0S2vxVle1i4mBB+7J1cwcy5xrwRRtXQaC388YWbdPNXKvImMH2CSKTEdzcydoEjwDTz+m9Cq2D4Hvr4WLAf0vcL8W/3+MKz7tvIE0YKXAAvSk2DmIzDnabNyX5/L4cB62PAj7JgHVlHpMdEdS5NCLXofG3dUO1Oq8/mlsOg1M6ui+7m1e20itZWfbf5/FOWZ/5eDbqx4Px8/OPdNeOsUM9Por7dg8E2Vn9fZoFrlZSIiLqEEkYiUsBc3c51rGwBAWGD1fkT4+tiJCQ0gJrR6q4gE+vnQr3Uki7YfZuG2Q0oQ1XPP/76ZX9YkV+sY3+JkUmiAL9Eh/nRqFka3uHC6tQinS4twggJjyI0/hfDds5j+2Qs8kXs+NuDj6wcT36TuZvZ4zQpmzhIzJYiqp3lP6H81rP0O8tIgcYG5Hc3HvzRZFBgJgREVbwcVf11234Aw0+fo80vN7J4uZ8KZL5ikz+8Pw875kHnAlLyVdWgb7JwH2Mwsn1Wfw76VsOJjcyurWU/Tk6Xb2aZvy4mSWV0mwEl3wJ8vmMbVsd2haafqfOdEXGvafZCyyZRCTnz1+GO4WTcY8zj8eg9M/zckDDHJ0IqU9B86yfUxi4g0QkoQiQgANqsQ21azjPi0ov4AhAe6r3fFsPYxJQmiy4dUPNNI6ofVSWkAXDSgFWGBvmTkFpKZV0hGXiGZuQUlX2fmFpKZX4hlQaHDIjW7gNTsApKO5LAqKQ2WlZ7Tz8fGGKsHr/rPonvKryTmjcXCzn3freXDawbWWVmi9ySInDOItMR9tdhscNaLMOF5k2RL+guSlkDSMtP4OzfVzPgpyoesA+ZW7WvYzc1RCG1ONn1VfHyhSRuI6wd7l5uZQAOvL3/ciinmvsMoGHILDL7ZxLb4DdOQvWlnM0uo61k1Swye9oApr9s5D768Aq6fCQFKvosHrP8Rlr0P2ODcN47fk8tp0I2wfbYpN/v6WrhxzrHj98CG4uS5DRIG10HgIiKNjxJEIgJAVOYWbLmpWMHR/HmkHWCaTbvLsPbRPDcDFm4/hMNhYfdkOY/UWGp2PklHcgC4b0JXIoKOn2R0OCyy8ksTRhl5hexPy2XDvnTW78tgw7509qTmUFBksSRoMNmE0JJDfDwqn2vmBDN380F+WLn3hOWPNVWjJe4zkuHDs0w503lv1b50qagAjuw020oQ1YzdbmbQNO0EfS8vfdyyTO+13FTISYXctEq2i792bjvvi/JNgslymLK1iz81qzE5dT/XJIjWfV8+QVRUACuLVzfrV9w822Yz5WCuarTr42uSVW+OgIMbYfaTcMYTrjm3SFWlJZleQgAn3Q7tR1btOJvNzDR6Y7hJAv1ytymddFrzdWm/r4ShENTEtXGLiDRSShCJCADN05YDUNh+DIVLzDL1YW6cQdQrPpIgPx8OZ+WzaX8GXVuEu+3a4jpr95iltltHB58wOQRgt9sIC/QzYy2i9PFxPUtXu0vLLiA9t4D4JkHYpl4Ayz7gpMzfuf20O3lm+mYe+WkdJ3eMIbqapY0nYllWzWYQzXwUUjabW59LoP1ptQskNdH0oPELhjA3LtXeGNhsEBhubpEJ1T++IMckiwqyTe+fo5OB3c+BGQ+YMrOM/aUrMm2Zbpb5Dmlq+rHUlbBmMPEV+OR8WPwmDLhWZYriPo4i+PYmk0yN6wsj/12944Oj4Ly34cMzYdWn0O5UU2b56z9h+Ydmn9YnmUSoiIi4hN3TAYiIF7AsWqStACCjzemA6QkT6Oe+HxH+vnYGto0CYM7mg267rrjW2r2mvKxHXMQJ9qy6iGA/WkUFmzKy3peaB9f/wE1Dm9OleRhHsgt4bOp6l13P6WBGHhm5hdht0DYmBArzzcygzy8zM0AqsncFrPyk9OuZj5pZKjWVmw5L3jHbUe1rPxtJXMsvCMJbmKRLRf82kQnQcgBgmTIzp2XFb277XAq+/nUbY8fTof0ocBTA7w/V7bVEypr3HOyaD/6hJolTk7He5iQ45V9m++c74e3TipNDNhhxN1z5o/k/KCIiLqEEkYhAyiZC8g9g+QRwqNlwwDSodvdy82O7Nwfgm2VJWLV5Uy0es3aPSRB1b1lHM8BaDYImbaEgC7/NP/PUpF7YbfD9yr38sakG/WOOwzl7KCEqmABfH7OC2o65Zsn0mY8ce4Blwa/Fb2Q6ngF+ISZhtOGn6l88Nw3m/Bde6GlWogKt0lNfOVcQW/eduU/bA8X93uh7pXtiOOMJ0ydpw09mNpNIXdv9lylrBBj/TO1mro34P2g9HPIzzep+IU3hiu/gtH+bUkoREXEZJYhEBPvmXwGw2o4gvciUBbmzvMzpzN4tCPSzs+VAJit3p7r9+lJ76/aaEjNXziAqx2aD3peY7VWf0adVJNec1BaAf3+3lqy8Qpdd6pj+Q7vKrH614GXY9Fv5A9Z9B7sXmVKwM5+Hobeax2c9bkotqiInFf54Ep7vaZZnz02FmE6mzGLsk7V6PeIh3c8x97sWQPo+M8PMcpjSmBg39ZSK7WpWcwOzmpTD4Z7rSuOUmwbfXGdKY3teAL0vrt357D4w6W2zKmGncXDz/Kr3MhIRkWpRgkhEsBUvb+/oNI70HPMGu7pL3LtCeKAf43qYqeJfLk1y+/WldjJyC9iRkgVAj5Z1lCAC6H2Rud8+B9L3cteYTsQ3CWJPag7PTN/ksss4ZxC1PzpB5OxV8/3NkLrbbBfkwIzi8p2T7oCIljD0NrMMesomWP3F8S+WfRhmPWFmDM15yizJ3rSLKcu4dRH0utC8SZL6JyIeWg0GLFj/PSwvXr3M2ZzaXUbeDwHhsG8VrPrMvdeWxsOyYOo/TO+0yNYw4TnXlMaGx5nE0KWfQ1jz2p9PREQqpASRSGOXkYx9r1lP3OowhvRc01vFEwkigAsGxAMwddVecvKrOOtCvIJz9lDLyCCiQuqwr0qTNqV9XXbMJdjflyfO7QnABwt28tOqvS65TEmD6qahZgbQ7r/ME+d/YBqu5hwxyy8XFcDCVyAtEcJbwrDiFXuCImH4P8z2H09CYd6xF8k6ZPoUvdAL5v4X8tIhthtc8AHcshB6nq/EUEPgLDOb87QZJ4ERptmuO4XEmFIdMGMuP8u915fGYeWnsPYbsPmYBHegFpwQEalPlCASaey2/g7AkeB2ENacjFznDCL3l5gBDGkbTXyTIDLyCvlt3T6PxCA1U9J/KM4NbwhaDzX3iYsAOKVTU64c2hrLgju+WMn0dcm1Ov2BjFw27y9TYpa8BvIzICAC4vrA+e+b7aS/4Kc7YN7z5sDRj4B/cOmJBt0Ioc1NUsDZmBggK8XMOHqhJ8x71py7WU+4cArc/KdJKNj1K7rB6DbR3OccMfe9LjINrt1t8M1mVkdmMvz5ovuvLw1bSvFy9AAj74NWAz0bj4iIVJv++hRp7HbMA+BAWA+AMgkiz8wgstttXNC/FQBfLlGZWX1S0n+oLsvLnFoNMffFCSKAh87qzjl94ihyWNz26QpmV7FpdX6hgxWJR3hv/g5u+3Q5Jz01i0FPzCQlMw+brbjEzFleljDYzOiJamuWDwdY+TEUZEH8QDPjpyz/YDil+A3T3P/BkZ0w/d8mMfTnC+a45r3g4k/hprlmVokSQw1PeBwkDC39up+bmlMfzTcATn/UbP/5kmmYLeIKhfmm71BBFrQ5uXT2pIiI1Ctq/S/SmFmmRAcgJawb7TB9ZMD0A/KUSf1b8sLMzSzcfojEQ9kkRAef+CDxOOcMoh51tYJZWQnFCaKDG8ysjKAm+NhtPHNBb/KLHPyyJpmbpizj/asHMqxDTLlD96bmsCIxleWJR1iReIS1e9PJLyzftNdug07Nwji/f7z5v5DoTBCVeZPf7WwYdBP89ab5euxTFffa6HuleTOeugte7F36eFxfs3xzpzO0fH1j0GMSJC6EuH6m2a6ndJtokplJS8yqZkNu9lws0nDMehT2rYSgJnDumyqNFRGpp5QgEmnMDm2DjL1YPgEcDjGr6ThnEIV7aAYRQHyTYIZ3iGHelhS+Xp7Enad3qrNrFTksCooc+PnY8bHrTXpNZecXsq141S+3zCAKiYHoDnBoK+xeAp3GAODrY+eFi/qSX7iM3zcc4LoPl/Kf83pwMCOPFYmprEhMJTk995jTRYX407dVJP1aN6Fvq0h6tYokNKD4/4Blwa6FZrv1SeUPHPOYWaknqj3ED6g4Vl9/0yD4uxvN1y37m8RQx9OVGGpM+l9j7juM8mwcNptpmp20xDQSFqmtxMWwoHhG5dmvmCb9IiJSLylBJNKY7ZgDgBU/AIfdNBXOKGlS7bkZRADn9483CaKlu/n7qI4uSd7k5Bfx4A9r+W1dMvmFDgqKHDgs81x8kyDeuWoAXZqroWZNbNiXjsOC2LAAYsMC3XPRVkNMgihxYUmCCMDf184rl/bjho+WMm9LCv/4YlW5w3zsNrq2CKNvqyb0ax1J31ZNaB0djK2yZE3KFshOAd9AM+unLN8AmPDsiWN1rkIWHA3tTlViqDHy8YVBN3g6CiPClPGSpgSR1FJhHvz4N8CC3pdC1zM9HZGIiNSCEkQijVlxeZnV+mTIMA95ugeR0xndmxMe6MvetFwWbEvh5I5Na3W+5LRcbvhoKWuKy6COlnQkh6ve+4tvbhlGfBOVtFXX2j1u7D/klDDY9P/ZvfiYpwL9fHjrigHc9uly1u1Np1d8ROnsoPhIgvyrUf7gLC9rOcDMBqoJm+3Y/kQinhLpTBCpz5vU0txnIGUThMTCGU94OhoREaklJYhEGiuHA3bOB8BqczKsOQTg8VXMnAL9fJjYpyVTFu3iy6VJtUoQrU5K5foPl3IgI48mwX48d1EfOsaG4u9jx8/HTl6hgyvfW8zm/Zlc+d5ffH3zsLpdpr0BKuk/5I4VzJyc/YD2LDMNUo9K3gT5+/Du1S5YRaekvGxY7c8l4g0i4s196m7PxiH1W/JamP+c2R7/PwiO8mw8IiJSa1oqRcTbHdoG6Xtdf96DG0zZjF8IVpmymfSSEjPP548vHGA+5Z62Lpm07IIanePn1fu48M2FHMjIo2NsKD9MHs7IzrHENwkmNjyQJiH+NI8I5MNrBxEXEcj2g1lc88ESsvMLXflSGry1xSuYdXfnDKLoDqZkqzAX9q068f415VzBrPXQ4+8nUl84S8yyU6Agx7OxSP1UVAg/3gaOQuhypml+LiIi9Z4SRCLeLOcIvDkC3jgZsg+79tzF5WUkDAGf0pkX3lJiBmY1rC7Nw8gvdPDJX7uqdaxlWbw0cwuTP11OboGDUzs35dtbh1W6IlqLiCA+um4QkcF+rNqdyi0fL6egyFHhvlJebkERW/abGsWe7kwQOZvtAuxedPx9ayp1t+nTYvOB+EF1cw0RdwtqAn4hZltlZlITi1+HvSsgIALGP6O+aiIiDYQSRCLe7NA2yM80n/LO/Z9rz+1MELUdUe7hdC9pUg1gs9m44eR2ALz+xzYOZeZV6bjcgiL+/vlKnpuxGYBrT2rLu1cNPOFr6hAbxntXDyTQz86czQf559ersSyrdi+iEdiUnEGhwyIqxJ8WEW5qUO3kXO4+sY4SRInF5WUtekNAaN1cQ8TdbLYyfYhUZibVdHg7zCruN3TG4xDewrPxiIiIyyhBJOLNyi5B/NdbkLLVNed1FMHOP812mQSRw2GRmef5Ze7LOrdvS3q0DCcjr5AXZ2454f4HMnK5+K1F/LhqL752G/85tycPntWtyqug9UtowuuX9cfHbuPbFXtYsO1QbV9Cg7d2r+k/1D0uvPKVwOpKq+IE0e7FZjl6VyspL1P/IWlgnGVm6kMk1eFwwI+3Q2GO+fuh7xWejkhERFxICSIRb1b2k11HIfz+kGvOu28V5KWZqeEtepc8nJVfVPIe2xtmEAHY7TbuG98VgE8WJ7L1QGal+67bm8Y5r/zJyt2pRAT58dF1g7h0cEK1rzmySyyXFx/37vwdNQu8EfHICmZOcX3AJwCyDppPtV0tUQ2qpYFyNqrWDCKpjsVvwM554BcMZ72k0jIRkQZGCSIRb+bsDdF5gumBsnFqycpjteIsL2tzEthLl/t2zh7y87ER6Oc9Px6GtY9hdNdYihwWT/26scJ9pq1L5vzXF7I3LZd2MSF8P/kkhrWPqfE1rzmpLTYbzNp44LhJKTGJOYAecR5IEPkGgLPJuqvLzLIOwcHi8ZagBtXSwGipe6muAxvg94fN9pjHIaqtR8MRERHX8553gCJyLOfU/w6jYMA1ZnvafWaKd21U0n8oo0z/IbeXCp3Av8Z1xcdu4/cN+1lYpuzLsixen72Nmz9eRk5BEcM7xPDdrSfRNiakVtdrExPC6V2bAZpFdDwFRQ427vNAg+qynH2IXN2o2jl7qGkXLd8sDY9KzKQ6CvPh2xuhKA86nA4DrvV0RCIiUgeUIBLxZs5PdiNawan3QkC4KQ9b/UXNz1mYXzrT4pgEkfesYHa0DrGhXFZc9vXEL+txOCzyCou466tVPP3bRiwLrhjSmvevGUhEsGvK464vbpD97fKkKjfIbigsy2LpzsNk5xced7/N+zPIL3IQFuhLq6ggN0V3lLpqVK3yMmnIItSkWqphzlOQvBqComDiKyotExFpoJQgEvFmacVNqiNbQUgMnHyX+Xrmo5CfVbNz7l0OBVkQHA1Nu5Z7KiPPexNEAH8f1ZGwAF/W7knn3fk7uOztxXy7fA8+dhuPTuzOY+f0wM/HdT/WBrZpQq/4CPIKHXyyOPHEBzQgr8/ZxvlvLGTCS/NZk5RW6X7rnP2H4iI8N+vMudR9ymbIPuyac+Znlc60S1CCSBogZ4lZ+h6zcIFIZRIXw/znzfZZL0BYc4+GIyIidUcJIhFvlZsOucVvzJ3NRAffDJEJkLEXFrxSs/OW9B86GezlfwSUzCAK8I4G1UeLDg1g8mkdAHjilw0s3XWEsEBf3r96IFcObePy69lsNq4bbnosfLRwJ7kFjeNNVJHDYsrCXQDsSMnivNf/5K2523A4SlcJy8wr5MXft/Do1PUA9Iz3UHkZmPKvmM5me/fi6h2blwFJy2DFxzD93/DJBfBCT/hPnPm0HKC1+g9JAxTa3PS2cxRCRrKnoxFvlZcJ390IlgN6XwLdJno6IhERqUPeOU1ARErLywIjISDMbPsFwuiH4etr4c8XoN+VEN6ieuetpP8QQLoXl5g5XT2sDVMW7mJPag6to4N596qBdIgNrbPrje/Zgqd+3ci+tFx+XLWXCwe0qrNreYt5Ww6yLy2XiCA/hraL5rd1yfznl43M3XyQUeHwwcJdvDFnB4ey8gHo1iKc60/2cLPShMGQssmUhXUed+zzOalmhtGBDXBwk2k+fXATpB+nQW9IU+h+XmmCVqQh8fGF8JZmpmpaEkS09HRE4o1mPAhHdpqSxHFPezoaERGpY977LlCksSvbf6is7ufBotchaQn88ThMfLXq5yzIgd1/me0KEkSZJQki75xBBBDo58MH1wxk+vr9XDoogSYh/nV6PT8fO1cPa8OTv27k3Xk7uKB/vNc18Ha1L5aYniTn9m3JQ2d14/Mlu3nkp3XM33qI+fgCmwBoEx3MnWM6c2bPFtjtHv6etBoCyz8ypRBFhWb2z64/zap/+1ZBxr7Kjw1tDk07m2bUsV3MfUxnCIl2X/winhARX5wg2g0M9nQ04m3ys83sSjB9hwI9OFNURETcQgkiEW9Vtv9QWTYbnPEkvDsaVnwCg26CFr2qds7EhWYFkrAWEN3hmKe9uUl1WR2bhdGxWZjbrnfxoARenLmFTfszmL81hZM7NiW/0MGm5AxWJaWSnV9I07AAmoYGEhseQNPQACKDvW8luKpIycxjxvr9AFw0sBU2m41LBiUwsE0Tbvt0BRuTM2gWFsDfR3figgHxLu35VCvORtVJS+C/bSEv/dh9wluWJoLK3gc1cW+sIt4ishUkokbVUrGd88zfDBEJ0PYUT0cjIiJu4N3vAkUas5IZRBWUt7QaCD0mwdpvYPr9cOWPVVtRZOPP5r7D6Ar3z8gzy9yHe3mCyN0igvy4cEArPliwk4d+WEd4kB/r96WTX+io9Bg/HxtNQwNM4igssPg+gNiwgHLbMaEBBPr5uPHVHN93y/dQ6LDo3SqSri3CSx7vEBvG1zcN5o2vpnHT+cMJCw70YJQViGpnEkDpe0xyKCDC9A5qMxziB5mZQfr0W6Q8LXUvx7NlurnvWPHfDCIi0vDoXaCIt3L+wX50iZnTqIdgw1TTU2jzNOg89vjnczjM/lBpk8mMelBi5inXntSWDxfuZHtK6epxEUF+9IqPICrEn5TMPA6k53EwM4/U7AIKiiz2puWyNy0XqHwVMDAJudjwQJqGBhAbHsDANlFM6hdPkH/FiaODGXlMXb2XfglN6N0q0mWv0bIsPl9iZq5dVEGvpQBfOx0jLK9KaJWw2eCSz8wMoviB0KwH2L0wThFv4vwAQjOIvN+hbabca9jfTGP+umZZsGWG2e5wet1fT0REvIISRCLeyvkHe2UNcpu0hiG3mGbV0/8NHUaBz3ESO3uWQmYyBIRX2H8I6k+JmSckRAfzwkV9WLsnjR4tI+jTKpKEqOAKy8jyCotIycznYEYeB9JzOZiZZ7YzzH3ZW36Rg/TcQtJzM9l6IBOAH1bu5bkZm7liSGuuHNqa6NAAANbuSeP9P3fy06q95Bc58LXbuH9CV64e1sYl5WzLdh1h28Esgvx8OKt3NZufe4MWvc1NRKrGWcKcdpxm7VJ7R3bCtlmwdSYkr4HTHoBeF1T9+KJC+OJyOLAeMvfDOa/VWaglDm2F1F3g41/p3wwiItLw6F2giLdy/sEemVD5PiffaT5RPLQFlr4Pg2+sfN8NP5r7TmeAb0CFu2TmmQRReJBmEFVkYp+WTOxz4pV+Anx9aBkZRMvIoOPuZ1kWaTkFJcmiAxl57D6czRdLd5N0JIcXZ27hjTnbOLdvS3akZLF4x+GSY1tGBrEnNYdHflrPyt2pPHleT4L9a/cj/fPi5tRn9mqhWWQijUHZEjPLUhmRq+Smm/4922aZ2+Ht5Z//4VZTFhvfv2rnW/KOSQ4BrPoMht8JMcf2EXQpZ3lZ62EQUHcrhYqIiHdRgkjEGxUVlK66dLwltgMjYOS98PNdMPtJ6HUhBEUeu59lwYafzHbXsyo9nWYQuZfNZiMy2J/IYP9yTbdvObU9v61L5q2521mdlFaSuPGx2xjfswXXnNSGvq0iee/Pnfznlw38sHIvm5IzeOPy/rSJCalRLBm5Bfy82oy5iwdVUtYoIg2L8/dLfgbkplX8+0NOzFEEe1eWJoSS/gJHYenzdl/TC639aaYMdss0MyPopjkQGnv8c2cegD+eMNshsZB1AOY8BZPeqbOXA6i8TESkkdK7QBFvlL4XLIeZ2h1ygj8e+10Ni9+ClE0w7xkY8/ix++xfa6a4+waaBtWVUA8i7+DrY+fMXnFM6NmCRdsP8+3yJGLDA7h8SGtaRJTOSrpueFt6xIUzuXh1sbNemc+lgxJoHR1C6+hgEqKCaRERiG8VVhr7adU+cgqKaN80hH4JWtVLpFHwD4HgaMg+ZMqalSCqurSk0oTQ9tmQc6T881HtoP0okxRqMxwCi5v+56bDO6MgZTN8eRVc9ePxy8N/f8Q03m/RB856Ad46FdZ8bWYRNetWN68tPwt2/Wm2O46pm2uIiIhXUoJIxBuV7T9kP8Gbex9fOOMJ+OR8WPwmDLjW/GFalnP2UIfR5g1BJTLyNIPIm9hsNoa2j2Zo++hK9xncLpqfbx/OLR8vY3liKm/OLV/K4Gu3Ed8kiFZRwSVJo4SoEBKKvw4JMP/WXxQ3p754YIJL+hmJSD0REV+cIEqC5j09HY33S90Nn10C+9eUfzwgAtqNMAmhdiMhqm3FxweGw8WfwlsjIXGB6SE47umK9929BFZ+bLbHPwNxfaHr2aZkfPaTcNEU172usnbMhaJ8U+Ie07FuriEiIl5J7wJFvNHxlrivSIfR5g/S7X/A7w/DhR+Vf74K5WUOq7QHkRJE9Uuz8EA+v3Eo3yxPYuO+dBIPZ7PrcDZJh3PIL3Kw81A2Ow9lM2/LscfGhPrTMjKIVUlp+PnYOLffiXssiUgDEtEK9q3SUvdVteYrkxyy2aHlALNARPvTIK6f+cCmKmI6wnlvweeXwOI3zOygPpeU38dRBL/8n9nuczm0Gmi2R95nfqdv+BH2rYYWvVz20kqULS/TBwYiIo2K3gWKeKOSJe6P06C6LJvNzCJ6Yzis/wESF0HCEPNcylbT3NLuaxpUVyKvyLQqAghXiVm94+9r55JB5ceLw2GRnJ5L4uFsEg9llySOzNdZHMkuICUzn5TMfADGdGtOTGjFDcxFpIFyNqpOS/RsHPVF4kJzP+ZxGDq55ufpMh5O+ZfpJzT1DrM6Waex0LSz+Z2+/CPYt9LMTBr9cOlxsV2hxyRY+zX88R+49PNavJgKWBZsLU4QqbxMRKTRUYJIxBudaIn7ijTrDn2vgOUfwrT74LrfTXnaxuLZQ21HQFDlvWVyisy9n4+NAN8T96wR72e324iLDCIuMogh7Y4tU0vPLSDxUDa7D2eTkpXP+B7NPRCliHiUlrqvOkcRJC42262H1f58p/zTzN7a/Cv8/pC5RSRAx9Nh3bdmn9Puh9Cm5Y879V/m+c2/QtJSiB9Q+1icUjZDamLx8vYnu+68IiJSL+hdoIg3ciaIIqu5mtTI+8E/FPYsg7XfmMeqUF4GUNyfmrBAP/WgaSTCA/3o0TKCcT1bcMWQ1kRr9pBI41N2qXs5vgMbIC/N/J5t5oJ+TXY7XPCB6S/U4XTwCTAzuZa+a5pex3aHAdcde1xMR+hdXJLmXOHMVZzlZW2GH7dnoYiINExKEIl4o+r2IHIKawbD7zDbvz8Mh7aZZBE26DzhuIc6ZxCp/5CISCPi/D2jGUQn5iwvazWo6v2GTsQvEAbdAJd/Df/cCZd+CQOvh9bD4dzXK7/OKfeY0vFts+DTi2HRG7B/fWmteE1t1fL2IiKNmd4JingbyyrTg6iaM4gAht4GSz+A9CSz0gqYfkRhzY57WG6RmTWkBJGISCMSWdy7LDMZCvPAVzMJK7VrgblPGFo35/cPNr0Cj9MvsESTNjDsbzD/eVNqtvlX83hIU1NS7rw1aVv1RtN5maWvsaMSRCIijZHeCYp4m+xDUJhjtsNrsKKUXxCMfgi+vQFSNpnHTlBeBpBTXGKmBtUiIo1IcDT4BpnfO2lJEN3e0xF5J8sqnUFUVwmi6hr1kFn2fsdc2DEHdi2ErIOmxNxZZh7RqnzCKDyu8vM5l7dv0gaiO7jlJYiIiHdRgkjE2zj7D4U2M1PPa6LH+bDoNdi7wnzd5cwTHpKrEjMRkcbHZjNlZoe2KEF0PEd2QsY+sPu5til0bdhs0LKfuQ2/w8wA27PMJHq2z4GkJeZvipWfmBuYxI8zWdSsJ+SmQXaK+XBq9RdmHy1vLyLSaOmdoIi3Sa3BCmZHs9th7FPwwZmmvKxJ6xMeUtqDSDOIREQalchWxQkiNaquVOIicx/X18zU9Ua+AWZ1tdbDzEpn+Vkm7h1zzW3fSji01dyWvlf5ebS8vYhIo6UEkYi3KWlQXYP+Q2UlDIHblx93afuycgrVg0hEpFFSo+oTS3T2Hxri2Tiqwz8EOowyN4CcVNNjaMccM8ModRcERUFINATHmHLDZt2gw2iPhi0iIp6jd4Ii3ibNBTOInJzNR6sgVzOIREQap4ji3xVHL3VvWWYWSkCo+2PyNruK+w+1HubZOGojKBK6jDc3ERGRCmiZexFv40wQVSO54wqlTaqVNxYRaVRKZhAllj5WkAOfXABPxpv7jb9AUaFn4vO0zIOmBA+g1WDPxiIiIlKH9E5QxNu4ogdRDahJtYhIIxVZXNLsLDHLz4bPL4Hts83XW6abW1gc9LsS+l3h9t9RpCZCUYFnmmg7Vy+L7QbBUe6/voiIiJtoBpGIt3FVD6Jqyily9iBSiZmISKMSUSZBlJ8Fn11kkkP+oXD++zDsdtOfJmMvzHkKXugJn14Em34DR1Hdx5e+D14bBi/3g3dGw/IpkJdZ99d1cjaork/9h0RERGpAUwVEvEl+tlluFko/0XWT3OLKAc0gEhFpZMLjwGaHonyz+uXe5SY5dPk3JinS4zw47d+w4SdY9gHsnAebfzO38JZmVlHfKyCiZd3EN+9ZyM8w20lLzO23e6HnJOh3lVlZrC6XZS9pUF2P+w+JiIhUgWYQiXiT9D3m3j8UAiPdemktcy8i0kj5+EFYC7O9dzn4h8Hl35afMeMbAD3Ph6unwm3LYOhtZgWs9D0w+0l4oQd8ejFsnubaWUWpu2H5h2b7/Pdg9MMQ1c4kjJZ9AG+PhDdOhr/eNqt0uVpeJuxbbbZbD3X9+UVERLyIEkQi3iS1uEFoRKu6/TS0As4eRGpSLSLSCDl7CvmHwRXfQsJxmjHHdIAznoA7N8Ckd6H1cLAcsPlX+PRCeKEXzH7alIbV1rxnzMymNidDj0kw/B/wt+Vw1VToeQH4BMD+NfDL/8GzneHbm8xS7pZV+2sDJP0FVpFZ6c3dfZdERETcTO8ERbyJK5e4rwaHwyJPM4hERBqvAdeaJtDj/gutBlbtGL9AM6uo5/mQssXM6Fn5CaQnwez/wPznYdI70PXMmsV0eAes+Nhsj7y/9HGbDdqebG7jDsPqL80sowPrYfXn5hbd0ZS+9b4EAiJrdn1Q/yEREWlUNINIxJs4G1S7uf9QZl4hFs4m1cobi4g0Or0vhhv/qHpy6GgxHYtnFW2E896BlgOgMAe+vAKWvFuzc859BhyF0P60ysu7gqNgyM1wywK4fqbpheQXYpaln/EAPNcVn2+upUnW1prFsKu4/5DKy0REpBFQgkjEm3hoifuMPNOh2s/HRqCfj1uvLSIiDYhfIPS6AK6dZhpIWw74+U6Y9Xj1yr4ObYNVn5ntsrOHKmOzQfwAmPgK/N8mOOtFaNkfHAXYN/7IyZsfwz7nKSgqrHoMhfmQtNRsq0G1iIg0AkoQiXiTkiXuE9x62YziJcw0e0hERFzCx9ckaU69z3w993/w422mjK0q5jxtev90PMMkfqojIAz6Xw03zIKb/8TRfRI2LHzmPwMfTCjt91eZtD2w/CP48kozCyooCpp2rl4MIiIi9ZDeDYp4kzRnk2o3zyByJogC1H9IRERcxGaDU/8JYc1h6h2mn1DWIbj4U7Af5zPKg5tMXyGAkffVLobmPSg6502WZ8bSP/ljbLsXwevD4awXoNtE88HM4e1weJvpo7RjrullVFa3s92+cISIiIgnKEEk4i0cRZC+12y7uQeRs8RMM4hERMTl+l8Foc3gq6vMSme7/jQNpisz+0nAgi5nQlwfl4SwJ2oovc+8Hr8fboakJfD1NeDjb1ZIO5rNbsrTOoyG9qPMtoiISCOgd4Mi3iJjn2nGafeF0ObuvbRKzEREpC51HmuWqV/5CWz+rfIEUUYyrPvebJ96r2tjiGwN1/wKs5+Cec+a5JDdD5q0gej2ENXOJIPan2aaX4uIiDQyejco4i2O7DT3Ea1M7wY3ysw1PSFCA/QjQURE6kinsSZBtPFnGPN4xWVbG34CLIgfCM17uD4GHz8Y9QAMugEKc83vXLsWZxAREQE1qRbxHs4EUZM2br+0ZhCJiEida3+aKes6sgNSNle8z/ofzH3Xs+s2lrDm5vetkkMiIiIllCAS8RaeTBAV9yAKV4JIRETqSkAotD3FbG/65djns1JMfyIwjaFFRETErZQgEvEWmkEkIiINXedx5n7Tr8c+t3EqWA5o0ccjvwtFREQaOyWIRLyFBxNE6SUJIi1zLyIidajTWHO/+y/IPFj+OWd5mWYPiYiIeIQSRCLewoMJosziBJGaVIuISJ2KaAktegMWbJle+nj2Ydgx12x3neiR0ERERBo7JYhEvEFeJmQVf5LqwR5EKjETEZE613m8uS/bh2jTr+AohNjuENPBM3GJiIg0ckoQiXiD1F3mPjASgiLdfvmM4mXulSASEZE65+xDtG0WFOSa7ZLyMs0eEhER8RQliES8gQfLy6BMk2qVmImISF1r3gvCW0JBtikry02D7X+Y55QgEhER8RgliES8gacTRCoxExERd7HZSptVb/oFNk+DonyI6QSxXTwbm4iISCOmBJGIN/BggqjIYZGVVwQoQSQiIm7i7EO0+TeVl4mIiHgJJYhEvIEnVzArnj0EKjETERE3aXsy+IdCxj7Y+LN5rKuWtxcREfEkJYhEvIEHE0TOBtU+NosAPx+3X19ERBoh3wBof1rxFxY0aQvNe3o0JBERkcZOCSIRT3M44EjxKmYeSBCl55gZREGaPCQiIu7kLDMDU15ms3kuFhEREVGCSMTjMpOhKA9sPhAR7/bLO2cQBWnykIiIuFPHMWAr/lO0m8rLREREPE1zBkQ8zVleFhEPPn5uv3x68RL3gUoQiYiIO4VEw8TXIOcwxPXzdDQiIiKNnhJEIp7m4SXuf1y1F4DYIMsj1xcRkUaszyWejkBERESKqcRMxNM8mCDavD+DqatNgmhUnMPt1xcRERERERHvoASRiKcdJ0FkWRbvzNvOhwt2UuRw/QyfF3/fgmXBGd1iaRni8tOLiIiIiIhIPaEEkYinHSdBNHvzQR7/eQMP/biOS99eRHJarssuu2FfOj+v2YfNBref1t5l5xUREREREZH6x6MJorlz53LWWWcRFxeHzWbj+++/L/f81Vdfjc1mK3cbO3ZsuX0OHz7MZZddRnh4OJGRkVx33XVkZma68VWI1NJxEkSv/bG1ZHvxjsOMf2kef2w64JLLvvD7ZgAm9GxBp2ZhLjmniIiIiIiI1E8eTRBlZWXRu3dvXn311Ur3GTt2LPv27Su5ffbZZ+Wev+yyy1i3bh0zZsxg6tSpzJ07lxtvvLGuQxdxjfxsyNxvto9KEC3ZeZglO4/g72Pn8xuH0K1FOIez8rnm/SU8+esGCopq3jNo7Z40pq3bj80Gfx/VsRYvQERERERERBoCj65iNm7cOMaNG3fcfQICAmjevHmFz23YsIHffvuNJUuWMGDAAABefvllxo8fzzPPPENcXFyFx+Xl5ZGXl1fydXp6OgAFBQUUFBTU5KXUGWc83haXuEjKNvwAKyCcQt9QKPPv/MqsLQCc27cF/VuF8+UNA3l62mamLN7Nm3O2s3j7IV64sBctI4OqfdnnZ2wC4MyezWkTFahxJlWicSLuoHEmrqYxJe6gcSaupPEkrlbVsWSzLMsr1ra22Wx89913nHPOOSWPXX311Xz//ff4+/vTpEkTTjvtNB5//HGio6MBeO+997jrrrs4cuRIyTGFhYUEBgby1Vdfce6551Z4rYcffphHHnnkmMc//fRTgoODXfvCRI6jWdoKhmx/ntSg1szp8ljJ40lZ8L/VvtiwuL9PEU3L5IBWHbLx2TY7OUU2gnwsLu3goFdU1f8bJ2bCs2vMue/tU0Sz6ueXREREREREpJ7Izs7m0ksvJS0tjfDw8Er38+gMohMZO3Ys5513Hm3btmXbtm3cd999jBs3joULF+Lj40NycjKxsbHljvH19SUqKork5ORKz3vvvfdy5513lnydnp5Oq1atGDNmzHG/WZ5QUFDAjBkzOP300/Hz8/N0OOJi9r92w3YIb92L8ePHlzx+xxergWTG92zBVZN6lTtmPHD5kWzu+HI1q5PSeXeTD1cOSeCeMzoR4HviqtEbpiwHUjinTxzXTOoJaJxJ1WiciDtonImraUyJO2iciStpPImrOaumTsSrE0QXX3xxyXbPnj3p1asX7du3Z/bs2YwaNarG5w0ICCAgIOCYx/38/Lz2P6A3xya1kL4bAHtUW+zF/747U7L4dZ1JcE4e2bHCf/d2sRF8ffNJPDN9E2/N3c5HixJZvjuVVy7pR5uYyter/3LpbmZvTsHHbuPvozsfc26NM6kKjRNxB40zcTWNKXEHjTNxJY0ncZWqjqN6tcx9u3btiImJYetWs7JT8+bNOXCg/IpOhYWFHD58uNK+RSJepYIVzN6cuw2HBad1iaVbXOUz2vx97dw3vivvXT2AJsF+rN2Tzpkvz+fHVXuP2deyLF6fvY17vl4NwDXD2hw3kSQiIiIiIiKNS71KECUlJXHo0CFatGgBwNChQ0lNTWXZsmUl+8yaNQuHw8HgwYM9FaZI1R2VIEpOy+XrZUkA3Hpq+yqd4rQuzfjl7yczqE0UmXmF3P7ZCu79djU5+UUAOBwWj/+8gad/2wjATSPacf+Eri59GSIiIiIiIlK/ebTELDMzs2Q2EMCOHTtYuXIlUVFRREVF8cgjjzBp0iSaN2/Otm3buOeee+jQoQNnnHEGAF27dmXs2LHccMMNvPHGGxQUFHDbbbdx8cUXV7qCmYjXsKxjEkTvzNtOQZHFoDZRDGgTVeVTtYgI4tMbBvPSzC28/MdWPvtrN8t3pfL8RX14c+42flhpZhXdP74rN4xo5+IXIiIiIiIiIvWdRxNES5cuZeTIkSVfOxtHX3XVVbz++uusXr2aDz/8kNTUVOLi4hgzZgyPPfZYuf5Bn3zyCbfddhujRo3CbrczadIkXnrpJbe/FpFqy9wPhblgs0NEKzJyC/j0r0QAbh1ZtdlDZfn62LlzTGcGt4vm75+vZNP+DMa/NM88Z7fxvwt6cW7feJe+BBEREREREWkYPJogOvXUU7GsypfnnjZt2gnPERUVxaeffurKsETcwzl7KDwefP35deVusvOLaN80hFM6Na3xaU/qEMOvfz+Zf3yxkvlbUwjy8+G1y/sxsnPsiQ8WERERERGRRsmrVzETadBKystaA/Dd8j0AnNcvHpvNVqtTNw0L4KNrBzF9fTIdYsPoEBtaq/OJiIiIiIhIw6YEkYinlOk/tDc1h0U7DgEwsY9r+mfZ7TbG9mjhknOJiIiIiIhIw1avVjETaVCO7DL3Tdrw/co9WBYMbhtFfJNgz8YlIiIiIiIijY4SRCKeUjyDyGrSpkx5WUsPBiQiIiIiIiKNlRJEIp6QsR8ObQVge2FTthzIxN/XrpIwERERERER8Qj1IBKpS44iyE2D3FTYvw52zDW3gxtLdvlulz8Ap3dtRkSQn4cCFRERERERkcZMCSIRV5t2P2z4EXLSIC+tkp1s0LwnRb0u4fNZWQCc21flZSIiIiIiIuIZShCJuFDe2qkELHzlmMcL7IEUhLUiuNOp0HYEtBkOwVHM23SAlMwlRIX4c0rnpu4PWERERERERAQliERcZs66XXT65g5aAB8Wns5HRWNIs0JJI4QCfCEbru3Qlns7d8HPx7T/+n6FaU59Vq8WJY+JiIiIiIiIuJsSRCK1lJyWy6NT19F9wwuc4nuQfcTgGPUIF9gDSc8pID23gP3pecxYv5/3/tzBmj2pvHppP0ICfJm2bj8A56i8TERERERERDxICSKRGipyWHy0cCfPTt9Ms/xdvOD/MwBNJj3PNT27H7P/tHXJ/N+Xq1iy8wgTXp7PhJ4tyCkoom1MCH1aRbo5ehEREREREZFSShCJ1MDqpFTu+24Na/ekAxafhU3Bv6AIOo0lsMdZFR5zRvfmdLwtlFs+Xs6m/Rl8sGAnYJpT22w29wUvIiIiIiIichQ1PRGphvTcAh76YS0TX/2TtXvSCQ/05dNBifQsWA2+QTDuaThOsqdd01C+mzyMiX3iALPrOX1UXiYiIiIiIiKepRlEIlVgWRZTV+/j0anrOZiRB5iZP/efFkfMB7eZnUb8HzRpc8JzBfv78sJFfRjVtRm+dhsJ0cF1GLmIiIiIiIjIiSlBJHICO1OyeOCHtczbkgJAu5gQHj+nB8M6xMDP/wdZByC6Iwz7W5XPabPZOLt3XF2FLCIiIiIiIlItShCJVCKvsIi35mzn5T+2kl/owN/XzuRTO3Dzqe0I8PWBvStgyTtm5wnPgm+AZwMWERERERERqSEliEQqsCLxCHd9tYrtB7MAOLljDI9O7EHbmBCzg6MIpt4JWNDzAmh3iueCFREREREREaklJYhEjnIoM4/rPlzK4ax8YkIDePCsbpzVq0X5lcaWvQ97l0NAOIx5wnPBioiIiIiIiLiAEkQiR3n4p/UczsqnS/MwvrhpKBFBfuV3yDwAvz9qtk97AMKauT9IERERERERERfSMvciZcxYv5+fVu3FboP/nt/r2OQQwPQHIC8NmveCgde5P0gRERERERERF1OCSKRYWk4B93+3BoAbR7SnV3zksTvtnA+rPwdscOYLYPdxZ4giIiIiIiIidUIJIpFiT/y8ngMZebSLCeGO0R2P3aEwH36+y2wPuAbi+7s3QBEREREREZE6oh5E4hGWZbE8MZXtBzPZfSSHpMPZ7D6SzcGMPBKiQ+geF06PuAi6x4WTEBWM3W478UlrYd6Wg3y5NAmbDZ4+vxeBfhXMDFr0KhzcCMExMOrBOo1HRERERERExJ2UIBKPeP/PnTw6dX2Fz+08lM3czQdLvg4N8KVbi3C6twyne3HSqENsKH4+rpkAl5VXyL++MaVlVw5pzcA2UcfulJoIc/5rtsc8BkFNXHJtEREREREREW+gBJG4XWp2Pi/8vhmAAa2b0LFZGK2igmjVJJiY0AC2p2Sybm866/aksSE5g8y8Qv7aeZi/dh4uOYe/r50uzcPoHhdOt7gIesSF06V5OEH+1e8J9N/fNrInNYeWkUHcM7ZLxTv9+i8oyIaEYdD7khq9bhERERERERFvpQSRuN0rs7aSnltYsoy8z1HlY0PbR5dsFxY52HYwi7V70kzSaG8a6/emk5FXyOqkNFYnpQG7AbDboH3TUFOe1jKCbnFmxlGFK5EVW7jtEB8u3AXAk+f1JCSggv8Sm36FTT+D3RfOfA5sdVvuJiIiIiIiIuJuShCJW+0+nM1HxQmZf43rckxy6Gi+PnY6Nw+jc/MwJhX3hHY4LHYfyWbd3vRyiaOUzHy2HMhky4FMvl+5F4AAXzvPXtibM3vFHXPurLxC7v56FQCXDEpgRKemxwaQnw2/3mO2h06G2K41fOUiIiIiIiIi3ksJInGr/07bRH6Rg+EdYjilooRMFdjtNlpHh9A6OoTxPVsApun1gYw81u1NY92edNbuTWPtnnT2pObwjy9WEhXsz7AOMeXO8+SvG0g6YkrL7p9QSeJn3jOm/1B4PIy4p0bxioiIiIiIiHg7JYjEbVbtTuWnVXux2eDe8V2wubBUy2az0Sw8kGbhgZzWpRlgZhr97fMV/Lx6HzdOWcYXNw2he1wEAPO3pPDxokQA/nt+L0IrKi07uBn+fMlsj3sKAkJdFq+IiIiIiIiIN3HNMlAiJ2BZFk/8sgGAc/u2LEnU1CW73cZzF/ZmSLsoMvMKufr9Jew+nE1GbgH//GY1AFcMac1JR80sKg4Yfr4THAXQ8QzocmadxysiIiIiIiLiKUoQiVv8vuEAf+04TICvnf8b09lt1w3w9eGtKwfQpXkYBzPyuPK9v7j/u7XsSc2hVVQQ/xpXyapla76GnfPANxDGPa3G1CIiIiIiItKgqcRMXKqgyMHnS3aTV1BEsL8vIQE+hPj78tSvZvbQtcPbEhcZ5NaYwgP9+PDaQZz32gJ2pGSxIyULgP+d37viVcssC+Y8ZbZP/j+IauvGaEVERERERETcTwkicamXZm7h5VlbK3wuKsSfW05t7+aIjGbhgXx03SDOf30BR7ILuHpYG4a0i6545+Q1cGirmT005Gb3BioiIiIiIiLiAUoQicvsTMnizTnbARjdNRawkZ1fSFZ+EfmFDm4/rQPhgX4ei69901C+vfUkFm0/xHn9Wla+47rvzH3H0yEgzD3BiYiIiIiIiHiQEkTiEpZl8chP68gvcnByxxjevnKAS1cpc5W2MSG0jQmpfAfLgnXfmu3u57onKBEREREREREPU5NqcYnfNxzgj00H8fOx8cjZ3b0jOfTnS/DaUEhcXPVj9q2EIzvBNwg6ja2ryERERERERES8ihJEUmu5BUU88tM6AK4/uR3tmoZ6OCJg0esw4wE4sB6+vAIykqt2nLO8rNMZ4H+cmUYiIiIiIiIiDYgSRFJrr8/eRtKRHFpEBPK30zp4OhxY+Rn89i+zHRgJmfvhq2ugqOD4x1lWaYJI5WUiIiIiIiLSiKgHUSNnWRY/rtrL4ax8okMDiAn1JyY0gOgQf5oE+2O3H79ULPFQNq/P2QbAvyd0I9jfw0Nq4y/ww2SzPeRWGHAtvDUSEhfA7w/DGU9Ufuze5ZCaCH7B0HGMW8IVERERERER8QZKEDVyXy1N4p5vVlf4nN0GUSEmaRRdkjgKIDrUn6ah5v6jhbvIL3RwUodoxvds7uboj7JzPnx1NVhF0PtSGPME2O1wzqvw5ZWw8BWIHwjdz6n4+JLysrHgH+yuqEVEREREREQ8TgmiRmz34WwenboegEFto7ABh7LyScnMIzW7AIcFKZl5pGTmHfc8vnYvaEy9bxV8dgkU5UHn8XD2yyY5BNBtIgz7Gyx4GX64DZp1h5iO5Y+3LFj3vdlWeZmIiIiIiIg0MkoQNVIOh8XdX68iM6+QAa2b8NkNQ/ApU05WUOTgSFY+BzPzOJSZz6Esc1/ydWYeKZn5pObkc9XQNnSIDfPci0nZClPOg7x0aD0czn8ffI4a2qMehj0rYNd8+OJyuHYaBEWWPr9nGaTtBr8Q6Hi6O6MXERERERER8TgliBqpDxfuZNH2wwT5+fDMBb3LJYcA/HzsxIYHEhse6KEIqyhtD0w5B7JToEVvuOQz8KsgZh9fOP89eHMEHNwIb50CF3wIcX3M82u/Nfedx4FfkLuiFxEREREREfEKWsWsEdp2MJOnft0IwH0TutImpp4u5551CKaca2b+RHeAy76BwPDK9w9rBpd/DZEJcGQnvDsGln0ADges/97s0+M8NwQuIiIiIiIi4l2UIGrA9qfnsjMlC8uySh4rLHJw55eryCt0cHLHGC4fnODBCGshLwM+OR9SNkF4S7jiewhteuLjmveEm+aaRtRFefDT32HKREjfA/5h0H5UnYcuIiIiIiIi4m1UYtZArUlK44I3F5Bb4CA80Jee8RH0io8kNbuAVbtTCQv05b/n9/JsY+maKsyDzy8zy9IHRcEV30Fkq6ofH9QELv4MFrwIMx+FHXPN413GV1yeJiIiIiIiItLAKUHUAKVk5nHTlKXkFjgASM8t5M+th/hz66GSfR45uzstIuphr52iQvjmOtgxB/xDTclY087VP4/dDsP/YZa9/+oayDoAvS5yfbwiIiIiIiIi9YASRA1MQZGDyZ8sZ29aLm1jQvj65qHsS8tlzZ40VielsX5vGgPaRHFu35aeDrX6LAum3gEbfgIff7j4E2jZv3bnbDMcJi+GQ9ug1UCXhCkiIiIiIiJS3yhB1MD855cNLN5xmBB/H966oj/RoQFEhwbQo2UElwzydHS19PtDsGIK2OxmRbJ2p7rmvMFR5iYiIiIiIiLSSKlJdQPy7fIk3v9zJwDPXdSHjs3CPBuQK81/Af580Wyf9RJ0Pcuj4YiIiIiIiIg0JEoQNRBrktK499s1ANx+WgfO6N7cwxG50LIPzewhgNMfg35XeDYeERERERERkQZGCaIG4FBmHjd/vIy8QgejusRyx+hOng7Jddb/YPoOgWkqfdLtHg1HREREREREpCFSgqgBOJSVj2VZtIsJ4fmL+2C318Ol6yuy7Q/45nqwHND/ahj1kKcjEhEREREREWmQ1KS6AejULIyf/jac9NxCwgP9PB3OiVkWZO6HjH0Q2w18A47dJ2kpfH4ZFOVDt3NgwnNgayCJLxEREREREREvowRRA+FcrcwrFeaZPkLJq+DgZji4CfLSzHORCWZmUPfzwF48oe3ABvjkfCjIgnYj4by3wO7jufhFREREREREGjgliKTuzX8BZv+n/GM2O/gFQ2oifHMdLHwVxjwGEa1gyrmQcwTiB8JFH1c8w0hEREREREREXEYJIqlbeRmw6DWz3f8aaDsCmnaGqPZgFcHC1+DPF2DvcvhgAgSEQ146NO0Kl34JAaEeDV9ERERERESkMVCCSOrW0vcgNxWiO8CEZ48tFTvlbuh/Fcx+0pSh5aWbsrMrvoPgKI+ELCIiIiIiItLYKEEkdacgBxa8YraH/6PyPkKhsXDm8zD4FrOsfe+LIbyF++IUERERERERaeSUIJK6s+JjyDpg+gr1uujE+zftZGYUiYiIiIiIiIhb2T0dgDRQhfnw54tm+6S/g4+fZ+MRERERERERkUopQSR1Y/UXkLYbQptB3ys8HY2IiIiIiIiIHIcSRFJzlgW7/4KM5PKPO4pg/vNme+ht4Bfo/thEREREREREpMrUg0hqbtbjMO8ZsPtBj/NgyC0Q1xfWfQeHt0FQExhwraejFBEREREREZETUIJIaubPF01yCMBRYErKVn8BCUMh84B5fPAtEBDquRhFREREREREpEpUYibVt/Q9mPGg2R79MNzwh1mlzO4LiQvN7CH/MBh8o0fDFBEREREREZGq0QwiqZ41X8PUO8328Dth+D/M9nlvwehHYOm7sP5HGHKzKTETEREREREREa+nBJFU3abf4LubAAsGXg+jHiz/fHgLOO3f5iYiIiIiIiIi9YZKzKRqdsyFL68ER6EpJxv3P7DZPB2ViIiIiIiIiLiAEkRyYknL4LNLoCgPOk+Aia+BXUNHREREREREpKHQu3w5vv3r4ePzID8T2p4C578HPqpMFBEREREREWlIlCCSyh3aBlPOgdxUiB8IF38KfoGejkpEREREREREXEwJIqlY2h746BzI3A/NesBlX0FAqKejEhEREREREZE6oASRHCsrxcwcSkuEqHZwxXdasl5ERERERESkAVOCSMrLTYMp50LKZgiPhyt/gNBYT0clIiIiIiIiInVICSIplZ8Nn14EyashOAau/B4iEzwdlYiIiIiIiIjUMSWIxCjMhy8uh8SFEBBhyspiOno6KhERERERERFxAyWIGqqiAvjyKpj6D7CsE+xbCN9eD9tmgl+waUjdopd74hQRERERERERj/P1dABSRzb/Buu/N9stB0Dfyyrez7Lgp7/D+h/Axx8u/gQSBrstTBERERERERHxPM0gaqhWfFK6Pf1+yDxY8X4LXoaVH4PNB85/D9qf5p74RERERERERMRrKEHUEGXshy3TzXaTNpBzBH7717H77ZwPvz9stsc9DV3PcleEIiIiIiIiIuJFlCBqiFZ/DlYRxA+CCz4Amx3Wfg2bp5fuk5EMX11j9ut1MQy83mPhioiIiIiIiIhnKUHU0FhWaXlZ38sgri8MudV8/fOdkJdpGlh/dTVkHYDY7nDm82CzeSxkEREREREREfEsNaluaPYsg5RN4BsE3c8zj428Dzb8CKmJMOtxsPuY5ez9w+DCj8A/2LMxi4iIiIiIiIhHaQZRQ7PiY3Pf7WwIDDfb/iFmlhDA4jdg4Stm+5zXIKaD+2MUEREREREREa+iBFFDUpADa781232OWta+w2joeSFgma+H/c0kkURERERERESk0VOJWUOyYSrkpUFkArQ5+djnxz4JB9ablc1GPezu6ERERERERETESylB1JCsLC4v63MZ2CuYHBYSA7f86d6YRERERERERMTrqcSsoUhNhO1zzHbvSzwbi4iIiIiIiIjUK0oQNRQrPwMsaDsCmrT2dDQiIiIiIiIiUo8oQdQQOByw8hOz3edyz8YiIiIiIiIiIvWOEkQNwb4VkLoLAsKh61mejkZERERERERE6hk1qW4IWvaHWxdDyibwD/Z0NCIiIiIiIiJSzyhB1FDEdjE3EREREREREZFqUomZiIiIiIiIiEgjpwSRiIiIiIiIiEgjpwSRiIiIiIiIiEgjpwSRiIiIiIiIiEgjpwSRiIiIiIiIiEgjpwSRiIiIiIiIiEgjpwSRiIiIiIiIiEgjpwSRiIiIiIiIiEgjpwSRiIiIiIiIiEgjpwSRiIiIiIiIiEgjpwSRiIiIiIiIiEgjpwSRiIiIiIiIiEgj59EE0dy5cznrrLOIi4vDZrPx/fffl3vesiwefPBBWrRoQVBQEKNHj2bLli3l9jl8+DCXXXYZ4eHhREZGct1115GZmenGVyEiIiIiIiIiUr95NEGUlZVF7969efXVVyt8/r///S8vvfQSb7zxBosXLyYkJIQzzjiD3Nzckn0uu+wy1q1bx4wZM5g6dSpz587lxhtvdNdLEBERERERERGp93w9efFx48Yxbty4Cp+zLIsXXniBf//730ycOBGAjz76iGbNmvH9999z8cUXs2HDBn777TeWLFnCgAEDAHj55ZcZP348zzzzDHFxcW57LSIiIiIiIiIi9ZVHE0THs2PHDpKTkxk9enTJYxEREQwePJiFCxdy8cUXs3DhQiIjI0uSQwCjR4/GbrezePFizj333ArPnZeXR15eXsnX6enpABQUFFBQUFBHr6hmnPF4W1zSsGicSVVonIg7aJyJq2lMiTtonIkraTyJq1V1LHltgig5ORmAZs2alXu8WbNmJc8lJycTGxtb7nlfX1+ioqJK9qnIk08+ySOPPHLM49OnTyc4OLi2odeJGTNmeDoEaQQ0zqQqNE7EHTTOxNU0psQdNM7ElTSexFWys7OrtJ/XJojq0r333sudd95Z8nV6ejqtWrVizJgxhIeHezCyYxUUFDBjxgxOP/10/Pz8PB2ONFAaZ1IVGifiDhpn4moaU+IOGmfiShpP4mrOqqkT8doEUfPmzQHYv38/LVq0KHl8//799OnTp2SfAwcOlDuusLCQw4cPlxxfkYCAAAICAo553M/Pz2v/A3pzbNJwaJxJVWiciDtonImraUyJO2iciStpPImrVHUceXQVs+Np27YtzZs3Z+bMmSWPpaens3jxYoYOHQrA0KFDSU1NZdmyZSX7zJo1C4fDweDBg90es4iIiIiIiIhIfeTRGUSZmZls3bq15OsdO3awcuVKoqKiSEhI4I477uDxxx+nY8eOtG3blgceeIC4uDjOOeccALp27crYsWO54YYbeOONNygoKOC2227j4osv1gpmIiIiIiIiIiJV5NEE0dKlSxk5cmTJ186+QFdddRUffPAB99xzD1lZWdx4442kpqYyfPhwfvvtNwIDA0uO+eSTT7jtttsYNWoUdrudSZMm8dJLL1UrDsuygKrX5blTQUEB2dnZpKena3qh1BmNM6kKjRNxB40zcTWNKXEHjTNxJY0ncTVnrsOZ+6iMzTrRHo1AUlISrVq18nQYIiIiIiIiIiJ1Yvfu3cTHx1f6vBJEgMPhYO/evYSFhWGz2TwdTjnOFdZ2797tdSusScOhcSZVoXEi7qBxJq6mMSXuoHEmrqTxJK5mWRYZGRnExcVht1feitprVzFzJ7vdftwsmjcIDw/XDwepcxpnUhUaJ+IOGmfiahpT4g4aZ+JKGk/iShERESfcx2tXMRMREREREREREfdQgkhEREREREREpJFTgsjLBQQE8NBDDxEQEODpUKQB0ziTqtA4EXfQOBNX05gSd9A4E1fSeBJPUZNqEREREREREZFGTjOIREREREREREQaOSWIREREREREREQaOSWIREREREREREQaOSWIREREREREREQaOSWIauDJJ59k4MCBhIWFERsbyznnnMOmTZvK7ZObm8vkyZOJjo4mNDSUSZMmsX///pLnV61axSWXXEKrVq0ICgqia9euvPjii+XOMX/+fE466SSio6MJCgqiS5cuPP/88yeMz7IsHnzwQVq0aEFQUBCjR49my5Yt5fZ54oknGDZsGMHBwURGRtb8myF1pr6Ps507d3LdddfRtm1bgoKCaN++PQ899BD5+fm1/M7I0er7WAE4++yzSUhIIDAwkBYtWnDFFVewd+/eWnxXxJUawhhzysvLo0+fPthsNlauXFn9b4a4REMYU23atMFms5W7PfXUU7X4roirNYRxBvDzzz8zePBggoKCaNKkCeecc07NviFSa/V9TM2ePfuYn1vO25IlS2r53ZEGwZJqO+OMM6z333/fWrt2rbVy5Upr/PjxVkJCgpWZmVmyz80332y1atXKmjlzprV06VJryJAh1rBhw0qef/fdd63bb7/dmj17trVt2zZrypQpVlBQkPXyyy+X7LN8+XLr008/tdauXWvt2LHDmjJlihUcHGy9+eabx43vqaeesiIiIqzvv//eWrVqlXX22Wdbbdu2tXJyckr2efDBB63nnnvOuvPOO62IiAjXfXPEZer7OPv111+tq6++2po2bZq1bds264cffrBiY2Otu+66y8XfKanvY8WyLOu5556zFi5caO3cudP6888/raFDh1pDhw514XdJaqMhjDGn22+/3Ro3bpwFWCtWrKj9N0dqpCGMqdatW1uPPvqotW/fvpJb2fjF8xrCOPv666+tJk2aWK+//rq1adMma926ddYXX3zhwu+SVEd9H1N5eXnlfmbt27fPuv766622bdtaDofDxd8tqY+UIHKBAwcOWIA1Z84cy7IsKzU11fLz87O++uqrkn02bNhgAdbChQsrPc+tt95qjRw58rjXOvfcc63LL7+80ucdrf1sGQAAC31JREFUDofVvHlz63//+1/JY6mpqVZAQID12WefHbP/+++/rwRRPVGfx5nTf//7X6tt27bHvbbUXkMYKz/88INls9ms/Pz8415fPKO+jrFffvnF6tKli7Vu3ToliLxMfRxTrVu3tp5//vkTvTTxIvVtnBUUFFgtW7a03nnnnSq9PnG/+jamjpafn281bdrUevTRR497bWk8VGLmAmlpaQBERUUBsGzZMgoKChg9enTJPl26dCEhIYGFCxce9zzOc1RkxYoVLFiwgFNOOaXSfXbs2EFycnK5a0dERDB48ODjXlu8X0MYZye6trhGfR8rhw8f5pNPPmHYsGH4+flVem7xnPo4xvbv388NN9zAlClTCA4OPvGLFLeqj2MK4KmnniI6Opq+ffvyv//9j8LCwuO/UPGo+jbOli9fzp49e7Db7fTt25cWLVowbtw41q5dW7UXLHWuvo2po/34448cOnSIa665ptLzSuPi6+kA6juHw8Edd9zBSSedRI8ePQBITk7G39//mN4+zZo1Izk5ucLzLFiwgC+++IKff/75mOfi4+M5ePAghYWFPPzww1x//fWVxuM8f7Nmzap8bfF+DWGcbd26lZdffplnnnmm0vNK7dXnsfLPf/6TV155hezsbIYMGcLUqVNP+HrF/erjGLMsi6uvvpqbb76ZAQMGsHPnzqq+XHGD+jimAG6//Xb69etHVFQUCxYs4N5772Xfvn0899xzVXrd4l71cZxt374dgIcffpjnnnuONm3a8Oyzz3LqqaeyefNmfejmYfVxTB3t3Xff5YwzziA+Pr7S80rjohlEtTR58mTWrl3L559/XuNzrF27lokTJ/LQQw8xZsyYY56fN28eS5cu5Y033uCFF17gs88+A+CTTz4hNDS05DZv3rwaxyDerb6Psz179jB27FguuOACbrjhhhq/Bjmx+jxW7r77blasWMH06dPx8fHhyiuvxLKsGr8OqRv1cYy9/PLLZGRkcO+999Y4Zqk79XFMAdx5552ceuqp9OrVi5tvvplnn32Wl19+mby8vBq/Dqk79XGcORwOAO6//34mTZpE//79ef/997HZbHz11Vc1fh3iGvVxTJWVlJTEtGnTuO6662ocvzRAnq5xq88mT55sxcfHW9u3by/3+MyZMy3AOnLkSLnHExISrOeee67cY+vWrbNiY2Ot++67r0rXfOyxx6xOnTpZlmVZ6enp1pYtW0pu2dnZ1rZt2yrsqzBixAjr9ttvP+Z86kHk/er7ONuzZ4/VsWNH64orrrCKioqqdH2pmfo+VsravXu3BVgLFiyoUhziHvV1jE2cONGy2+2Wj49PyQ2wfHx8rCuvvLIa3wFxtfo6piqydu1aC7A2btxYpTjEferrOJs1a5YFWPPmzSu3z6BBg6och9SN+jqmynr00Uetpk2bqt+jlKMEUQ04HA5r8uTJVlxcnLV58+Zjnnc2J/v6669LHtu4ceMxzcnWrl1rxcbGWnfffXeVr/3II49YrVu3Pm5szZs3t5555pmSx9LS0tSkuh5qCOMsKSnJ6tixo3XxxRdbhYWFVb6+VE9DGCtH27VrlwVYf/zxR5VjkbpT38fYrl27rDVr1pTcpk2bZgHW119/be3evbvKsYjr1PcxVZGPP/7Ystvt1uHDh6sci9St+j7OnF+XbVKdn59vxcbGnnA1K6kb9X1Mld23bdu2Wl1YjqEEUQ3ccsstVkREhDV79uxySwRmZ2eX7HPzzTdbCQkJ1qxZs6ylS5ces2TzmjVrrKZNm1qXX355uXMcOHCgZJ9XXnnF+vHHH63Nmzdbmzdvtt555x0rLCzMuv/++48b31NPPWVFRkZaP/zwg7V69Wpr4sSJxyyZuWvXLmvFihXWI488YoWGhlorVqywVqxYYWVkZLjwOyW1Ud/HWVJSktWhQwdr1KhRVlJSUrnri2vV97GyaNEi6+WXX7ZWrFhh7dy505o5c6Y1bNgwq3379lZubq6Lv1tSE/V9jB1tx44dWsXMw+r7mFqwYIH1/PPPWytXrrS2bdtmffzxx1bTpk01I83L1PdxZlmW9fe//91q2bKlNW3aNGvjxo3WddddZ8XGxioR6SENYUxZlmX9/vvvFmBt2LDBRd8ZaSiUIKoBoMLb+++/X7JPTk6Odeutt1pNmjSxgoODrXPPPbfcG+OHHnqownOUzQq/9NJLVvfu3a3g4GArPDzc6tu3r/Xaa6+dsEzH4XBYDzzwgNWsWTMrICDAGjVqlLVp06Zy+1x11VUVXl+f1nuP+j7O3n///Upfg7hWfR8rq1evtkaOHGlFRUVZAQEBVps2baybb77ZSkpKctn3SGqnvo+xoylB5Hn1fUwtW7bMGjx4sBUREWEFBgZaXbt2tf7zn/8oqe1l6vs4sywzY+iuu+6yYmNjrbCwMGv06NHW2rVrXfL9keprCGPKsizrkksusYYNG1br74c0PDbLUgdQEREREREREZHGTKuYiYiIiIiIiIg0ckoQiYiIiIiIiIg0ckoQiYiIiIiIiIg0ckoQiYiIiIiIiIg0ckoQiYiIiIiIiIg0ckoQiYiIiIjI/7d3N6Gw/XEcxz9j/q4akkieIizYYGJBTVkQNWWUjSg1kQ1SyGRhZcNEzSQ2Vh4WSpJYsfC0IAvZeC4b2YynBZpkMOYubind/78k905/5/1a/n7nnH7f7bvTOQAAgyMQAQAAAAAAGByBCAAAAAAAwOAIRAAAAAAAAAZHIAIAAPiExsZGmUwmmUwmRUZGKikpSZWVlRofH9fr6+uHnzM5Oam4uLg/d1AAAIAPIBABAAB8kt1ul8/n09nZmZaWllRWVqaOjg45HA69vLyE+3gAAAAfRiACAAD4pKioKCUnJystLU1FRUXq7e3V4uKilpaWNDk5KUnyer3Kz89XdHS00tPT1dbWJr/fL0na2NhQU1OT7u7u3t5G6uvrkyQFAgG5XC6lpaUpOjpaJSUl2tjYCM+gAADg2yMQAQAAfKHy8nJZrVbNz89LkiIiIjQyMqLDw0NNTU1pbW1NPT09kiSbzabh4WHFxsbK5/PJ5/PJ5XJJktrb27W9va2ZmRnt7e2ptrZWdrtdp6enYZsNAAB8X6ZQKBQK9yEAAAD+bxobG3V7e6uFhYXf9urr67W3t6ejo6Pf9ubm5tTS0qKbmxtJv75B1NnZqdvb27drzs/PlZ2drfPzc6Wmpr6tV1RUqLi4WAMDA18+DwAAMLZ/wn0AAACA7yYUCslkMkmSVlZW5Ha7dXJyovv7e728vOjx8VEPDw+yWCz/ev/+/r6CwaBycnLerQcCASUkJPzx8wMAAOMhEAEAAHyx4+NjZWVl6ezsTA6HQ62trerv71d8fLw2NzfV3Nysp6en/wxEfr9fZrNZu7u7MpvN7/ZiYmL+xggAAMBgCEQAAABfaG1tTfv7++rq6tLu7q5eX1/l8XgUEfHr04+zs7Pvrv/x44eCweC7tcLCQgWDQV1dXam0tPSvnR0AABgXgQgAAOCTAoGALi4uFAwGdXl5qeXlZbndbjkcDjmdTh0cHOj5+Vmjo6Oqrq7W1taWxsbG3j0jMzNTfr9fq6urslqtslgsysnJUUNDg5xOpzwejwoLC3V9fa3V1VUVFBSoqqoqTBMDAIDvir+YAQAAfNLy8rJSUlKUmZkpu92u9fV1jYyMaHFxUWazWVarVV6vV4ODg8rLy9P09LTcbve7Z9hsNrW0tKiurk6JiYkaGhqSJE1MTMjpdKq7u1u5ubmqqanRzs6OMjIywjEqAAD45viLGQAAAAAAgMHxBhEAAAAAAIDBEYgAAAAAAAAMjkAEAAAAAABgcAQiAAAAAAAAgyMQAQAAAAAAGByBCAAAAAAAwOAIRAAAAAAAAAZHIAIAAAAAADA4AhEAAAAAAIDBEYgAAAAAAAAMjkAEAAAAAABgcD8Bg+4WCpkTGI0AAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1400x700 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"ipython_user (to assistant):\n",
|
||
"\n",
|
||
"exitcode: 0 (execution succeeded)\n",
|
||
"Code output: \n",
|
||
"None\n",
|
||
"None\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"assistant (to ipython_user):\n",
|
||
"\n",
|
||
"It seems like the code executed successfully but didn't produce any output. This could be due to the fact that the IPython environment you're using might not support matplotlib's interactive mode. \n",
|
||
"\n",
|
||
"Let's try a different approach using pandas' built-in plotting function, which should work in any environment. \n",
|
||
"\n",
|
||
"```python\n",
|
||
"# Python code\n",
|
||
"import yfinance as yf\n",
|
||
"import pandas as pd\n",
|
||
"from datetime import datetime\n",
|
||
"\n",
|
||
"# Define the ticker symbol\n",
|
||
"tickerSymbols = ['META', 'TSLA']\n",
|
||
"\n",
|
||
"# Get data on this ticker\n",
|
||
"start_date = datetime(datetime.now().year, 1, 1)\n",
|
||
"end_date = datetime.now()\n",
|
||
"\n",
|
||
"# Fetch the data\n",
|
||
"data = yf.download(tickerSymbols, start=start_date, end=end_date)\n",
|
||
"\n",
|
||
"# Plot the close prices\n",
|
||
"data['Close'].plot(title='YTD Stock Price Change for META and TESLA', figsize=(14,7), grid=True)\n",
|
||
"```\n",
|
||
"\n",
|
||
"This code does the same thing as the previous one, but uses pandas' built-in plot function instead of matplotlib. The plot should appear directly in your IPython environment.\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"\n",
|
||
">>>>>>>> USING AUTO REPLY FOR THE USER...\n",
|
||
"[*********************100%***********************] 2 of 2 completed\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<Axes: title={'center': 'YTD Stock Price Change for META and TESLA'}, xlabel='Date'>"
|
||
]
|
||
},
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAJMCAYAAAB0N5pyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+8ElEQVR4nOzdd3hU1dbH8e9Meu8h1AChd6SDCIIURRQERbCAKNeC5dqu1971qtdre+2ioFKUYkMEadJ7770GSEhCep857x+HBGICJGGSSfl9nifPOXPaXmdyBjPLvde2GIZhICIiIiIiIiIilYrV2QGIiIiIiIiIiEjJKakjIiIiIiIiIlIJKakjIiIiIiIiIlIJKakjIiIiIiIiIlIJKakjIiIiIiIiIlIJKakjIiIiIiIiIlIJKakjIiIiIiIiIlIJKakjIiIiIiIiIlIJKakjIiIiIiIiIlIJKakjIiJSznr37k2rVq2c1n79+vUZM2aM09q/lL/++guLxcKMGTOcHUqZSk1N5Z577iEiIgKLxcI///lPZ4ckf2OxWHjppZecHYaIiMgFKakjIiIOce211xIUFERMTEyhfUlJSdSsWZMaNWpgsVgu+TNx4kSAAttcXV0JDg6mQ4cOPPLII+zcubPYsWVnZ/PBBx/Qvn17/P39CQwMpGXLlvzjH/9g9+7d+cetXLmSl156icTExMt9O8rMmDFjCrwv/v7+tG3blnfffZesrCxnh3dJf/31FzfddBMRERG4u7sTHh7O4MGDmTVrlrNDK3dvvPEGEydO5P777+e7777jjjvuKNP26tevj8Vi4Zprrily/5dffpn/XK1fvz5/+0svvXTRz+upU6fo3bt3sT7b5ydIdu3ahcViwdPTs0J/5i6mpPed9zso6mfgwIEFrr18+XKuvfZaateujaenJ/Xq1WPw4MFMmTKlwHEWi4UHH3yw2DF/8sknWCwWunTpctn3LyIizufq7ABERKRq+OSTT2jVqhWPPvpooS8dzzzzDHFxcTz33HNERUXlb58zZw5Tp07lvffeIzQ0NH979+7d89f79evHnXfeiWEYJCUlsWXLFiZNmsQnn3zCW2+9xWOPPXbJ2IYNG8Yff/zByJEjGTduHDk5OezevZvZs2fTvXt3mjVrBphJnZdffpkxY8YQGBh4me9I2fHw8OCrr74CIDExkZkzZ/LEE0+wbt06pk2bdsnz9+zZg9Va/v9f58UXX+SVV16hcePG3HvvvURGRhIfH8+cOXMYNmwYkydPZtSoUeUel7MsWrSIrl278uKLL5Zbm56enixevJhTp04RERFRYN/kyZPx9PQkMzOzyHM//fRTfH19C20PDAzk2Wef5Z577snftm7dOj788EOeeeYZmjdvnr+9TZs2+evff/89ERERnDlzhhkzZhQ4v7IozX23a9eOxx9/vNC1atWqlb8+ffp0RowYQbt27XjkkUcICgri0KFDLF26lC+//PKyPieTJ0+mfv36rF27lv3799OoUaNSX0tERCoAQ0RExEHeeustAzDmzZuXv23t2rWG1Wo1/vWvfxU6/p133jEA49ChQ0VeDzDGjx9faHtcXJzRrVs3AzB+//33i8a0du1aAzBef/31Qvtyc3ONuLi4YsfjKL169TJatmxZqnNHjx5t+Pj4FNhms9mMjh07GoARHR1d5Hl2u91IT08vVZuOMH36dAMwhg8fbmRnZxfaP3fuXOO3334zDMMwFi9ebADG9OnTyzvMctWgQQNj0KBBDrteTk6OkZWVdcH9kZGRRt++fQ1/f3/j/fffL7Dv2LFjhtVqNYYNG2YAxrp16/L3vfjiiwZgnD59utix5P2+Fy9eXOR+u91u1K9f33jssceMoUOHGr179y72tcsTYLz44ovFPv5S9x0ZGVms33mLFi2Mli1bFvn7jImJKRRjUf9OFuXgwYMGYMyaNcsICwszXnrppWKdJyIiFZeGX4mIiMM89thjtGnThgceeIDMzExsNhv33XcfkZGRDu2NEBISwrRp03B1deX111+/6LEHDhwAoEePHoX2ubi4EBISAphDTJ588kkAGjRokD8k4vDhwwDk5uby6quvEhUVhYeHB/Xr1+eZZ54pcsjTH3/8Qa9evfDz88Pf359OnToV6r30d3/++Sfe3t6MHDmS3NzcS74H57NarfTu3RsgP9769etz/fXXM2/ePDp27IiXlxeff/55/r6/19RJTEzk0UcfpX79+nh4eFCnTh3uvPNO4uLi8o/JysrixRdfpFGjRnh4eFC3bl3+9a9/FWvY1/PPP09wcDBff/01bm5uhfYPGDCA66+/vsA2u93O66+/Tp06dfD09KRv377s37+/wDHLli3j5ptvpl69evkxPfroo2RkZBQ4bsyYMfj6+hIdHc2QIUPw9fUlLCyMJ554ApvNVuDY+Ph47rjjjvyheqNHj2bLli0Fhgbm2b17N8OHDyc4OBhPT086duzIr7/+etH3Iq9m0KFDh/j9998LPWuxsbHcfffd1KhRA09PT9q2bcukSZMKXOPw4cNYLBb++9//8v777+c/l5calujp6clNN91U6HmcOnUqQUFBDBgw4KLnO8qKFSs4fPgwt956K7feeitLly7l+PHjxTp369atjBkzhoYNG+Lp6UlERARjx44lPj6+wHF5w8b279+f3/suICCAu+66i/T09ALHZmVl8eijjxIWFoafnx833HBDseMpCwcOHKBTp064u7sX2hceHl7q606ePJmgoCAGDRrE8OHDmTx58uWEKSIiFYCGX4mIiMO4urryxRdf0L17d1599VXCw8PZuHEjc+fOxdvb26Ft1atXj169erF48WKSk5Px9/cv8rjIyEjA/DLTo0cPXF2L/k/fTTfdxN69ewsNBwsLCwPgnnvuYdKkSQwfPpzHH3+cNWvW8Oabb7Jr1y5++umn/OtMnDiRsWPH0rJlS55++mkCAwPZtGkTc+fOveCQidmzZzN8+HBGjBjB119/jYuLS4nfj7zkVV6SCsxhViNHjuTee+9l3LhxNG3atMhzU1NT6dmzJ7t27WLs2LFcccUVxMXF8euvv3L8+HFCQ0Ox2+3ccMMNLF++nH/84x80b96cbdu28d5777F3715+/vnnC8a2b98+du/ezdixY/Hz8yv2Pf3nP//BarXyxBNPkJSUxNtvv81tt93GmjVr8o+ZPn066enp3H///YSEhLB27Vo++ugjjh8/zvTp0wtcz2azMWDAALp06cJ///tfFixYwLvvvktUVBT3338/YCaSBg8ezNq1a7n//vtp1qwZv/zyC6NHjy4U344dO+jRowe1a9fm3//+Nz4+Pvz4448MGTKEmTNnMnTo0CLvq3nz5nz33Xc8+uij1KlTJ38oTlhYGBkZGfTu3Zv9+/fz4IMP0qBBA6ZPn86YMWNITEzkkUceKXCtb775hszMTP7xj3/g4eFBcHDwJd/XUaNG0b9/fw4cOJA/HHLKlCkMHz68yIRbnoSEhELbXF1dSzVUcfLkyURFRdGpUydatWqFt7c3U6dOzU+sXsz8+fM5ePAgd911FxEREezYsYMvvviCHTt2sHr1aiwWS4Hjb7nlFho0aMCbb77Jxo0b+eqrrwgPD+ett97KP+aee+7h+++/Z9SoUXTv3p1FixYxaNCgEt9XceTk5BRIlubx8fHBy8sLMP/dWrhwIcePH6dOnToOa3vy5MncdNNNuLu7M3LkSD799FPWrVtHp06dHNaGiIiUM2d3FRIRkarnwQcfNNzc3AxfX19j5MiRFzyutMOv8jzyyCMGYGzZsuWCx9jtdqNXr14GYNSoUcMYOXKk8fHHHxtHjhwpdjybN282AOOee+4psP2JJ54wAGPRokWGYRhGYmKi4efnZ3Tp0sXIyMgoFEee84dfzZw503BzczPGjRtn2Gy2C95HnrzhV6dPnzZOnz5t7N+/33jjjTcMi8VitGnTJv+4yMhIAzDmzp1b6BqRkZHG6NGj81+/8MIL+UMy/i4v7u+++86wWq3GsmXLCuz/7LPPDMBYsWLFBWP+5ZdfDMB47733Lnl/hnFu+FXz5s0LDD/54IMPDMDYtm1b/raihpS9+eabhsViKfA7Hj16tAEYr7zySoFj27dvb3To0CH/9cyZMw2gwPAkm81m9OnTxwCMb775Jn973759jdatWxuZmZn52+x2u9G9e3ejcePGl7zPoobivP/++wZgfP/99/nbsrOzjW7duhm+vr5GcnKyYRiGcejQIQMw/P39jdjY2Eu2dX57ubm5RkREhPHqq68ahmEYO3fuNABjyZIlxjfffHPB4VdF/TRt2rTIti42DCk7O9sICQkxnn322fxto0aNMtq2bVus+yjqdz516lQDMJYuXVoo7rFjxxY4dujQoUZISEj+67zP9wMPPFDguFGjRpXJ8KsLvZdvvvlm/nETJkwwAMPd3d24+uqrjeeff95YtmxZkf9GXOrfyTzr1683AGP+/PmGYZjPap06dYxHHnmk2PcnIiIVj4ZfiYiIw73++uuEhIRgtVp57733yqydvKKtKSkpFzzGYrEwb948XnvtNYKCgpg6dSrjx48nMjKSESNGFGvWnTlz5gAUKsqc18Pi999/B8weBCkpKfz73//G09OzUBx/N3XqVEaMGMG9997L559/XuzixWlpaYSFhREWFkajRo145pln6NatW4EeQ2AOIyvOcJqZM2fStm3bInuW5MU9ffp0mjdvTrNmzYiLi8v/6dOnDwCLFy++4PWTk5MBStRLB+Cuu+4qMPykZ8+eABw8eDB/W17PBjDfl7i4OLp3745hGGzatKnQNe+7774Cr3v27FngenPnzsXNzY1x48blb7NarYwfP77AeQkJCSxatIhbbrmFlJSU/PcjPj6eAQMGsG/fPqKjo0t0v2A+axEREYwcOTJ/m5ubGw8//DCpqaksWbKkwPHDhg3L701WXC4uLtxyyy1MnToVMHtv1K1bN//9vZCZM2cyf/78Aj/ffPNNidoGc3hifHx8gXscOXIkW7ZsYceOHZc8//zfeWZmJnFxcXTt2hWAjRs3Fjq+qN95fHx8/nOZ9/l++OGHCxxXVlPMd+nSpdD7OH/+/ALvx9ixY5k7dy69e/dm+fLlvPrqq/Ts2ZPGjRuzcuXKUrU7efJkatSowdVXXw2Yn+0RI0Ywbdq0QkMQRUSk8tDwKxERcTh/f3+aNm1KXFwcNWrUKLN2UlNTgUsnCzw8PHj22Wd59tlnOXnyJEuWLOGDDz7gxx9/xM3Nje+///6i5x85cgSr1VpolpiIiAgCAwM5cuQIcG4IVKtWrS4Z+6FDh7j99tu5+eab+eijjy55/Pk8PT357bff8u+tQYMGRQ7RaNCgQbGud+DAAYYNG3bRY/bt28euXbsumECIjY294Ll5Q+MulnwrSr169Qq8DgoKAuDMmTP5244ePcoLL7zAr7/+WmA7QFJSUoHXnp6eheIPCgoqcN6RI0eoWbNmoeGCf//d79+/H8MweP7553n++eeLjD82NpbatWtf7BYLOXLkCI0bNy6U4MubSSnvWctT3N/x340aNYoPP/yQLVu2MGXKFG699dYiE4/nu+qqqwrMUlda33//PQ0aNMDDwyO/RlJUVBTe3t5MnjyZN95446LnJyQk8PLLLzNt2rRCz93ff+dw8efI398///N9/sx8wAWHK16u0NDQC04rf74BAwYwYMAA0tPT2bBhAz/88AOfffYZ119/Pbt37y5RbR2bzca0adO4+uqrOXToUP72Ll268O6777Jw4UL69+9fqvsRERHnUlJHREQqre3bt+Pi4lKiL7Y1a9bk1ltvZdiwYbRs2ZIff/yRiRMnXrDWzvku9aW3JGrWrEnNmjWZM2cO69evp2PHjsU+18XFpVhfCs/v0XC57HY7rVu35n//+1+R++vWrXvBc/OmjN+2bVuJ2rxQbSHDMADzi2q/fv1ISEjgqaeeolmzZvj4+BAdHc2YMWOw2+3Ful5p5F37iSeeuGBvqPKYKrq0v+MuXboQFRXFP//5Tw4dOlRuU8knJyfz22+/kZmZSePGjQvtnzJlCq+//vpFP2u33HILK1eu5Mknn6Rdu3b4+vpit9sZOHBgod85XPo5qui8vb3p2bMnPXv2JDQ0lJdffpk//vijyDpPF7Jo0SJOnjzJtGnTmDZtWqH9kydPVlJHRKSSUlJHREQqpaNHj7JkyRK6detW4mE9YA5padOmDfv27SMuLo6IiIgLfpGMjIzEbrezb9++/B4TADExMSQmJuYXY877P/3bt2+/5Bd6T09PZs+eTZ8+fRg4cCBLliyhZcuWJb4PR4iKimL79u2XPGbLli307du3xMmtJk2a0LRpU3755Rc++OCD/GFzl2vbtm3s3buXSZMmceedd+Zvnz9/fqmvGRkZyeLFi0lPTy/QW+fvs241bNgQMJ+j4iTYStL+1q1bsdvtBXrr7N69O3+/o4wcOZLXXnuN5s2b065dO4dd92JmzZpFZmYmn376aaFeP3v27OG5555jxYoVXHnllUWef+bMGRYuXMjLL7/MCy+8kL993759pY4p7/N94MCBAr1z9uzZU+prlpW85O/JkydLdN7kyZMJDw/n448/LrRv1qxZ/PTTT3z22WcOTQSLiEj5UE0dERGpdBISEhg5ciQ2m41nn332osfu27ePo0ePFtqemJjIqlWrCAoKyh+S4+Pjk7/vfNdddx0A77//foHteb1W8mbJ6d+/P35+frz55ptkZmYWOLaoXgEBAQHMmzeP8PBw+vXrlz98q7wNGzaMLVu2FKrJA+fivuWWW4iOjubLL78sdExGRgZpaWkXbePll18mPj6ee+65p8gp2//8809mz55dorjzemCc/94ahsEHH3xQouucb8CAAeTk5BS4T7vdXujLcHh4OL179+bzzz8v8gv26dOnS9X+ddddx6lTp/jhhx/yt+Xm5vLRRx/h6+tLr169SnXdotxzzz28+OKLvPvuuw675qV8//33NGzYkPvuu4/hw4cX+HniiSfw9fW96DTbRf3OofBnsySuvfZaAD788EOHXfNyLVy4sMjtefV/SjI0LCMjg1mzZnH99dcXes+HDx/Ogw8+SEpKCr/++qtDYhcRkfKlnjoiIlKh7d27l++//x7DMEhOTmbLli1Mnz6d1NRU/ve//zFw4MCLnr9lyxZGjRrFtddeS8+ePQkODiY6OppJkyZx4sQJ3n///fwvih06dADg2Wef5dZbb8XNzY3BgwfTtm1bRo8ezRdffEFiYiK9evVi7dq1TJo0iSFDhuQXHvX39+e9997jnnvuoVOnTowaNYqgoCC2bNlCeno6kyZNKhRfaGgo8+fP58orr+Saa65h+fLlJa7DcrmefPJJZsyYwc0338zYsWPp0KEDCQkJ/Prrr3z22We0bduWO+64gx9//JH77ruPxYsX06NHD2w2G7t37+bHH39k3rx5Fx1CNmLECLZt28brr7/Opk2bGDlyJJGRkcTHxzN37lwWLlzIlClTShR3s2bNiIqK4oknniA6Ohp/f39mzpxZqLZOSQwZMoTOnTvz+OOPs3//fpo1a8avv/6aP533+b2UPv74Y6688kpat27NuHHjaNiwITExMaxatYrjx4+zZcuWErf/j3/8g88//5wxY8awYcMG6tevz4wZM1ixYgXvv/9+qXqlXUhkZCQvvfRSsY+fMWNGkb2s+vXrV6zaWSdOnGDx4sWFChLn8fDwYMCAAUyfPp0PP/ywyOnV/f39ueqqq3j77bfJycmhdu3a/PnnnwXqxJRUu3btGDlyJJ988glJSUl0796dhQsXFuqd5SjR0dFF1vHy9fVlyJAhANx44400aNCAwYMHExUVRVpaGgsWLOC3336jU6dODB48uMC569ev57XXXit0zd69exMdHU1KSgo33HBDkfF07dqVsLAwJk+ezIgRIy7/BkVEpHw5a9otERGp2s6ftvtCijOled6P1Wo1AgMDjfbt2xuPPPKIsWPHjmLFERMTY/znP/8xevXqZdSsWdNwdXU1goKCjD59+hgzZswodPyrr75q1K5d27BarQViy8nJMV5++WWjQYMGhpubm1G3bl3j6aefLjCddZ5ff/3V6N69u+Hl5WX4+/sbnTt3NqZOnXrR92b//v1GzZo1jebNmxunT5++4P3kTWl+KUVNl33+vvOnNDcMw4iPjzcefPBBo3bt2oa7u7tRp04dY/To0UZcXFz+MdnZ2cZbb71ltGzZ0vDw8DCCgoKMDh06GC+//LKRlJR0yZgMwzAWLlxo3HjjjUZ4eLjh6upqhIWFGYMHDzZ++eWX/GPypjSfPn16gXPzpvE+f1rxnTt3Gtdcc43h6+trhIaGGuPGjTO2bNlS6LgLvW95016f7/Tp08aoUaMMPz8/IyAgwBgzZoyxYsUKAzCmTZtW4NgDBw4Yd955pxEREWG4ubkZtWvXNq6//voin62/u9DvKCYmxrjrrruM0NBQw93d3WjdunWBezn/vXjnnXcu2c6l2jtfSac05wLTdxc1tfe7775rAMbChQsv2P7EiRMNoMDz8HfHjx83hg4dagQGBhoBAQHGzTffbJw4caLQ9ON5cf/985R3j+f/u5ORkWE8/PDDRkhIiOHj42MMHjzYOHbsWLlOaR4ZGZl/3NSpU41bb73ViIqKMry8vAxPT0+jRYsWxrPPPps/rX2ei/1uXn31VWPw4MGGp6enkZaWdsG4x4wZY7i5uRX4vIuISOVgMYxKUiVORERExEl+/vlnhg4dyvLly+nRo4ezwxEREREBQEkdERERkfNkZGQUKBhrs9no378/69ev59SpUyomKyIiIhWGauqIiIiInOehhx4iIyODbt26kZWVxaxZs1i5ciVvvPGGEjoiIiJSoainjoiIiMh5pkyZwrvvvsv+/fvJzMykUaNG3H///Tz44IPODk1ERESkACV1REREREREREQqIauzAxARERERERERkZJTUkdEREREREREpBKqlIWS7XY7J06cwM/PD4vF4uxwREREREREREQcwjAMUlJSqFWrFlbrxfviVMqkzokTJ6hbt66zwxARERERERERKRPHjh2jTp06Fz2mUiZ1/Pz8APMG/f39nRxNYTk5Ofz555/0798fNzc3Z4cjVZCeMSkuPStSHvSciSPpeZLyoOdMHE3PlDhScnIydevWzc99XEylTOrkDbny9/evsEkdb29v/P399YGWMqFnTIpLz4qUBz1n4kh6nqQ86DkTR9MzJWWhOOVmVChZRERERERERKQSUlJHRERERERERKQSUlJHRERERERERKQSqpQ1dYrLZrORk5NT7u3m5OTg6upKZmYmNput3NsvK25ubri4uDg7DBERERERERGhiiZ1DMPg1KlTJCYmOq39iIgIjh07VqzCRpVJYGAgERERVe6+RERERERERCqbKpnUyUvohIeH4+3tXe4JCLvdTmpqKr6+vlitVWOEm2EYpKenExsbC0DNmjWdHJGIiIiIiIhI9Vblkjo2my0/oRMSEuKUGOx2O9nZ2Xh6elaZpA6Al5cXALGxsYSHh2soloiIiIiIiIgTVZ2Mw1l5NXS8vb2dHEnVlPe+OqNWkYiIiIiIiIicU+WSOnlU86Vs6H0VERERERERqRiqbFJHRERERERERKQqU1JHRERERERERKQSUlKnAhkzZgwWi4X77ruv0L7x48djsVgYM2ZMgWP//jNw4ED++uuvIved//PXX38BcPz4cdzd3WnVqlU53qmIiIiIiIiIXK4qN/tVZVe3bl2mTZvGe++9lz/bVGZmJlOmTKFevXoFjh04cCDffPNNgW0eHh74+Phw8uTJ/G2PPPIIycnJBY4NDg4GYOLEidxyyy0sXbqUNWvW0KVLl7K6NRERERERERFxoGqR1DEMg4wcW7m1Z7fbyci24WcYJT73iiuu4MCBA8yaNYvbbrsNgFmzZlGvXj0aNGhQ4FgPDw8iIiKKvM752728vMjKyip0rGEYfPPNN3zyySfUqVOHCRMmKKkjIiIiIiIiUklUi6RORo6NFi/MK/d2t7/UD18XlxKfN3bsWL755pv8pM7XX3/NXXfdlT9kylEWL15Meno611xzDbVr16Z79+689957+Pj4OLQdEREREREREXE81dSpgG6//XaWL1/OkSNHOHLkCCtWrOD2228vdNzs2bPx9fUt8PPGG28Uu50JEyZw66234uLiQqtWrWjYsCHTp0935K2IiIiIiIiISBmpFj11vNxc2PnKgHJrz263k5KcgpdbyXvpAISFhTFo0CAmTpyIYRgMGjSI0NDQQsddffXVfPrppwW25dXKuZTExERmzZrF8uXL87fdfvvtTJgwIb8Ys4iIiIiIiIhUXNUiqWOxWPB2L79btdvt5Lq7YLFYSn2NsWPH8uCDDwLw8ccfF3mMj48PjRo1KtX1p0yZQmZmZoEaOoZhYLfb2bt3L02aNCnVdUVEREREREQcyTAMZmw4TmSID50bFK8jQ3Wh4VcV1MCBA8nOziYnJ4cBAxzfy2jChAk8/vjjbN68Of9ny5Yt9OzZk6+//trh7YmIiIiIiIiUxs+bo3lyxlbGT9mIUYoJiaqyatFTpzJycXFh165d+etFycrK4tSpUwW2ubq6FjlU63ybN29m48aNTJ48mWbNmhXYN3LkSF555RVee+01XF31eIiIiIiIiIjzJGfm8PrvuwE4nZJFbEoWNfw9nRxVxaGeOhWYv78//v7+F9w/d+5catasWeDnyiuvvOR1J0yYQIsWLQoldACGDh1KbGwsc+bMuazYRURERERERC7Xe/P3Epealf9696kUJ0ZT8agrRgUyceLEi+7/+eefCxx7qeMvdN2PPvrogsdGRERgs9mKdV0RERERERGRsrLzRDKTVh4GoG6wF8cSMthzKpleTcKcG1gFop46IiIiIiIiIlIsWbk20rJyy7wdwzB44Zft2A0Y1Lomt3SoC8Duk+qpcz4ldURERERERETkknJsdm7+bBU93lrE8TPpZdrWrI3RrD9yBm93F567vjlNI/wADb/6OyV1REREREREROSSvl11hK3Hk0hMz+GDBfvKrJ2kjBze/MOcOOjhvo2pGeBFswiz3uz+06nk2uxl1nZlo6SOiIiIiIiIiFxUXGoW78/fm/965sbj7I9NLZO2/vfnHuJSs4kK82FsjwYA1AnywtvdhexcO4fj08qk3cpISR0RERERERERuaj/zttDSlYurWr7c03zGtgNc2YqR4pJzuThqZuYtOoIAK/c2Ap3VzNtYbVaaFJDQ7D+TkkdEREREREREbmgrccT+WH9MQBeGtySJwc0xWKB37edZHt00mVfP8dm56tlB+nz37/4dcsJLBZ48OpG9GgUWuC4Znl1dVQsOZ+mNBcRERERERGRItntBi/9ugPDgKHta9OxfjAAQ9rV5qdN0bwzbw+TxnYu1bXTs3NZuT+et+ftZm+MOZSrXd1AXr2xFa3rBBQ6vpmKJReipI6IiIiIiIiIFOnnzdFsPJqIt7sL/762Wf72f17TmN+2nGDJ3tOsORhPl4Yhl7xWSmYO64+cYc3BBNYeimfr8SRy7QYAwT7uPDWwKTd3qIvVainy/KZniyXviUl2wJ1VDUrqiIiIiIiIiEghqVm5vPnHbgAe7NOIGv6e+fsiQ3y4tXNdvl99lP/+uYcf7+2GxVIwGZOUnsPaw2YCZ82hBLZHJ3E2h5OvZoAnA1tF8EjfxgR6u180nryeOscSMkjNysXXQykNvQMiIiIiIiIiUsj/LdrP6ZQsIkO8ufvKBoX2P9SnMdPXH2fd4TP8tec0beoEsPZQAmvO/uw+lYzxtyROvWBvOjcIpkuDYLo2DKFOkFehZNCFBPm4E+7nQWxKFntOpdAhMsgRt1mpKalTAVzqAX7xxRd56aWX+Omnn3jrrbfYtWsXdrudevXq0a9fP95//30AJk6cyD//+U8SExMv2WazZs04dOgQR44cISIiwgF3ISIiIiIiIlWFYRj8sO4oAM9c1xwPV5dCx9Tw92RM9/p8vvQg90/eQGaOvdAxDcN86NIghC4NguncIJhagV6XFVfTCD8ldc6jpE4FcPLkyfz1H374gRdeeIE9e/bkb/P19WXhwoWMGDGC119/nRtuuAGLxcLOnTuZP39+idtbvnw5GRkZDB8+nEmTJvHUU0855D5ERERERESkajgcn86Z9BzcXa1c3TT8gsfd1yuKqWuPkpyZC0DTGn50aRhMlwYhdGoQRLif5wXPLY3mNf1Zti+OPadUVweqS1LHMCAnvfzas9vN9gy/Yh1+fk+ZgIAALBZLod4zv/32Gz169ODJJ5/M39akSROGDBlS4vAmTJjAqFGj6NWrF4888oiSOiIiIiIiIlLA5mNnAGhVyx93V+sFjwvycWfWAz04Ep9G+3pBBPtcvC7O5WpaQzNgna96JHVy0uGNWuXWnBUIBOz/Pg4uxUvsXEpERARTpkxh+/bttGrVqtTXSUlJYfr06axZs4ZmzZqRlJTEsmXL6Nmzp0PiFBERERERkcpv89FEANrVvfQQp0bhvjQK9y3jiExNzxZL3hOTgmEYxa7HU1VdON0mFcpDDz1Ep06daN26NfXr1+fWW2/l66+/Jisrq0TXmTZtGo0bN6Zly5a4uLhw6623MmHChDKKWkRERERERCqjzccSAWhXL9Cpcfxdo3BfXKwWEtNziEku2ffhqqh69NRx84ZnTpRbc3a7neSUFPzdvB12TR8fH37//XcOHDjA4sWLWb16NY8//jgffPABq1atwtu7eG19/fXX3H777fmvb7/9dnr16sVHH32En59jehWJiIiIiIhI5ZWZY2PnSbNmTfu6gc4N5m883VyoH+LNgdNp7D6VTESAY2v2VDbVo6eOxQLuPuX74+ZttutgUVFR3HPPPXz11Vds3LiRnTt38sMPPxTr3J07d7J69Wr+9a9/4erqiqurK127diU9PZ1p06Y5PFYRERERERGpfHacSCbHZhDi406doMubraosNKvpD8Ae1dWpJkmdKqp+/fp4e3uTlpZWrOMnTJjAVVddxZYtW9i8eXP+z2OPPaYhWCIiIiIiIgKcG3rVvl5ghaxZ0+xssWQldarL8Ksq4KWXXiI9PZ3rrruOyMhIEhMT+fDDD8nJyaFfv375x9lsNjZv3lzgXA8PDxo1asR3333HK6+8UqjQ8j333MP//vc/duzYQcuWLcvjdkRERERERKSCyq+nU8GGXuXJK5a8S0kdJXUqi169evHxxx9z5513EhMTQ1BQEO3bt+fPP/+kadOm+celpqbSvn37AudGRUXx1ltvER8fz9ChQwtdu3nz5jRv3pwJEybwv//9r8zvRURERERERCquvOnMizPzlTM0izCHXx2ITSXHZsfNpfoOQlJSp4IZM2YMY8aMKbT96quv5uqrry7VuXlsNtsF9+3cubO4IYqIiIiIiEgVFZeaxbGEDCwWaFM3wNnhFKlOkBfe7i6kZ9s4HJdG4xrVd9Kf6pvOEhEREREREZECNh9NBCAqzBd/TzfnBnMBVqslfwjW7mo+BEtJHREREREREREBKn49nTzNIlQsGZTUEREREREREZGzzp/5qiJrWiOvp06ykyNxLiV1RERERERERAS73WBLZempU9MslrwtOgnDMJwcjfNU2aROdf6lliW9ryIiIiIiIlXTwbhUUrJy8XJzye8JU1G1qxuIh6uVmOQs9sRU3yFYJUrqfPrpp7Rp0wZ/f3/8/f3p1q0bf/zxR/7+zMxMxo8fT0hICL6+vgwbNoyYmJgC1zh69CiDBg3C29ub8PBwnnzySXJzcx1zN4Cbm1nIKT093WHXlHPy3te891lERERERESqho1niyS3rh2AawWfJtzTzYXuUSEALN592snROE+JpjSvU6cO//nPf2jcuDGGYTBp0iRuvPFGNm3aRMuWLXn00Uf5/fffmT59OgEBATz44IPcdNNNrFixAjCn1B40aBARERGsXLmSkydPcuedd+Lm5sYbb7zhkBtycXEhMDCQ2NhYALy9vbFYLA65dnHZ7Xays7PJzMzEaq3YH4TiMgyD9PR0YmNjCQwMxMXFxdkhiYiIiIiIiAPlF0mu4PV08lzdLJzFe06zeE8s9/eOcnY4TlGipM7gwYMLvH799df59NNPWb16NXXq1GHChAlMmTKFPn36APDNN9/QvHlzVq9eTdeuXfnzzz/ZuXMnCxYsoEaNGrRr145XX32Vp556ipdeegl3d3eH3FRERARAfmKnvBmGQUZGBl5eXuWeUCprgYGB+e+viIiIiIiIVB1505lX9Ho6eXo3CQd2sOHIGZIycgjwqn4jSkqU1DmfzWZj+vTppKWl0a1bNzZs2EBOTg7XXHNN/jHNmjWjXr16rFq1iq5du7Jq1Spat25NjRo18o8ZMGAA999/Pzt27KB9+/ZFtpWVlUVWVlb+6+Rks7p1Tk4OOTk5RZ4TGhpKUFAQubm55V4HJjc3l5UrV9K9e3dcXUv9FlcoFosFV1dXXFxcHDpcTkon77m/0PMvkkfPipQHPWfiSHqepDzoORNHqwrPVHp2bn5tmlY1fSvFvdT0d6NhqA8H49JYsvsU17aqGh0QSvLelzjjsG3bNrp160ZmZia+vr789NNPtGjRgs2bN+Pu7k5gYGCB42vUqMGpU6cAOHXqVIGETt7+vH0X8uabb/Lyyy8X2v7nn3/i7e1d0lsoN0uXLnV2CFLFzZ8/39khSCWhZ0XKg54zcSQ9T1Ie9JyJo1XmZ2p/MtjsrgS4GWxasYhNzg6omOq5WTmIlcmLNmMctTs7HIcoSY3gEid1mjZtyubNm0lKSmLGjBmMHj2aJUuWlPQyJfL000/z2GOP5b9OTk6mbt269O/fH39//zJtuzRycnKYP38+/fr1U0FhKRN6xqS49KxIedBzJo6k50nKg54zcbSq8Ex9ufwQ7NhH50Y1uO66ds4Op9gCDsTz18QNHMzwZODAXlitlb8ESt7opOIocVLH3d2dRo0aAdChQwfWrVvHBx98wIgRI8jOziYxMbFAb52YmJj8GiwRERGsXbu2wPXyZse6WJ0WDw8PPDw8Cm13c3Or0B+Yih6fVH56xqS49KxIedBzJo6k50nKg54zcbTK/ExtizaHXl0RGVyp7qFbozC83V04nZrNvrgMWtUOcHZIl60k7/9lT81kt9vJysqiQ4cOuLm5sXDhwvx9e/bs4ejRo3Tr1g2Abt26sW3btgIFjOfPn4+/vz8tWrS43FBEREREREREpIROJmWweI/5Pb1j/SAnR1MyHq4u9GgUCsDi3c6ZLMmZStRT5+mnn+baa6+lXr16pKSkMGXKFP766y/mzZtHQEAAd999N4899hjBwcH4+/vz0EMP0a1bN7p27QpA//79adGiBXfccQdvv/02p06d4rnnnmP8+PFF9sQRERERERERkbL19tw9ZObY6VQ/iI6RlSupA3B103Dm74xh8Z5YHurb2NnhlKsSJXViY2O58847OXnyJAEBAbRp04Z58+bRr18/AN577z2sVivDhg0jKyuLAQMG8Mknn+Sf7+LiwuzZs7n//vvp1q0bPj4+jB49mldeecWxdyUiIiIiIiIil7T5WCI/bYoG4PnrW2CxVL6aNL2bhgGw6VgiZ9KyCfJxd3JE5adESZ0JEyZcdL+npycff/wxH3/88QWPiYyMZM6cOSVpVkREREREREQczDAMXp29E4BhV9ShTZ1A5wZUSrUCvWhaw489MSks3XeaG9vVdnZI5eaya+qIiIiIiIiISOUze+tJNhw5g5ebC/8a2NTZ4VyW3s3M3jp/7Tnt5EjKl5I6IiIiIiIiItVMZo6N//yxG4D7e0dRw9/TyRFdnqubhgOwZO9pbHbDydGUHyV1RERERERERKqZCcsPEZ2YQc0AT8b1bOjscC5bh8gg/DxcSUjLZuvxRGeHU26U1BERERERERGpIJIycpiy5igJadll1kZsSiafLN4PwFMDm+Hl7lJmbZUXNxcrPZucndq8Gg3BUlJHREREREREpIJ4ZNomnvlpG7d8vorTKVkOv/6WY4mMn7yRtGwb7eoGckPbWg5vw1l65w3B2hPr5EjKj5I6IiIiIiIiIhXA4j2x+YV+98emMvLL1Q5L7Gw5lsjYieu48eMVrDt8BndXKy/d0BKrtQJOYX5yCyQcLPFpvZuEEerrTqNwv2pTV6dEU5qLiIiIiIiIiOPl2Oy8/vsuAG5sV4u1hxLyEztTx3UlzM+jVNfdciyRDxbuY9Fus/eK1QJD2tfmoT6NaRDq47D4HWbPXJg6Alw84KbPoeXQYp8a7u/JumevwWKpgImqMqKkjoiIiIiIiIiTTV59hP2xqQT7uPPKja04k5bNyC9Xlzqxs/lYIh8s2JtfX6bCJ3MA4vbDrHHmui0Lpo+BxGPQ/SEoZqKmOiV0QEkdEREREREREadKTM/mvQX7AHi8fxMCvNwI8HJj6riuBRI734zpRN1g74teq6hkztD2dXiwT6OKm8wByEqBaaMgKxnqdYOINrD2c5j/PCQehWvfAmvlL+jsaErqiIiIiIiIiDjR+wv2kZSRQ7MIP0Z0rJu/vX6oT4HEzjX/W8LDfRszrmdD3F0LlsittMkcALsdfroP4vaAX024eRL41YCg+jDvGVj3JSQdh+ETwL2C30s5U6FkERERERERESfZH5vCd6uPAPD89S1wdSn4Nb1+qA8/3tuNbg1DyMq18868PVz7wVJWHogDzGTOXd+sZcjHK1i85zQuVgvDrqjDwsd78+4tbSt+Qgdg+f9g92xwcYdbvjMTOgDdHoBbJoGrJ+z9A2b9w7lxVkDqqSMiIiIiIiLiJK//vgub3eCa5jXo0Si0yGPqBnszZVwXftl8gtd+38mB02mM+nINzSL82H0qBQAXq4Uh7WrzUJ9G1K8MiZw8++bDotfM9ev+C3U7Fdzf4kZw94Xvb4KDf5V7eBWdkjoiIiIiIiIiTvDXnlgW7zmNm4uFZwc1v+ixFouFIe1rc3XTcP775x6+X3OE3adSKm8yByD+AMy8GzCgw13QYXTRx9U5m+jJToWcDHDzKrcQKzoldURERERERETKWa7NzmtnpzAf3a1+sYdJBXi78eqQVtzcsQ6Ld5/mxna1Kl8yByArFX64HTKToE5nsxDyhXj4mUOzbNmQFgeBdS98bDWjpI6IiIiIiIhIOZuy9ij7Y1MJ8nbjob6NS3x+mzqBtKkT6PjAyoNhwK8PQuxO8K0Bt3wLrheZrt1iAZ8wSI6GtNNK6pxHhZJFRERERESkwrLbDV6bvZPXf9+J3W44OxyHSErP4X/z9wLwWP+mBHi5OTmicrbyQ9jxE1hdzYSOf81Ln+MdYi7T48s2tkpGPXVERERERESkwpqx8ThfLT8EQO1AL8b0aODkiC7fBwv3kZieQ5MavozsVM16nRxYBAteMtevfQvqdS3eeT5h5jLtdJmEVVmpp46IiIiIiIhUSAlp2bw5Z1f+6zf/2M3+2BQnRnT5DpxO5dtVh4GipzCv0s4chhljwbBD+9uh493FP9fn7MxgaXFlElplVY2eHhEREREREalM3pyzizPpOTSL8OOqJmFk5dr55w+byc61X9Z198emcCYtu1TnJqXnkJ6dW+q23/h9F7l2g77NwunZOKzU16l0stNh2u2QcQZqXQHXvWvWyiku9dQpkoZfiYiIiIiISIWz5mA80zccB+D1oa2pE+TFgPeXsj06mQ8X7uOJAU1Ldd39sSn0f28p/l5u/Hd4W65pUaPY5647nMCtX6zGZjcI9fWgXrAXkSE+1A7w4MxpC+FHztAw3J9wPw8sRSQslu49zcLdsbhaLTxziSnMqxTDgN8ehphtZnJmxHfg5lmya6imTpGU1BEREREREZEKJTvXzrM/bwdgZOd6dIgMAuCNoa15YPJGPvlrP1c3C6NDZHCJr/3nzhjsBiSm53DPt+sZ26MB/762Ge6ulx7I8vHi/djOFmuOS80iLjWLjUcTz+51YfL+dQB4ulmpG+RNZIg3dYO9iQz2pl6IN//5YzcAd3arT1SYb4ljr7RWfwLbppuFkW+eBAF1Sn4N9dQpkpI6IiIiIiIiUqF8uewg+2NTCfFx56mB53rkXNe6JjddUZtZG6N59Ict/PFIT3w8Sva1duleMynQunYA26KT+HrFIdYfSeCjke2JDPG54HkHTqfy157TWCzw6/grATiakM6RhDSOxKWyad8x0i3enEjKJDPHzr7YVPbFpha6TqC3G4+UYgrzSuvgEvjzeXN9wBtQv0fprqOaOkVSUkdEREREREQqjKPx6Xy4cB8Az13fnEBv9wL7X7qhJWsOJnA0IZ1XZ+/kP8PaFPvaqVm5bDhyBoCPRrZnf2wqT8zYwtbjSQz6cDnvj2h3weFYE1ccBqBvsxq0rhMAkL/MyclhzpwjXHfdVWB14URiBkfi0zmakM6xhPT89fi0LJ65rjkB3tVkCvPEYzDjLjBs0HYkdP5H6a+V31NHSZ3zKakjIiIiIiIiFYJhGDz/y3aycu10axjCkHa1Cx3j7+nGu7e0ZeSXq5m27hh9m9egXzHr4qw6EE+OzaBesDf1Q32oH+rDnId78vDUTaw/coZHpm1i/mO9qBXoVeC8pPQcZpyt7zP2yvoXbcPNxUpkiM9Fe/1UCzkZ8MPtZg2cmm3h+vdKVhj57/Jr6iipcz7NfiUiIiIiIiJl6lhCOp8tOcAnf+0n13bhmasmrTzMkr2ncXex8trQVkUWGwbo2jCEcT0bAvDvmVuJS80qVhx5Q6+uahKav61WoBfT/tGVDpFBpGXbeOGX7RiGUeC8aeuOkpFjo1mEH90ahhSrrWrNMGD2o3Bys5mMGfE9uHld8rSLyuupk5MO2WmXHWJVoaSOiIiIiIiIOFxcahbfrjrMsE9X0vPtxfznj928PXcPL/22o1DSBGB7dBJvzDELCT99XbNLFhJ+vH8TmkX4EZ+Wzb9nbi3ymn+3dN/ZpM7fphJ3dbHy5k2tcXOxsGBXLHO3n8rfl2uzM2nlYQDG9mhwwUSTnGftl7BlKlisMPwbCKx3+dd09wHXszNmaQhWPiV1RERERERExCFSMs1hSndMWEOXNxbywi872HDkDBYLdIgMwmKB71cf5dMlBwqcl5qVy0NTN5Fts3NN83DGdK9/ybY8XF14b0Q73F2sLNgVyw/rjl30+CPxaRyJT8fVaqF7o9BC+5vU8OP+XlEAvPjrDpIycgBztqwTSZkE+7hzQ7taxXwnqrHDK2De0+Z6v1ehYS/HXNdiUV2dIiipIyIiIiIiIqWWmWPjj20nuf/7DXR4bQFPTN/Csn1x2OwGbesE8Pz1LVj9dF9m3t+dF69vAcDbc/cwa+Px/Gu88Mt2DsWlEeHvyTvD2xa7N0zzmv48MaAJAK/M3smR+AsPy8kbetUhMgjfC8yY9cDVjWgY6kNsShZvzTV7DX29/BAAt3eph6ebS7HiqraSomH6aLDnQqvh0G28Y6+vujqFqFCyiIiIiIiIlEiuzc7KA/H8svkEf+44RUpWbv6+qDAfbmxXmxva1qJ+aMFiwWN6NOBEUiZfLD3Iv2ZsJdzPk5jkTGZtjMZqgQ9ubUeQj/vfm7uou69syMJdsaw5lMCjP2zmx3u74epSuP/Ckr1mIuCqJmGF9uXxdHPhjZtac+sXq5my5ihRYb6sP3IGNxcLt3eNLFFcpWK3mcOW9v0JfZ6H0Eo09XlOJvx4B6Sdhhqt4YaPLq8wclHye+qcdux1KzEldURERERERKq5+NQs1hxKoFP9YML8PIo8xjAMNh49w6+bT/D7tpPEpWbn76sV4MngtrW4oV0tWtT0v2hPm38PbMbJpEx+23KC+77fgP1sLZxH+jahSymKELtYLbx7S1uufX8ZG48m8tmSAzzYp2AyJDvXzqoDZlKn10WSOmAWYR7RsS4/rD/Gq7N3AjC4TS3C/T1LHFuJHFgMfz4PMdvM17ZcGDmlbNt0FMOAOY9D9AbwCoJbvwd3b8e343N22JyGX+VTUkdERERERKSae/an7czdcQqrBbpHhXJD21oMaBVBgJcbu08l88vmE/y6+QTRiRn55wR5uzGoTU1uaFubjpFBWK3F65VhtVr4781tOJ2SyeqDCQB0bRjMg30alTr+OkHevHxjSx77cQvvL9hHrybhtK4TkL9/49EzpGXbCPFxp0VN/0te75nrmrNwd2z+rFp39WhQ6tguKXY3zH/e7J0D4OEPWcmwdy4knwD/SlDHZ/3XsOn7s4WRv4ag+mXTTn5SRz118iipIyIiIiIiUo1l5tj4a28sAHYDlu+PY/n+OJ77eTs1Az05Ep+ef6yPuwv9W0ZwQ7taXNkoFLcihjkVh4erC5/f0ZG7J64jIT2b90e0x6WYSaELGdq+Ngt2xTBn2yn++cMmfn+4Z34NnLx6Oj0bhxYr+RTg7cbLN7Rk/JSNXNkotECCyGFST8Nfb8CGSWDYwOoKne6BXk/BtNvg6EozUdLrX45v25FidsLcf5vrfV+EqD5l15b32aROenzZtVHJKKkjIiIiIiJSja07nEBmjp0a/h78eG83fttygl+3nGBvTCpH4tNxd7HSu2kYN7arTZ9m4Xi5O6ZYcICXG9Pv64ZhUOxePhdjsVh4fUhr1h8+w4HTafznj928dENL4LypzC8x9Op8g9rUpHGNq6gZ4OBhVzkZsPoTWPYeZKeY25pdD9e8DKFneyt1vMtM6myYBD0fB2sFLdCcmw0/3Qu2bGg8AHo8UrbtqaZOIUrqiIiIiIiIVGN5vVh6NQkjMsSHB/s05sE+jdl9KpnDcel0iwohwMutTNq2WCwOraUb5OPOOze3ZfTXa5m48jB9moXTopY/26OTAejZuPhJHTCnOXcYw4Bt02HBy5B8duavmu1gwBtQv0fBY5vfAF7/Mo/bvxCa9HdcHI609B04tdWso3PDh44vjPx3qqlTiKY0FxERERERqcaW5Cd1wgtsbxbhz8CzdXUqk15NwrizmzlT1ZMztjB7ywkAWtT0v2AR6HKxYSLMGmcmavzrwE1fwrjFhRM6AG6e0HbU2fO+Kdcwi+34Blj2rrl+/XvgF1H2bSqpU4iSOiIiIiIiItXUicQM9sakYrXAlY1CnR2Owzx9bXMahvoQk5zFa7/vAko29MrhDMMccgXQ+V54aD20uQWsF/lK3mGMudw7F5KiyzzEEsnJMIddGTZoNRxaDi2fdvNr6sSZ76koqSMiIiIiIlJd5Q29al8viADvytUj52K83F14b0Q7XK0Wcu3ml/+rmjgxaXV0NcTtBTdv6PMcuHld+pywJhDZAwy7WTC5IlnwMsTvA98IuO6d8ms3r6dObiZkp5ZfuxWYkjoiIiIiIiLV1JLz6ulUNW3rBvJw38YAeLu70DEy2HnBbJxkLlvdBJ6XnlI9X4e7zp7/Ldhtjo+rNA4ugTWfmus3/h94l+P76u5jJsZAQ7DOUqFkERERERGRaijHZmf5PvOLcVVM6gA80DsKMAseu7s6qU9DxhnY8ZO5npekKa7mg8Er+GzB5AXQZIDj4ysJux1m/9Nc7zAGGvcr/xh8QiHxqJnUCW5Q/u1XMOqpIyIiIiIiUg1tPpZISlYuwT7utK4d4OxwyoSri5WH+zZmYKtyKOJ7IVunm8OFwltC7Q4lO9fNE9qdLZi8vgIUTD6wCBIOgmcA9H/NOTGcX1dHlNQRERERERGpjpbsMYdeXdkoFKu1jKeirq4Mw5z1CqDD6NJN+Z1XMHnfPOcXTM6biavtSPBw4HTvJeFztldZ2mnntF/BKKkjIiIiIiJSDVXlejoVRvQGiN0Brp7mbFelEdoYIq80CyZPHwNp8Q4NsdiST8CeP8z1kg4jcyRNa16AkjoiIiIiIiLVTFxqFtuikwDo6cxZoaq6vF46LYaAV1DprzPgNfAMhONr4ev+kHDIAcGV0MbvzCnM63WD8Gbl334eJXUKUFJHRERERESkmskrkNyylj/hfp5OjqaKykyG7bPM9Q6jL+9atdrD3X9CQF2I3w8T+kH0xsuPsbjsNnMGLoCOY8uv3aKopk4BSuqIiIiIiIhUM04ZemUY5k91sX0G5KRBaBOzd8vlCmsKd8+HGq3NejITr4d98y//usWxb745A5dXMDS/oXzavBDV1ClASR0REREREZFqxG43WFreSR1bDnw3FD5oC1kp5dOms22YZC6vKGWB5KL414S75kDDq82E0ZQRsOQdsOU65voXklcgud0oc0YuZ9LwqwKU1BEREREREalGdpxIJj4tG18PV66IvIw6LyWx7F04uBgSj5jFg6u6E5vh5GZwcTdninIkT38Y9SO0HWXWuFn8Gky4BmJ3O7adPInHYN+f5nreTFzOpKROAUrqiIiIiIiIVCN/bD8JQI9GIbi5lMNXwhObYOk7517H7Sv7Np1t49leOs2uB58Qx1/f1R2GfAJDvwDPAPM9/rwnLH/frH/jSBu/NWfeqt/TnInL2c6vqVOdhvNdgJI6IiIiIiJSrcSlZnEoBTYeTWTDkYT8n0NxadjsVfdLomEYfLBgH5/8dQCA/i0iyr7RnAyYdS/Yc81eKwCn95R9u86UnQZbp5vrZdmzxWKBtiPggdXQqB/YsmHBi/D1QIjb75g2bLmw6TtzvSL00oFzPXVs2ZCV7NxYKgBXZwcgIiIiIiJSXpIychjwwQqSM115f/vaQvs9XK00CvelaQ0/mkT40aSGL01q+FE70AuLo+qiOEFWro1/z9zGT5uiAbj3qoYMbV+77Bte9BrE7QGfcOjxMPz5nPm6KtvxE2SnQFADs3dLWfOvBbdNh03fw9ynzWnPP7sSrnkROt8L1svoy7F3LqScNHvHNB/suJgvh5sXuPtCdqo5BMszwNkROZWSOiIiIiIiUm38tSeW5Mxc3K0GNQN98uvXGsCppEyycu3sOJHMjhMFewD4erjSuIYvTcLNZE/TGmbCJ8zPo8InexLSsrn3u/WsO3wGF6uF14a0YmTnemXf8OHlsOpjc/2Gj871sKjqw682TDSXV9x5eQmVkrBY4Io7oGFv+PVBOPgXzP037PoNbvwYghuU/Jo5mbDyQ3O9/W3g6uHIiC+PT+i5pE5IlLOjcSoldUREREREpNpYuCsWgKsiDD69/0rc3Nzy99nsBscS0tkTk8LeUynsjU1l76kUDsalkpqVy6ajiWw6mljgeoHebjSp4UdksDc1A72oFeBJzUAvagd6EhXmW+4JH5vdIDYlkxOJmZxMyuBkYibfrznCkfh0/Dxd+fS2DlzZOLTsA8lKgZ/vBwxofwc0HQiZSea+lJPmelXsYRG7C46vA6srtLut/NsPrAt3/Azrv4Y/n4cjK+DTHtD/Feh4d/Fn4cpMhqkj4dgacPWEjmPLNOwS8w6FM4fNujrVnJI6IiIiIiJSLeTY7CzeYyZ1WgXbC+13sVqoH+pD/VAfBrSMKHDe4bi0c8memFT2xqRwOD6NxPQc1h5KYO2hhELXG96hDv+9uW3Z3dB5DMPgk78O8OHCfWTlFr63OkFefDOmE41r+JVLPMx7BhKPQkA9GPCGuc0zAHwjIPWU2VunTsfyiaUcWTefrT/T9Frwq+GcICwW6HQ3RPWBXx6EI8vh98fNXjs3/J+Z+LmY1NMweRic3ALufjBqGgTVL5fQi80nzFymnXZuHBWAkjoiIiIiIlItrDucQEpmLsE+bkT65hb7PDcXK41r+JkJkTbntmfm2Dhw2kzwRJ/JIPps75joMxnsi03l1y0nePmGlvh4lO3XruxcO0/P2sbMjccBMzkV4e9JzbO9hhqEeHNn9/qE+pbT8Jm988wZk8CcocnT/9y+sCZnkzp7q1xSx2rPxrrtR/PFFWOcGgtgDrka/Rus/QIWvGQOyfqkGwx8w+w9VVSvncSj8N1QiN9v9oa5fSbUalfOgRdD3oximtZcSR0REREREake8oZe9W4ShtVy9LKv5+nmQstaAbSsVXAYkWEY9HrnL44mpLNk72mua13zstu6kMT0bO79bgNrDiXgYrXw0g0tGdW5Hi5WJ9X5SU+AXx8y17uOhwZ/KxQc2hQOLa2SM2DVSlyHJTMRAupC1NXODsdktULX+6DRNeZwuONrzd/Prt9g0P/MosPp8ebvLfUUzHsWkqPNe7jjZwht5Ow7KFp+Tx0ldZTUERERERGRKs8wDBbsigGgT9MwbEcuP6lzIRaLhQEta/DlskPM23GqzJI6h+LSGDtxHYfi0vDzcOXj267gqiZhZdJWsf3+GKTGmMmbvs8X3h/axFzG7S3fuMpBZPxf5soVd4LVxamxFBLaCMbONQtXL3oN9v0J77e6wLFN4Y6fIKAcZkcrLe+zdaFUU4dyKsUtIiIiIiLiPAdOp3IkPh13FytXNgop8/byavIs2h1LdhE1bi7X2kMJDP1kBYfi0qgd6MWM+7s7P6GzbYY5nbfFBYZ+ZvYC+buwKprUid9HaOoeDIvVOQWSi8PqYk4rf+9SqN3h3HbPAHP69dodod3tcNcfFTuhA6qpcx711BERERERkSpvwdmhV92iQsq8xg3AFfWCCPX1IC41i1UH4+nlwITLrI3HeWrmVnJsBm3rBvLVnR0J83PydNPJJ81ivABXPQm1ryj6uNCm5jLhEORmg6t7+cRXxqybzALJRtQ1WCp6QiS8GdyzEDITzULILpUwLZBfUyfeuXFUAOqpIyIiIiIiVd7Cs0OvrmkeXi7tWa0W+rUwZz+at+OUQ65pGAb/+3MPj/24hRybwXWtI5g2rqvzEzqGYdZpyUyEmu3gqicufKxfhJlIMGyQcKC8IixbuVlYt/0AgL39nU4OppgsFvAKqpwJHVBPnfMoqSMiIiIiIlVaQlo2G46cAaBP8/KbZnpAS7Ot+TtjsNuNy7pWZo6NR6Zt5sNF+wG4v3cU/zfyCrzcK0Dtlg0TYf98cPGAoZ+Di9uFj7VYzg3BqirFknf/jiU9ngy3IIxG1zg7murh/Jo6xuV9tio7JXVERERERKRKW7w7FrsBLWr6UzuwiDovZaR7VCh+Hq6cTsli07Ezpb5OfGoWt321hl+3nMDVauHtYW14amAzrM6a4ep8CYfMGZMA+r5gDu25lPxiyfvKLq7ytGEiAEeDe4K1kvZ8qWx8ziZ17LlmD7FqTEkdERERERGp0hbuLt+hV3ncXa30OdvmvB0xpbrG/tgUhnyygg1HzuDv6cq3d3fmlk51HRlm6dlt8PMDkJMGkT2g6wPFOy8/qVMFeuokHIRDSzCwcCSkl7OjqT5cPcDD31yv5nV1lNQREREREZEqKyvXxtK95rTHfctx6FWevFmw5u04hVHCYSIr9scx9JOVHEvIoF6wN7Me6EH3qNCyCLN0Vn0MR1eCuy8M+QSsxfx6GXa2WHJVGH618WyB5IZXk+Hh5NnHqpu83jrVvK6OkjoiIiIiIlJlrTmYQGpWLuF+HrSuHVDu7fdqEoa7q5Uj8ensiUkp9nk/rDvK6K/XkpKZS8fIIH4e34NG4b5lGGkJxe6CRa+a6wPegKD6xT83r6dO/H6wO36693Jjy4FN3wNgb3+Hk4Ophs6vq1ONKakjIiIiIiJVVt6sV32bhzulBo2PhytXNTa/fM7bfvEhWDa7wbGEdN6cs4unZm4j125wY7tafH9PF4J9KtDU37nZMOsfYMuGxgPgihLO+BTUAKxukJMOycfLJsbysHcupMWCTzhG44HOjqb60QxYAKiKk4iIiIiIVEkZ2Tbm7zyb1GlW/kOv8vRvGcGCXbHM23GKR65pnL/9cFwav245wZ5TKRw4ncqhuDSycs/1XHmkb2P+eU1jLJYKUBD5fEvfgVNbzSmxb/jQnNGqJFxcISQKTu+G03shsF7B/bvnQG4mtLrJcTGXhQ2TzGW7URef8UvKhk+IuazmNXWU1BERERERkSonKT2HsZPWcSIpkwAvN3o0cl4tmmua18BqgZ0nkzkUl8a+mBS+W32EZfsKDxtxd7HSMMyHB65uxA1tazkh2kuI3gDL3jXXB/0P/CJKd53QxmZSJ24vND5vGvD4A/DDbWDYoVZ7CG5w+TGXhcSjsH+BuV7SnkriGOqpAyipIyIiIiIiVUxsciZ3fr2W3adS8Pd05esxHfFyd3FaPME+7nRuEMzqgwlc+8FSMnPM3jgWi1lz58pGoUSF+RIV5kvtIC9cKsJU5UXJyYBZ94Jhg1bDLq8nTWhT4LfCM2Ct+j8zoQOwdx50va/0bZSlTd8DBtTvafY6yslxdkTVj2rqAErqiIiIiIhIFXIkPo07JqzlaEI64X4efHt3Z5pF+Ds7LAa2jGD1wQQyc+wE+7hzc8c63NY5knoh3s4OrfgWvAzx+8A3Aq777+VdK38GrL3ntqXGwqbJ517vnVsxkzq23PwCyXQY49RQqjX11AGU1BERERERkUrKbjdIy84lLctGalYuJxIzeHz6Fk6nZBEZ4s13Y7tUmKTJqC6RpGTmUifYi2tb1cTTzXk9h0rl0FJY86m5fuP/gXfw5V0v9GxtofN76qz5HGxZEBgJiUfg8HLISgEPv8try9H2L4DkaPAKhuaDnR1N9ZVXU+fMETPR5lI90xvV865FRERERMTpMrJtbD2eSGpWLqlZZnImLX89l7TsXFLPbst7nZfAScvKJT3bVuR1m0X48e3dnQn38yznO7owd1crD/VtfOkDK6LMZPj5AXO9wxho3O/yr5k3rXl6vFno1tUD1n1pbhvwOsx/ERIOwIHF0OKGy2/PkTaeLZDcdqQZtzhHRBtw8zETgH8+C9e+5eyInEJJHRERERERcYpx365n+f7Lr4fhYrXg4+6Cj4crV9QL4o2bWhPgpdmIHGbu05B0zOxB0/81x1zT3QcC6prXjdsLJzZCZhKENIKm18GRVbD6Y3MIVkVK6iSfNGv9AHQY7dxYqjufULjpc/jhdljzGYQ1g453OTuqcqekjoiIiIiIlLvkzBxWHjATOq1rB+Dr4YqPhyu+Hi5nl+Zrb3eX8/aZSx+Pgts8XK0Vb9rvqmLPH7D5e8ACQz9z7FCo0MZmUidmO6z62NzW/SGwukCTAWeTOvPAbger1XHtXo7l/zMLRdfrdq4ukDhP88Fw9XOw+DWY84T5TNW/0tlRlSsldUREREREpNytPZiA3YAGoT789lD1+hJWaaTFwa8PmevdH4TI7o69fmhTOLAIVnxo1qjxrQFtbjX31esGHv7mzEYnNkKdjo5tuzTi9sH6r8313k87NxY556on4PQu2D4TfrgD/rEYguo7O6pyU0HSnSIiIiIiUp2sOhgPQNeGIU6ORC5o3jPmzEJhzc3eEI6WVyw56ai57HIfuJ2tg+TqDlF9zPW9cx3fdmnMfwHsudBkIDTs5exoJI/FAjd+DLXaQ0YCTLnVrANVTSipIyIiIiIi5W7VATOp0y1KSZ0KKWYHbP3RXB/y8blkiyOdP3zJ3Q86ji24v8lAc1kRkjqHlsGeOWBxgX6vOjsa+Ts3L7h1CvhGmL12Zv0D7EUXUq9qlNQREREREZFylZieza5T5v9J79rwMqfGlrKx+A3AgBZDoHaHsmkj9LykTscx4BVYcH/j/oAFTm2DpOiyiaE47HZzdiUwC/GGNXFeLHJh/rXMxI6LB2SlQHaasyMqF0rqiIiIiIhIuVp9MAHDgEbhvhVq2vEqKTcLjm8oWa+FE5tg92zAUra1Y3xCIbwleAZCl/uL2B8CdTub6/vmlV0cl7L1Bzi5xexN1OvfzotDLq1OBxjzO9zxE3j6OzuacqGkjoiIiIiIlKtVZ2e96q6hV2Vv0avwVR+YPBwyzhTvnMVvmMvWN0N4s7KLzWKBu+fBQxshoHbRxzQZYC73Oimpk51uvocAPR8D3zDnxCHFV7eTWZOpmlBSR0REREREylVekeRuKpJc9nb/bi4PLIIvrobYXRc//tha2PenWTumdzn0SvHwM3vkXEheXZ2Df5kJlvK2+mNzZq6AutD1gfJvX+QSlNQREREREZFyE5eaxd6YVAC6KKlTts4cgYSDZoImoB6cOQRfXQO7frvwOYteM5ftRkJIVPnEeTHhLcyESm4mHFpafu0ahpkIW/6++brvi2VTLFrkMimpIyIiIiIi5Wb12V46zSL8CPapPkMknOLgYnNZpxP84y9ocBVkp8IPt8Oi1816O+c7tAwOLQGrG1z1r3IPt0gWy3lDsMppFqzjG+DbG+C7oeb7VacTtBpWPm2LlJCSOiIiIiIiUm40lXk5OviXuWzY2xzidPtP54YQLX0b/tsEfn8cojeYPVMWv27uu+JOCIp0RsRFy5/afJ45E1VZid0N024zaxAdWgou7tDlPhj1I1j11VkqJldnByAiIiIiItVHXlKne1SokyOp4ux2OLjEXI+62ly6uMLAN6FmO1j4slkrZt1X5k9QfThz2JwO+qonnBT0BdTvCR4BkHIC9v4BzQY5vo3YXfBFb3OYl8UKbUeaNYUC6zm+LREHUrpRRERERETKRUxyJgfj0rBaoHODYGeHU7Wd2goZCeY03LU7FNzXdgT8cxvc8TO0vgVcvcyEDkCnu8G/VnlHe3FuntBprLm+4sOyaWPtF2ZCp3YHuH8VDPlECR2pFNRTR0REREREykVeL52WtQII8HJzcjRVXF49nfpXgksR77XVxezBE3U1ZCbDjp/MQspXPla+cRZXl/tg1cdwbDUcXQP1ujju2tlpsHW6ud73xbKdxl3EwdRTR0REREREyoXq6ZSjA2eTOnlDry7G0x86jIZrXjLXKyK/CGgzwlxf6eDeOjt+guwUCGpgDvUSqUSU1BERERERkXKx6uzMV900lXnZysmAo6vN9YbFSOpUFt0fNpe7f4fTex133Q2TzOUVd6ogslQ6emJFRERERKTMHT+TztGEdFysFjqpnk7ZOroKbFngVwtCGzs7GscJawJNrwMMWPWRY64ZuwuOrwWrK7S7zTHXFClHSuqIiIiIiEiZyxt61aZOAL4eKu1Zps4femWxODcWR+vxiLncMg1SYi7/enm9dJoMBL8al389kXKmpI6IiIiIiJS5/Ho6GnpV9g7+ZS6r0tCrPPW6Qp3OYMuGNZ9d3rVyMmHLVHO9w5jLDk3EGZTUERERERGRMrU9Oolft5wA4KomYU6OpopLizOnMwdo2Mu5sZSVvN466ydAVkrpr7PrV8hMhIC6ENXHIaGJlDcldUREREREpMxk5th4/Mct5NoNBraMoIvq6ZStvF46NVqBb7hTQykzTa+DkEaQmQQbvy39dfKGXrW/3ZziXaQSKlFS580336RTp074+fkRHh7OkCFD2LNnT4FjevfujcViKfBz3333FTjm6NGjDBo0CG9vb8LDw3nyySfJzc29/LsREREREZEK5b35e9kTk0KorzuvD22FparVeKlo8ode9XZmFGXLaoXuD5nrqz4BW07JrxG3H44sB4vVTOqIVFIlSuosWbKE8ePHs3r1aubPn09OTg79+/cnLS2twHHjxo3j5MmT+T9vv/12/j6bzcagQYPIzs5m5cqVTJo0iYkTJ/LCCy845o5ERERERKRCWHc4gS+WHQTgjaGtCfH1cHJEVZxhVO16Oudrcyv4hEPycdg+q+TnbzzbS6dRPwio49jYRMpRicrOz507t8DriRMnEh4ezoYNG7jqqqvyt3t7exMREVHkNf7880927tzJggULqFGjBu3atePVV1/lqaee4qWXXsLd3b0UtyEiIiIiIhVJWlYuj/+4BcOAYVfUoX/Lor8fiAMlHISkY+DiDpHdnR1N2XLzhK73wcJXYMUH0OaW4s/0lZsNm6eY6x1Gl12MIuXgsuYSTEpKAiA4uOC42MmTJ/P9998TERHB4MGDef755/H29gZg1apVtG7dmho1zk0XN2DAAO6//3527NhB+/btC7WTlZVFVlZW/uvk5GQAcnJyyMkpRVe7MpYXU0WMTaoGPWNSXHpWpDzoORNH0vNUdbw2eydHE9KpGeDJs9c2rlC/06r6nFm3/IALYK/TGZvFDarY/RXS9k5cl76LJXYHuXvmYUT1LdZploN/4Zoeh+ETTm6DPg55n6rqMyXOUZLnyGIYhlGaRux2OzfccAOJiYksX748f/sXX3xBZGQktWrVYuvWrTz11FN07tyZWbPMLnH/+Mc/OHLkCPPmzcs/Jz09HR8fH+bMmcO1115bqK2XXnqJl19+udD2KVOm5CeLRERERESkYth1xsJnu83Cs+Nb2GgSUKqvHFJMVns2raKn0CBuEQBb69zOobD+To6qfLQ8PplGp+dx2rcFKxv/u1jntIj+gcaxv3MkuCebI8eVcYQiJZeens6oUaNISkrC39//oseWuqfO+PHj2b59e4GEDphJmzytW7emZs2a9O3blwMHDhAVFVWqtp5++mkee+yx/NfJycnUrVuX/v37X/IGnSEnJ4f58+fTr18/3NzcnB2OVEF6xqS49KxIedBzJo6k56ny2xadxLPfbAByuaNrPf45qJmzQyqkSj1nZw7jOmsslritGFiwX/kYzXv+i+bVZTanpDYYnywkLHUn17WvBTXbXfIUlwnvAlD7ypHUan2dQ8KoUs+UOF3e6KTiKFVS58EHH2T27NksXbqUOnUuXlSqS5cuAOzfv5+oqCgiIiJYu3ZtgWNiYmIALliHx8PDAw+PwkXV3NzcKvQHpqLHJ5WfnjEpLj0rUh70nIkj6XmqeBLTs/ltywm2Rydzd88GNKnhV+iYXSeTuWvSRlKzcuncIJhnB7XAza3iJhcq/XO2+3f46X7ISgKvYCw3fYlL42uouO94GQhtAK2GwdYfcFvzCdz8zcWPzzgDp7YC4NqoDzj491/pnympEEryDJVo9ivDMHjwwQf56aefWLRoEQ0aNLjkOZs3bwagZs2aAHTr1o1t27YRGxubf8z8+fPx9/enRYsWJQlHRERERETKUK7NzuLdsYyfvJHOry/k+V928MP6Y1z/4XI+XryfXJs9/9j9sSnc/tUakjJyaFc3kK/HdMKzAid0KjVbDsx7FqaNMhM6dTrDfcug8TXOjsw5uj9sLnf+DAmHLn7s4eWAAaFNwL9mWUcmUuZK1FNn/PjxTJkyhV9++QU/Pz9OnToFQEBAAF5eXhw4cIApU6Zw3XXXERISwtatW3n00Ue56qqraNOmDQD9+/enRYsW3HHHHbz99tucOnWK5557jvHjxxfZG0dERERERMrX3pgUZm44zqxN0ZxOOTdhSfOa/oT4uLN8fxzvzNvD3O2neOfmNni6ujDqyzXEp2XTspY/k8Z2xtfjsuZkkQtJioYZd8GxNebrbg/CNS+BSzXuHRLRCqL6woGFsOpjGPTfCx97aKm5bNCrfGITKWMl+pf2008/BaB3794Ftn/zzTeMGTMGd3d3FixYwPvvv09aWhp169Zl2LBhPPfcc/nHuri4MHv2bO6//366deuGj48Po0eP5pVXXrn8uxERERERkXzxqVl8veIQ3aNC6R4VguUiUz7nDa+aseE4W44n5W8P9nFnSLvaDOtQm5a1AjAMg583R/PSrzvZFp3E4I+WE+DlRlxqNk1r+PHd3V0I8KrGCYaytH8hzBoH6fHgEQBDPobmg50dVcXQ4xEzqbPpe+j9NPiEFH3cwSXmssFV5RebSBkqUVLnUhNl1a1blyVLllzyOpGRkcyZM6ckTYuIiIiISAk99/N2/th+io8XH6Bzg2Ae69eErg3PfdnNtdlZti+OGRuOM39nDNlnh1O5Wi1c3Syc4R3qcHXTcNxdz1VtsFgsDG1fhx5RoTz783bm74whLjWbhqE+fH9PF4J93Mv9Pqs8uw3++g8sfQcwIKIN3DIJghs6O7KKo8FVZpHkk5th3ZfQu4iZsJJPQtwewAL1ryznAEXKhvpEioiIiIhUQRuOnOGP7aewWsDVamXtoQRu/WI13aNCGN29PhuPnClyeNXwDnW4sV0tQn0vXhoh3N+TL+7owO/bTrLyQDwP92lMmJ/KKThcaizMvAcOnf2f5x3ugoH/ATdP58ZV0Vgs0ONhmDEW1n5h1tlx9y54zOFl5rJmW/AOLv8YRcqAkjoiIiIiIlWMYRi8OWcXADd3qMs/+zXm48X7+WHdMVYeiGflgfj8Y4N93LmxXS2Gd6hDy1oBJWrHYrFwfZtaXN+mlkPjl7MOrzCTFKmnwM0HBr8PbW5xdlQVV/MbITASEo/A5snQeVzB/Rp6JVWQkjoiIiIiIlXMnztjWH/kDJ5uVh7t14SIAE9eG9Ka+3pF8fHiAyzcFUPbuoFFDq+SCsBuh5UfwMJXwbBBWDO45VsIa+rsyCo2F1fo/hDMeQJW/R90HAvWszOwGca53k4NVSRZqg4ldUREREREqpAcm523/tgNwD1XNiQi4NwwnTpB3rx5U2ugtZOik0vKTjN75+yda75ucytc/z9w93FuXJVFu9tg8Rtw5jDs+hVaDjW3nzkEScfA6gb1ujk1RBFHUkpeRERERKQK+WHdMQ7GpRHs4869vVRIt9JZN8FM6Lh4wOAPYOhnSuiUhLs3dP6Hub7iA7OHDpybyrxOJ72fUqUoqSMiIiIiUkWkZeXy/oJ9ADzcpxF+nppavNI5+Je5vOZF6DDGLAAsJdN5HLh6wYlNcHi5uU31dKSKUlJHRERERJwuO9fOb1tOcOc363llowt7Y1KcHVKl9OWyg8SlZhEZ4s2oLpHODkdKypYDR1eb6w1U96XUfEKh/W3m+ooPzBpFeT11VE9HqhjV1BERERERpzkUl8a0tUeZseE48WnZZ7daeP7XXcy4rztWq3opFFdsSiZfLD0IwL8GNFPx48roxGbISQOvIAhv4exoKrdu42H917B/PmyfCelx4OYNtTs6OzIRh1JSR0RERETKVXaunXk7TjF17dECU2vX8PdgSNtafLPiIBuPJjJj43Fu6VjXiZFWLq//vov0bBtt6wZyXesIZ4cjpXF4mbmM7AFWJeUuS3BDaH4D7PwZfn/M3FavG7i6OzUsEUdTUkdEREREykVRvXIsFujdJIxRXSK5umkYht3GySP7+fWoC//5Yzf9W9Qg0Ftfwi5l4a4Yftl8AqsFXrmhJRbVYamcjqwwl/WvdG4cVUWPh82kTlay+VpDr6QKUlJHRERERMrMxXrljOhYl1s61aVOkHf+9hy7jd41DXZm+LD/dBr//XMPrw3R9NsXk5KZw7M/bQfgnp4NaVs30LkBSemcX09HSR3HqN0B6vc81wNKRZKlClJSR0REREQc7nBcGlPXHWXG+sK9ckZ2rkefZuG4uhQ9vMTFCi8Nbs7tX69n8pqj3NKxLm3qBJZj9JXLf/7YzankTCJDvHn0mibODkdK6+QWyE4Fz0AIb+nsaKqOHv80kzreIRDRxtnRiDickjoiIiIi4jAZ2TZe/X0nU9Yczd92oV45F9OlQTA3tqvFL5tP8PzP25n1QA9cVDS5kNUH45l89r1+86bWeLm7ODkiKbW83iT1r1Q9HUdq1Bdu+gqCIsGqz4dUPUrqiIiIiIhD7ItJYfyUjeyNSQWgd1OzV07fi/TKuZhnr2vOol2xbDmexA/rjjGqSz1Hh1ypZebY+PfMrQCM7FyP7lGhTo5ILsvh5eZSQ68cy2KBNjc7OwqRMqMUsIiIiIhcFsMw+HHdMQb/33L2xqQS6uvBd3d3ZuJdnRnQMqJUCR2AcH9PHu1nDid6a+5uohMzHBl2pffe/L0cjk8nwt+Tp69r5uxw5HKono6IlJJ66oiIiIhIqaVn5/LMrG38vPkEAFc2CuV/I9oS7ufpkOvf2S2SGRuOs/NkMjd/upLv7ulCVJivQ65dGRiGwfT1x3l73h6SM3JwsVpwtVpwdbGQmJEDwGtDWuHv6ebkSOWyqJ6OiJSSeuqIiIiISKl9vfwQP28+gYvVwpMDmvLt2M4OS+gAuLpY+Wp0R6LCfDiRlMnNn61ie3SSw65fkZ1Jy+b+7zfyr5lbiUvNIttmJyPHRkpWLmfSczAMuKl9ba5pUcPZocrlUj0dESkl9dQRERERkVLLq5/zz76NGX91ozJpo1agFz/e240x36xjW3QSt36xmq9Gd6Rrw5Ayaa8iWLbvNE9M30JMchZuLhYe69eUG9vVwmY3yLUb5NrsADQI9XFypOIQh1eYSw29EpESUlJHREREREot4ex05bUCvcq0nRBfD6aM68I9k9az5lACd369lo9HXUG/KtZLJTPHxjvz9jBh+SEAGob58OGt7WlVO8DJkUmZseXC0VXmupI6IlJC6tsnIiIiIqUWfzapE+zrXuZt+Xm6MWlsZ65pXoPsXDv3fb+B9YcTyrzd8rLnVApDPl6Rn9C5vWs9fn+opxI6VZ3q6YjIZVBSR0RERERKLSEtC4AQn7JP6gB4urnw2e1XcG2rCGx2gyembyE9O7dc2i4rdrvB18sPMfj/lrP7VAohPu5MGN2R14a0xsvdxdnhSVlTPR0RuQz6V0NERERESsUwDM6kmTMwBZdTUgfM4sn/GdaGCH9PDsen89Yfu8ut7eKw2Q2+WXGI+TtjLnlsTHImo79Zyyuzd5Kda6dPs3Dm/vMq+javWsPK5CIOLzeXkT2cG4eIVEpK6oiIiIhIqaRm5ZJ9tmBviI9HubYd4OXG28PbADBp1RFW7I8r1/YvxDAMXvltBy//tpNx367n9d93YrMbRR47d/spBr6/lGX74vB0s/LqkFZMGN2RML/yfS/FiVRPR0Quk5I6IiIiIlIqeUWSvdxcnDJM6KomYdzWpR4A/5qxlZTMnHKP4e++XHaQSauOnPf6EOO+XV8gtrSsXJ6asZX7vt/AmfQcWtbyZ/ZDV3JH10gsFoszwhZnOb+eTo1Wzo5GRCohJXVEREREpFTyiySX49Crv3vmuubUDfYiOjGD12bvclocAL9tOcEbc8yhYM8Nas5HI9vj4Wpl0e5Yhn26kqPx6Ww+lsigD5fxw/pjWCxwX68ofnqgB43C/ZwauzjJkbNTmUd2Vz0dESkVTWkuIiIiIqWSkGomdULKYearC/HxcOWd4W0Z+eVqflh/jIGtIri6WXi5x7HmYDyP/7gFgDHd63P3lQ2wWCzUC/Zm3Lfr2RuTyvUfLSMt24bNblArwJN3b2lHt6iQco9VKpBja8xlvW7OjUNEKi0ldURERESkVBIqQE8dgK4NQxjbowETlh/i8elbuL1LPfq3jKBlLf9iD2cyDIP0bBtJGTkkpueQmJFNckYOKZm5ZOTYyMi2kZ5tIzPHhoebC3WCvKgT6EXtIC/Ss22M+3Y92TY7A1rW4PnrW+S327ZuIL8+eCXjvl3PtugkAAa3rcVrN7YiwNutzN4TqQQMA46uNtfrdXVuLCJSaSmpIyIiIiKlUhGGX+V5ckBTlu+LY09MCh8u2s+Hi/ZTK8CTfi1q0LpOICmZOfkJm6SMvPXs/PWkjBxybEUXNC6uK+oF8sGt7XGxFkwkRQR48uO93fhq2UEahfsysFWEaucIxB+A9Dhw8YCabZ0djYhUUkrqiIiIiEipJKRlARDs7fykjqebC7Me6M7c7aeYvzOGJXtPcyIp82zR4iOXPD+Pm4uFAC93ArxcCfR2x9fDFW93sxC0t7sLXm4upGbZOH4mnejEDKLPZJCVaycqzIevRnfC063ogtFe7i481Lexg+5WqoRjZ3vp1L4CXDXjmYiUjpI6IiIiIlIq+T11nFhT53w+Hq4M61CHYR3qkJljY8X+OP7cEcOJpAz8vdwI9HIjwMuNQG9zaSZvzr0O9HbDy82lRL1oDMMgIS0bX09XPFzLfwYwqcQ09EpEHEBJHREREREplbyaOiEVYPjV33m6udC3eQ36Nq9Rpu1YLBZCfNXLQkohL6lTV0kdESk9zZsnIiIiIqVyJr+mjpIaIiWSFg/x+8z1up2dG4uIVGpK6oiIiIhIqVSkQskilUreVOahTcE72LmxiEilpqSOiIiIiJRKRR5+JVKhHVM9HRFxDCV1RERERKTEMnNspGfbgIpTKFmk0lCRZBFxECV1RERERKTE8oZeublY8PPQ3BsixZaTCSc2met1uzg3FhGp9JTUEREREZESS0g9V0+nJFOAi1R7JzeDLRt8wiC4obOjEZFKTkkdERERESmx+LQsQDNfiZTY+UOvlBAVkcukpI6IiIiIlJiKJIuUUl5Sp67q6YjI5VNSR0RERERKLC+pE6SkjkjxGca56cxVJFlEHEBJHREREREpsXj11BEpubh9kJEArp4Q0cbZ0YhIFaCkjoiIiIiU2Jm0c4WSRaSYjp0delW7A7jqsyMil09JHREREREpsXgldURK7qiGXomIYympIyIiIiIlpkLJIqVwdJW5VJFkEXEQJXVEREREpMQS1FNHpGRST0PCAXO9bifnxiIiVYaSOiIiIiJSYvGpWQCE+CqpI1IsO382l2HNwSvIqaGISNWhpI6IiIiIlEiOzU5yZi4AwT4eTo5GpBI4vQfmv2Cut7/dubGISJWipI6IiIiIlEjezFdWCwR6uTk5GpEKLicTZoyFnHRo2Bu6PuDsiESkClFSR0RERERKJG/mqyBvd6xWi5OjEang/nwOYraDdygM/Rys+gomIo6jf1FEREREpERUJFmkmHbNhnVfmutDPwe/COfGIyJVjpI6IiIiIlIi+T11lNQRubCk4/DLeHO924PQ+BrnxiMiVZKrswMQERERqaw2HT3DhOWHyMyxMahNTQa0jMDbver/eZVXUydESR2RotlyYeY4yEyEWu2h74vOjkhEqqiq/1eHiIiIiAMZhsGqA/H83+L9rDwQn799wa5YfNy3c23rmtx0RW26NgipsvVm4jX8SuTiVn8MR1eCux8M/xpc9VkRkbKhpI6IiIhIMW04ksBrv+9i09FEAFytFoa2r03tIC9+2hTNkfh0Zmw4zowNx6kd6MWQ9rW46Yo6RIX5OjdwB0tIywLUU0ekSPEHYPEb5vrANyG4oXPjEZEqTUkdERERkWJIzcpl9NfrSM3KxcPVyq2d6vKPXlHUDvQC4JG+jdl49AwzNkQze+sJohMz+HjxAT5efIB2dQMZdkVtrm9Tq0rUoVGhZJELMAz47RHIzYQGvaD97c6OSESqOCV1RERERIphztaTpGbl0iDUhx/v7UaYn0eB/RaLhQ6RwXSIDObFwS1YuCuWWRuP89fe02w+lsjmY4m8MnsnfZvV4KYratO7aTjurpVzzor41LNJHV+PSxwpUs1s+g4OLwNXLxj8AViq5hBMEak4lNQRERERKYYZG44DcEvHuoUSOn/n6ebCoDY1GdSmJqdTsvh1ywlmbTzOjhPJzN1xirk7ThHk7cYNbWtxc8e6tKodUB634DAJKpQsUljKKZj3nLne51kIbuDceESkWlBSR0REROQSDselsfZwAlYLDG1fu0Tnhvl5cPeVDbj7ygbsPpXMrI3R/LQpmtMpWUxadYRJq47Qtk4At3WJZHDbWni5u5TRXTiOhl+JFGHOE5CVBDXbQZf7nR2NiFQTSuqIiIiIXMKsjWYvnZ6Nw4gI8Cz1dZpF+PPMdf78a0BTVhyIZ8aG48zbfootx5PYcnwrr/6+k2FX1GFsjwbUC/F2VPgOZbcbnElXTx2RAnb+Crt+A6sr3Ph/4KKvWSJSPvSvjYiIiMhF2O0GMzdGAzC8Qx2HXNPVxUqvJmH0ahJGfGoWMzYcZ/KaoxxNSGfiysPM3HicCaM70blBsEPac6TEjBzshrleFYo+i1y2IyvNXjoAPR6BiNbOjUdEqpXKWZ1PREREpJysPhhPdGIGfp6u9GtRw+HXD/H14N5eUfz1RG++HduZ9vUCScnM5Y4Ja1iwM8bh7V2uvOnM/T1dcXPRn5JSjR1bC9/eCN9cC6kxENIYrvqXs6MSkWpG/yUWERERuYi8Ask3tK2Fp1vZ1buxWi1c1SSMqeO6ck3zcLJy7dz7/QZmnm2/okhIywFUT0eqseiN8P1wmNAPDv5lDrnqcBeMmQ1upR+eKSJSGhp+JSIiIhXa7lPJTFt7jBr+ntQP8SYyxIf6od54u5f9nzEpmTnM2X4ScNzQq0vxdHPhs9s78NTMbczceJzHp2/hTHo29/RsWC7tX0peTx0ldaTaObkV/noT9swxX1tcoN1IuOpJCKrv1NBEpPpSUkdEREQqLJvd4OGpm9gbk1poX7ifB/VDfIgM8aZ+qE+BdV8Px/yJ88e2U2Tm2IkK86Fd3UCHXLM4XF2svDO8DUHebny1/BCv/b6L5MxcHuvXpNxiuJD4/JmvLj6tu0iVEbPTTObs+tV8bbFC61ug178gJMq5sYlItaekjoiIiFRYs7eeYG9MKn6erlzTvAaH49M4HJfGmfQcYlOyiE3JYu3hhELnhfp65PfqaRB6tndPiA+Rod74e7oVu/28oVfDO9TFYrE47L6Kw2q18Oyg5gT7uvP23D18uHAfAV5u3H1lg3KN4+8SUjXzlVQTp/fCkv/A9lmAAVig1U3Q698Q5vwEq4gIKKkjIiIiTrJwVwy/bjnBg1c3onENv0L7c2123l+wD4B7r2rIg30a5+9LSs/hSEIah+LSOBKfnp/sORKfTnxaNnGpWcSlZrH+yJlC1w3xcadphB83tqvFoDa1Ltir53BcGmsPJ2C1wND2tR101yVjsVh4oHcjDAPembeHV2fvJNTXnRvbOSceOK+njq+SOlJFxR+AJW/Dth/BsJvbmt8AvZ+GGi2cG5uIyN8oqSMiVUPCIbNrdI9HoEZLZ0cjIheRmpXLq7/t5If1xwDYciyR2Q/3LJRcmbUpmkNxaQT7uDOmR8HeKQHebrTxDqRNncBC10/OzOFofPrZhE8ah+PTORxnLuNSs4hPy2blgXhWHojnpV93cm2rCIZ3rEPXBiHYDIPkjBySM3OZuOIQAD0bhxER4Nzipw/0juJ0ShYTVx7mielbCPJ256omYU6JJSFNPXWkijpzBJa+DZungmEztzUdBL3/DTXbODc2EZELUFJHRKqGP56CffPM/6M27CtnRyMiF7DucAKP/biZYwkZWCzg5+HK4fh0nvtpG++NaJc/xCk7184HZ3vp3N8rqkQ1cvw93WhVO4BWtQMK7UvNyuVwXBrL9sUxfcMxDp5OY9amaGZtisbdxUq2zV7onPIqkHwxFouFF65vQVxqFrO3nuS+7zcwdVxX2pZjnZ88Cfk1dZTUkSok9TR80Qsyzvbua9zf7JlT+wrnxiUicglK6ohI5Xdyq5nQATi5xbmxiEgh2bl2jsSnMXNjNJ8vPYBhQO1AL969pS2uVgsjvljNz5tPcGXjsPwEyg/rjxGdmEG4nwe3d410WCy+Hq75CZ/7ejVk07FEpq8/zuwtJ0jJyi1wnL+nKy1rB9C/ZQ2HtX85rFYL797SlsT0HJbvj+Ouiev4781tiPD3ItjHnUBvtzKdcj1PvJI6UhVt+9FM6AQ3hKGfQ93Ozo5IRKRYlNQRkcpv+Xvn1uP2QVYqePg6Lx6RaiolM4cjJ1M5cDqN/bGpHDidyoHYVI4kpGOzG/nHDe9QhxcHt8DvbMHix/o14Z15e3j+5+20rxdI7UAv/m+R2UvnwT6N8HIvm0SFxWLhinpBXFEviBcHt+B0ShZ+nq74erji6mItkzYvl4erC5/d0YGRX6xmW3QSYyeuL7Dfy80FTzcrLlYLLlYLrlYrVivm0nJ2abXgenZ//o/FgqeblfFXN6Jj/eCLxpA3pXmIZr+SqmTzVHPZbbwSOiJSqSipIyKVW9x+2PGTue7uC9mpELMd6nV1blwiVZRhGMQkZ+UnbfbHprI/NoUdx1xIXrX4guf5uLvQuIYf9/WKYmCriAL77usVxcoDcazYH8/4yRsZ3LYWMclZ1A70YkSnumV9SwB4urlQN9i7XNq6XL4ernxzVyde/HUHe0+lcCY9mzPpOdjsBhk5NjJybKW+9onETOb+s+cFZ/oyDOPc8CsVSpaq4tQ2iNkGLu7Q8iZnRyMiUiJK6ohI5bbiPcCAJgPBYoU9c8whWErqiDjc9ugkxn27npNJmUXsNZMA4X4eNAr3JSrMl6gwHxqF+xEV7kOEv+cFEwUuVgvv3dKOaz9Yxu5TKew+tQeAh/s2wsO17IcTVUahvh58POpcrQ/DMEjOzCUxPZvsXDs2wyDXZmA3DHLtBrYL/OTmL+08M2sbe2JSWLovjl4XKMKckpVLjs3sdRXsraSOVBFbppnLJgPB++I91UREKholdUSk8ko8du4PsZ6Pw4FF55I6IuJQNrvBUzO3cjIpExerhchgb6LOJm8ahHhyau8W7rixH8F+pevtEu7vybu3tGXMN+sAiAzx5qYrnF+guLKwWCwEeLkR4OVW6mtsOZbE1ysO8cXSAxdM6pw520vHy82lzIbFiZQrey5s/dFcbzvSubGIiJSCkjoiUnmt+j/zj7H6Pc3x7+nx5nYldUQcbvr6Y+w4kYyfhysLn+hFuN+5Kb5zcnKYc3JLfo2c0urdNJxH+jbmo0X7eOa65rhV0Lo2VdXYK+szadVhVuyPZ3t0UpGzh6lIslQ1loOLIS0WvEOgcT9nhyMiUmL6a0lEKqfU07Bhkrne83FzWbOtuYzdBTlFDQ8RkdJIzszhnXnmkKhHrmlcIKHjaI/2a8Ke165lQMuISx8sDlUnyJtBrWsC8NWyg0Uek5BqJnVCVE9Hqgjrth/MldY3g8vlJaZFRJxBSR0RqZzWfAq5GVDrCmjY29zmVxN8wsCwQewOp4YnUpV8uGAf8WnZNAzz4c5u9cu8PfXQcZ5xPRsC8NvWk0QnZhTan6CeOlKFuOamYdnzh/lCQ69EpJLSX00iUvlkJsHaL831no9DXvFVi+Vcbx0NwRJxiP2xqUxceRiAF65vgbur/nSoylrXCaBbwxBsdoNvlh8qtD82xewFqaSOVAW1E9disWVBeItzfz+IiFQy+stMRCqfbdMhKxnCmkHT6wruU1JHxKFe+30nuXaDvs3C6d003NnhSDn4Ry+zt87UtUdJysjJ3/7DuqN8uGg/AA1DfZwSm4gj1U1Ybq60vfXc/yASEalklNQRkcrn1DZz2ex6sP7tn7GINubyQkmdrFTYNVs1d0SKYdHuGP7acxo3FwvPXd/C2eFIOendJIzG4b6kZduYtvYomTk2npqxladmbiM71841zcMZ06OBs8MUuTxnDhGStg/DYoXWtzg7GhGRUlNSR0Qqn9N7zWVYs8L78nrqxOwAW07h/QtehB9ugx/vAFtu2cUoUsll59p5dfYuAMb2aEAD9cyoNiwWC+OuMnvrfL3iEMM/W8kP649htcCTA5ryxR0d8fXQBKpSuVm3mgWSjQa9wb+mU2MREbkcSuqIiOOd2mbOTlUWDANOm180CWtaeH9QffAIAFs2nN5dcF92Omw5O8vFvj9hzhPm9Sqb3Cz47ib4su+5BJeIA9ntBk/N3MqhuDRCfT14sE8jc0d2Gix4CWJ2OjU+KXs3tqtFuJ8HMclZbI9OJtjHnW/HdmH81Y2wWjVMRSo5uw3r9unmapsRTg5GROTyKKkjIo51fD18fhVMG1U210+Lg4wzgAVCGxfeb7FAzQsMwdr1G2SngGegef6Gb2DF+2UTZ1la8hYcWAjR6+GrvrBnrrMjkirEMAye/Xk7P22KxtVq4Z3hbfDzPDvN78bvYPl75uc7N8u5gUqZ8nB1YfzVZjKvbd1AZj90JVc2DnVyVCIOsuYzLIlHyHbxxmhyrbOjERG5LErqiIhjrfsKDDscX3s2+eJgeb1vgiLBzavoYy5ULHnTd+ay6wMw8E1zfcFLsG2Gw8MsM9EbYfn75npoE7Ng9NRbYck7YLc7NTSp/AzD4NXZu5i69ihWC7w3oh1XNzuvOPKJjebyzKFzM9BJlTW6e30WPd6Lmfd1o1bgBf69Fals4g/AwlcA2FHrVnDzdnJAIiKXR0kdEXGcjETY8fO518fXO76NuD3msqh6OnlqtjOX5yd1zhyGw8sAC7QbCV3vhy73m/t+vh+OrHJ8rI6WmwW/jAfDBi1vgvtWQKd7AAMWvwbT74SsFGdHKQ6WnWvni6UH+GrZQZLSi6gT5UDv/rmXr1eY01i/NawNg9vWKnjA+Z+pJW9DWnyZxiPO1zDMF1cX/bkoVYTdBj8/ALmZ2Bv05mhIL2dHJCJy2fRfaRFxnG3TITfj3Oujqx3fxum8pE4R9XTy5PXUObXN/AMOYPNUc9mwFwTWM9cHvG7OoGXLhmkjIW6f4+N1pCVvQ+xO8A6F694BV3cY9C4M/hCsbubwsm+uVWKnCjkcl8bwz1byxpzdvPb7Lrq+uZAXftnOobg0h7f18eL9/N9ic7rqV25syc0d6xY8IDsN4s7WcApqAFlJ5lBAEZHKYu0XcGw1uPtiG/SepjEXkSpBSR0RcQzDgA2TzPWI1uby2BrHt5M3/Cr0IkmdkChw84GcdIjfbw5L2jzF3Nfu9nPHWV3gpi+hdkdzqNjk4WVX4Plyndhk1jIBM5Hjc15tiw6j4a454BNmJrJ+uk9DsUooMT2b9YcTnB1GAT9tOs6gD5ex9XgSAV5uNIvwIyPHxrerjtDn3b+4Z9J6Vh+Mx3BAse+/9sTyzjwzYfrva5txZ7f6hQ+K2WEOrfStAYM/MLet+0rFukWkcog/AAteNtf7vwoBdS9+vIhIJaGkjog4xomNELMNXDzg2nfMbdEbip5W/HKcLsbwK6vLucTSyS1weCkkHTVnxWp+fcFj3b1h5DRz1qwzh836NNnpjo35cuVmm93FDRu0GAIthxQ+pm5n8z5c3GH3bFj6dnlHWak9PG0zwz9bxZK9zk/qpWbl8tgPm3n0hy2kZdvo3CCYPx7pyR+P9GTKPV3o0ywcw4AFu2K49YvVXP/Rcn7adJzs3NIl8gzD4L9/mp+rO7pGcl+vqKIPzBt6VbOt2eOt6XXmMzn/hVK1KyJSbux2+OVBszdxg6ugw13OjkhExGGU1BERx9gw0Vy2uBHqdgHPALOnTMx2x7WRcQZSY8z1sCYXP/b8YsmbJpvrrW4quriybxjcNgO8gswZpWaNOzdsqyJY+s7ZYVchZi+dC6nTEa4/25vnrzdh1+zyia+Si03OZNk+M5mzcFeMU2PJzLEx7JOVzNoUjdUCj/VrwtRxXakV6IXFYqF7o1C+HtOJBY/14rYu9fB0s7LjRDKP/rCFnm8v4uPF+0lMzy5Rm3/ujGF7dDLe7i7885oiZpTLc3Kzucz7bPV7BayusPcPLIeWlu6GRUTKw7ov4ehKsxfvDf+nYVciUqUoqSMily8rBbbNNNc7jAarFep0Nl8fdeAQrLxhHv51wMPv4sfmffE8tBR2/Wqut7/9wseHNoZbp5zr6fLnc5cfryOc2AzLziZy/j7sqijtb4cu95nrP917briaXNDcHafIG8G06oBzC/9+t+oIe2JSCPV158d7u/Fw38a4WAt/+WgU7svrQ1uz6t99eXJAU8L9PIhJzuKdeXvo9uYinvt5GwdPp16yPbvd4L355ufqrh71CfH1uPDB5/fUAfMz0+keAFwWPG8OzRIRqWiiN8L8F831fi+bs2eKiFQhSuqIyOXbPhNy0iCkEUT2MLfV62IuHVlXJy9BcaleOnBeseStkJtpDteq3eHi50R2hyGfmuurP4HVn5U+VkfIzT4321WLG6Hl0OKd1/81s3t5diqu0+/ALffSX+6rsznbTuav74tN5XRKllPiSM7M4eO/zELF/xrQjI71gy95TpCPO+OvbsTyp/rwv1va0qKmPxk5Nr5ffZQ+7y7h7onrWHkg7oJ1d/7Yfordp1Lw83BlXM+GF24oNwtid5nreZ8tgF5PgWcAltgd1EtYVux7FREpF4lHzWHVuRnQqB90vNvZEYmIOJySOiJy+fIKJF8x+lyX5rp5SZ21jmunOPV08oQ1Nev75Gl3W/G6W7ceDn3P/h+9uf+G3b+XPE5HWfauOXzNKxiuu8iwq79zcYPhEyGwHpYzh7jiyBdlFmJldzoli7WHzALJEf6eAKw66JzeOl8uPUhieg6Nwn256YraJTrX3dXKTVfU4feHr2TquK5c0zwcgIW7Yxn15RpGf7OO1KzcAufY7AbvLzB76Yy9sgGB3u4XbiBmB9hzzSGK5xcX9Q42EztA8xMzNPOaiFQcmUkwZYQ5bLtGKxj+tdmTWESkitG/bCJyeU5tM4skW92g3ahz22t3AIsLJB+HpOOOaSuuGNOZ53FxgxotzXWLC7QZUfx2rnwUOowBDJhxNxzfUNJIC4vZYQ4FK66TW2HZf831Qf816/6UhE+IOZwMiEjeDOkVa2animLujlPYDWhbJ4BBbWoCZTcEa+GuGKatPYrdXrjXTGxKJl8tOwTAE/2b4upSuv88WywWukWF8NXoTix6vBd3dI3Ew9XK0r2nufWLVcSlnuuFNHvrCfbFpuLv6crYKxtc/ML5Q6/aFU6OdhqHEdQAz9wkrKv+r1Rxi4g4lC0Hfhxt1qPzjYBRP4Cnv7OjEhEpE0rqiMjlyeul02xQwXov7j6On9q8JD11AGq1M5eN+4NfjeK3Y7GYPWMa9TO7bE8dYc6MVRqntsO02+DT7jBpMOxfcOlz8ma7sudC88HQ8qbStR3RGiPI/LJuObW1dNeo4uZsNYdeXde6Jt0ahgCwugx66uyLSWHct+v596xtPD1rW6HEzv8t2k9Gjo12dQMZ0LIEz+pFNAzz5dUhrf6/vfsOj6pM+zj+nUnvgYQkhA6h9yIIIiAdRMGODezd166ra8O1rK6rrq676toLiBUUFUVpIr33XkJJAiSQXmfO+8fDBCIBUiYzKb/Pdc01JzNnznkO3Clzz/PcN1/e1peoEH/W78/g0v8uJDE1hyKHk3/9ug2AWwa0JCLI7/QH+3M9nRP5+uMYYtoE25e86b4krohIRVgW/PAA7JxjCiNfNRUiGnt7VCIiVaZcSZ0XXniBs846i7CwMGJiYhg3bhxbtmwpsU9eXh533nknUVFRhIaGcskll5CSUrKbSGJiIueffz7BwcHExMTw0EMPUVRUclq4iNQABTmw9guz3XPiyc+7lmC5o1hyfiak7zXb0WWoqQPQ727oMh5GPFf+8/n4wmUfQFwXyD4En15avtkuBzebTwnfOscUXnZZ8NqZX7vgFdMePqg+nP9Kpbp0WMfehNtcnYuk2OGsfJbsMgmc0Z0b0rtlfew22HU4m6T0XLee68WZm3HlcaYu38vDX6/FceyBxNQcJi9JBOCRke2wubkrS5fGkXx1ez8a1wtid2oOF/93If/4ZQs7D2dTL9iP6845wywdOH1SB7DajOJwaDtsRXnw2zNuHL2ISDkteBVWfgQ2u1ly5fqAR0SklipXUmfevHnceeedLF68mFmzZlFYWMjw4cPJzs4u3ue+++7j+++/58svv2TevHkcOHCAiy8+/imzw+Hg/PPPp6CggIULF/LRRx/x4Ycf8uSTT7rvqkTEM5a+A/npUK85tBh08vPuLJZ8+Fjnq5AYU8ejLOq3hIvfhqhWFTtnQBhc9YXptpW6DaZeYwrGnsncF+E/Z8PGaebrjhfBNd+Y9s+7f4f9p1nOlbzOtDAHGP0PCI2p2NiPsRp2A8CWvKZSx6mNZq43S6+6NI6gSf1gwgP96NwoAnDvEqzFO1P5ddNBfOw2HhrRFh+7ja9W7OOhL9fgcFq8MmsLRU6LAW0a0LdVlNvOe6IW0SF8c3s/2jcM53BWPm/P2wnArQNbERrge/oXOwrN8kE4ZVIHm431ja7CwgZrp7pnyaKISHk4HfDzX+E3M3OQkX+HtiO9OyYREQ8oV1Jn5syZXHfddXTs2JGuXbvy4YcfkpiYyIoV5o+39PR03nvvPV555RUGDx5Mz549+eCDD1i4cCGLFy8G4JdffmHjxo18+umndOvWjVGjRvG3v/2NN998k4KCAvdfoYhUjdwjZkYJwMC/lF580DVTJ3kd5FeyA5OrnXlZ6um4U3hDuPpLCAiHPX8cWxZ1mtbNO+fC3OcBC9qNgdv+gMs+hIQh0OlSs88fr5f+WkchTLvdLLtqNwY6XVLp4Vtxrpk6Sur8mavr1ejODYsfO/tYUmWhm5I6lmXxwo+ma9SVvZtw53kJvD6+Oz52G9+s2s91Hyxl+poDADw8ompjOyY8kKm3nk2fFiYpGh3qz4S+ZWjte2gLOPLN90C9U8/qSQ9ujuWqXfXzY3CKjlsiIm6XlwFTrgRXXa/zHoc+t3p3TCIiHnKGj+dOLz09HYD69c0fiCtWrKCwsJChQ4cW79OuXTuaNm3KokWLOPvss1m0aBGdO3cmNvZ4zYARI0Zw++23s2HDBrp3737SefLz88nPP/7peEZGBgCFhYUUFhZW5hKqhGtM1XFsUjtUhxiz//4aPnnpWA3aUdT+IihtLMGx+IY3wpaxn6LEpVjNz634+VI24gM4olrj9PR112+N7ZIP8fn8cmzrv8IR3gTneX89eb+8DHyn3YENcPS4HueoYzNuXOPtcwd+az/H2vQdRQe3nvQG2f77y/gkr8MKqkfRiBfBDctSC6M74AvY0hMpTE8p+yynWi41u6C4ds6wdtHF30t9mkXyNrBox2G3fH/9uC6ZNfvSCfb34c6BLcwM1/bR/OvyLtz7xVp+33YYgPM7x9E2JrjKv6eDfOC9a7vz1cr99GxWDz+bdcZz2vatxBdwxnbC4XCAw3HSPq5j5J/zMIEbp2Pbu5iidd9gtb+wKi5Darnq8DtOapCjifh+cTW2Q5uwfANxXPBvrA7jSv+75ASKM3E3xZS4U3niqMJJHafTyb333ss555xDp06dAEhOTsbf35/IyMgS+8bGxpKcnFy8z4kJHdfzrudK88ILLzBp0qSTHv/ll18IDg6u6CVUuVmzZnl7CFLLeSvGAgqPMnTDfwBYGjaS5Jk/n3LfnvbGNGY/22Z/yta4irc77r3jdxoCG1KK2PXjjxU+TmU0aXw9PRL/h8/CV1m39yh7os8r8Xz3Pe/QNGM/Wf4xzC3qh6OUcZ4d1oXYzLXs++IvrG1yvA5ReG4iA7eYJNCKmCvYP999y1eGBMQSmp/Csu/+x6Hwzm47bk22MMWG0/KhcYjF+sVzWX/s8XwH2G0+7D+axyff/EhUYMXPUeSE51f7ADYGxhSwdP5vJZ6f2NrGh1vt2IDuPvv48UfPFRiuB+xMhZ1l2Lfzvu9oCezMDWPDGb73flm8nrbRI2iXPI38GY8we4eF036GIswip6C/o+RM6mVto8+u17AVZZLnG8GSlvdydLc/7C773wmKM3E3xZS4Q05OTpn3rXBS584772T9+vUsWLCgoocos0cffZT777+/+OuMjAyaNGnC8OHDCQ+vfu0JCwsLmTVrFsOGDcPPT3/Mivt5O8bsPz2Ej1WAs9FZ9Bj/19MW8rUv2w+/LKFtcDoJo0dX+Jy+/3kKgA4DL6J9JWb8VM5oHPMi8FnwMl33fUync0ZitRoCgG3Lj/iuWoCFjcDxHzDCtfTsT2y7w+Czi2h+dCGNr3nTdAxzFOL7wXBslgNnm1F0vfRvdHVTsdzCwkLSdrUgND+FPk0CcJ5T8f+D2mTqh8uBNMb3a8PoASVnTE1NXsqKxKMENuvC6J4V75jy4aI9pOZvoUGoP3+/vj/B/iV/5Y4GrkzLochh0apBSIXPU9V8PnoTgOZ9x9Ksc+nxU+JnkjUQ67+LCMlKYXT0Xpxn3+XJ4Uot4O3fcVIz2NZ9gc8PL2JzFGDFdsbn8s/oFx5f5tcrzsTdFFPiTq7VSWVRoaTOXXfdxYwZM5g/fz6NGx//gzcuLo6CggKOHj1aYrZOSkoKcXFxxfssXbq0xPFc3bFc+/xZQEAAAQEBJz3u5+dXrb9hqvv4pObzSoyl7oDVnwBgHzYJu7//6fdv3tfsu38Zdh+f0mvvnElhLhzdA4Bvw07gze+rIY9D5n5sa6bg+82NcP1PEB4PPz0AgK3f3fi27H/q1yecBw27YUtajd+qD+G8R2Hha6bbVWAk9gteO/O/aTkdDW5O46OL8UlZg49+JpGWXcCSXUcAuKBbo5O+h/olRLMi8ShLdx/lqrPL0BmqFOm5hfxnrpkHc//wtkSEBJW6X0JsRIWO7zFOB6SYeUy+jXue8XvP/EwKhiFPwfQ78FnwCj49rjXJS5Fy0t9RUiqnE+Y8C7//03zdbgy2i9/Bz79iyXHFmbibYkrcoTwxVK53V5Zlcdddd/Htt98ye/ZsWrQo+cduz5498fPz47ffjk8x37JlC4mJifTta97Y9e3bl3Xr1nHw4MHifWbNmkV4eDgdOnQoz3BExBvmPG8K+SYMg+bnnHn/2M7gFwx56XB4S8XOmbodLCcERkJIg4odw11sNrjgdWgxAAqyYPLl8O2tpu15g/ZQWq2dP7/+nHvM9tJ3YN9ymPei+Xr0PyCs9OR2ZRwNPvaz+sBpiiVv/gF2zKkTxW1/3pCMw2nRMT6cZlEnvwlwdaBatDMVqwL/HikZeTw7YyNHcgpJiAnlshNn+9S0f9/UHVCYDb5BEN267K/reiXEdYH8DJj796obn4jULQXZ8OWE4wmd/vfD5Z9ABRM6IiK1Qblm6tx5551MnjyZ6dOnExYWVlwDJyIigqCgICIiIrjxxhu5//77qV+/PuHh4dx999307duXs88+G4Dhw4fToUMHrr32Wl566SWSk5N5/PHHufPOO0udjSMi1UjSWlj/ldke8mTZXuPjC416mlbeiYshpn35z3voWDKoQbvTLvXyGF9/80fk+yPh0CbITDLtyi9+G/zKUISl/YUQ2czMPvroQnAWQtvR0PmyKhluevCxDkfpiZCdCiF/apuduAQ+v8pstxgAw589devqGq7Q4eSjhbuBkl2vTtSjaT38fe2kZOSz83A2rRqEnvaYlmWxJSWTWRtSmLUphbX70oufe2RkO3x9jn1+8uklcHQv3PwbBIS55XqqnKtrWlxnsPuU/XV2O4x4Hj4aA8vfh7Nugph2VTNGEakbMg7AlPHm55KPv/mApduV3h6ViIjXlWumzn//+1/S09MZNGgQDRs2LL5NnTq1eJ9XX32VMWPGcMkllzBgwADi4uL45ptvip/38fFhxowZ+Pj40LdvX6655homTJjAM888476rEhH3syz47VjB8k6XQsMuZX+tq77MxmmQVpbSrH9yaLO593Q789MJioSrv4DQY4XfBz5S9kSIjy/0u9tsF2ZDYASMebXKElZFPsFY9VuZL5JWnbzDui+Ob++aD28PhG9vh/T9VTIeb3r3911sTs4kMtiP8Wc1KXWfQD8fejSNBGDRKVqbFzmcLNxxmEnfb2DAP+Yw8rXf+eesrazdl47NBj2aRvLSJV0Y2j7GvCAnDbb/amarbZxeFZdWNZJWm/uKJPlanAvtxoDlgFlPuHVYIlLH7F8J75xnEjrBUTDhOyV0RESOKddMnbJMQw8MDOTNN9/kzTffPOU+zZo140cvda8RkQpwFMKPD5o3pXZfOO+x8r2+eX/4/WXYORde7w4xHcybvfZjzBKNMyUzTpypU51ENoVb5sKBVdBmVPle2+1qmPsC5KTCqJeqZNnViayGXbGl7YADqyFh6PEnHEWwYZrZHvMa7PkD1n0JaybDhm+h311muVhNmVlyGrsPZ/Par1sBePz8DkSFnnp2aL9W0SzemcaiHalcc7aZ6ZSVX8T8rYeYtTGF2ZsPkp57vNVkgK+d/gnRDOsQy+D2McSE/WnGlisxCbB6CnS/xn0XVpVcM3UqOnNr2DOwdSZs+wW2/wYJQ9w3NhGpGzZ8az5oKMo1y5yv+hzqNff2qEREqo0Kd78SkToiLx2+vA52zAZsJgER1ap8x2g5yEyTXv817F4ABzea2/yXIKIptDvfJHianG1msfxZcVKnTSUvpgqEx5tbefkHm08aj+w211/FrLiusOGb4zMvXHbNg5zD5pPP7tdAr+uhz+3wy18hcRHM/wes+Mgk8rpfW/r/Tw1gWRaPfbuO/CIn/ROiuaRHo9Pu37dVFMwydXU+XbyHXzelsHB7KgUOZ/E+9YL9GNwulmEdYhnQJvqk7lYlnJjU2bPA/L9X9zcllmWWXELFkzpRraD3LbD4P/DL4+ZnQXmWcYlI3WVZ5nfQnOfM162HwyXvQWD163wrIuJNNfOvcxHxjKN7TSHggxtNseNL34e25ZyRAmYmTs+J5paTZj613/S9+eQ+PRGW/Nfcguqb2jLtzodW54FfEBQVQNoOc5zqNlOnsuI6mZsHWA27mY0Dq0s+sf5rc99hHPgcq7LfuKfp6rV5Bsx60iyZm3EvLHkbhv/NzPSpDrWNyuHLFftYuCOVQD87z1/UGdsZxt+1cSRBfj6kZRfw+LT1xY83jwpmWIdYhnWIo2ezevjYy/jvcHBzya/XTIVBj5T3MjzryG7ITze1KyrzvTfgIVg92fwcWfUJ9LzOXSMUkdqqMA++u8vMHAU4+w5T701JYRGRkyipIyKlO7AKJl8BWSmmbsxVUyG+e+WPG1wfuo43t4Ic2DkHNs2ArT9Bbhqs/tTc/ELMUo347qbbln8ohJ9+doWcmhV3rAZS+t7jxZKL8k1yDaDTJSVfYLNB+wug9QhT6Hbe301R6M8uhZbnmeROXGfPXkQFHcrM57kfNgFw39A2NI0KPuNr/H3tjO0Wz+fL9tK9aaRJ5LSPJSEm9IwJodIHYc5PiwGmbtGaKTDw4eqbHEteBz8+ZLZjOpji4BUVXB8G/QVm/gVmP2tirRYs5xORKpKZYor3719ulnyPftnMIhURkVIpqSMiJTkdsOhN8+bLkQ8xHU1CJ7L0orKV4h9sZuW0O9/UdklcaFprb5oBGftg03fmBqZIcnV9A1wTBIRBVIJpD5+0ysy22TbLtJwOi4emfUt/na8/nH0bdL0C5r9s2rDvnANvnQvdr4bzHofw0rtIVReTvt9Aem4hHePDubF/izK/7oWLO/P0hR0J9HPDJ8OuJYQDHoJ9K+DILti7BJqeXflju1NOmlnqsPx9sJymlfnAhyt/3F43wtL/mVl3395mZv35quOliPxJ8jqYPN78DRAYCZd/DC0HentUIiLVWrm6X4lILXd4u2nTPesJk9BpPQJumFk1CZ0/8/E1sxhGvQj3rYdb5pk3wDEdzPNtRlb9GGo710yrA8c6YLmWXnW62LSgPp2gejDiObhzKXS8CLBg1afwRg+Y8wIUZFfZsCtj9uYUZqxNwsdu48VLuhxvL14GNpvNPQmdnDQz4w0gvgd0GGu2V0+u/LHdxbJgxYfwRk9Y9q5J6HQYB3ctc0/NJ19/GPOKWcq1eYaZ8ZWfWfnjikjtsflHeG+ESehEJcBNvymhIyJSBkrqiIiZnbPw3/DWObBvKfiHmcLGV031TkFCmw3iu8Hgx+GORfDYAffMFqjrTqyrk58FW34yX/956dXp1G8Bl30IN86Cxr2hMMcszfr2NjcP1j0+XZwIwHX9mtOpUYR3BuGapRPRFAJCj7fh3fAtFOZ6Z0x/tv5r+P4eswQypgNM/B4u/8i9Cd2Wg+Dqr8xSyl3z4aMLIPuw+44vIjWTZcEf/zJLrgqzocVAuOlXiE7w9shERGoEJXVE6rrUHfDBaNPtqCjP1Eu5Y5Epalxdljv5h3h7BLVDfDdzn7TGJHSKcqFei4rVSmrSG278xXQiAVOb5+hetw3VXTYlZQAwslPVtow/LVc9nQZtzX2z/ibBk59hlht6m6MI5jxvtvvcBrf+bmbNVYWWA03CKDjKzBh7f2S1jBsR8aDZfzNF+bGg1w1wzddmdqiIiJSJkjoidZXTCYv+A/89B/YuNp+ej3kNrv3WM8utxPPiugA2Uyx56dvmsc6XVjx5Z7OZ1zc/F7Bg9WfuGqlbHM0pICk9D4C2cV4szOuaqRNzrIOU3W5qFIEpmOxt674wtW6Co8zsuKpuW9+oB1w/E8IbQ+o2eG+46bQlInVPUYHprAimu9X5rxzvxCgiImWipI5IXZS6Az48H35+1MzWaDHQzM7pdX31mZ0j7hcYbuoUAOxbZu7Ls/TqVHpMNPerPjVL+aqJTUmmZkvjekGEB3rxTcJB10ydE9qCdz22BGvHbMhMNtuOQlj3lakp8cnFkL7PPed3FJnlDaU+VwjzXjTb59zjua5UDdrAjT9DdBvIPAC//9Mz5xWR6mXfMijIguBoOPtO/Q0iIlIB6n4lUpc4naZ70a9Pm2SOfygMe8ZMdz7DH1JOp8X/ft9J43rBnN+lenc7ktOI725mR4DpbBbTvvLHbH+B6VKSvtd0xkoYWvljuoFr6VW7OC/UhTqRa6ZOgxP+raNaQZM+pgPWsvdMwm3xW6ZAqMtb58Il/yvfv2d+JiSvh6TVZpld0hpz/hYD4MrPwS+w5P5rpphZMiEN4KybKnqFFRPRGEb/Az4ea5bv6RN6kbpnx2xz3+q8MxfsFxGRUimpI1JXpO2C6XfCnj/M1y0GwIX/hnrNyvTyuVsP8sJPm/H3sTOobQNCAvTjo0aK72aW24DpeuUOfoHQ5QqzpGvlx9UmqbM52SR1OjT04tKr3COQdWwmToM2JZ/rOt4kdea/dPyxkAbQ83rYOhOS18Knl8KAB2HQo2D/Uyeu3KNmnwOrjydwUrcDpczK2TkHvr7RtAd2HaeoAOb9w2z3v887taua9TfXnH0Ids2rNrEjIh5SnNQZ7N1xiIjUYHpXJlLbOZ2mRfGvT5lORX4hMGwS9LqxXJ+KffDHbgAKHE7+2H6Y4R29WHhWKs7VAQvcs/TKpccEk9TZ/CNkHYLQBu47dgVtTjbLr9o19OJMneLOV01OXtrU8WL45UkoyITottD3TpMc8wuEcx+AmX+BFR/A/H9A4mLoexcc3HA8gXOqOjRh8dCw6/Gb5YCvbjCtxH+439TOstlg9aeQngihsWa2njf4+EL7C2H5e7D+WyV1ROqSnDRTMB1MkwYREakQJXVEarMju2H6XbD7d/N183Nh7L+hXvNyHWb7wSx+33a89fCcLYeU1KmpGp8FbUaaGKjfwn3HjesE8T3gwEpY+zn0u9t9x66AIoeTLceSOu29mdQ5+KfOVycKioSbZkFOKjTtVzLJ6hcIF7wGzfrB9/ea72HX9/GJIpseS950O3brAqExJ+93ybvwxURY8SGExJjZP/NfNs/1vx/8gipzlZXT8SKT1Nn8PRS9Cr7+3huLiHjOzrmABTEdIFzLukVEKkpJHZHayLJg7VT44QFTgNAv+FjtnPLNznH5eNFuAGLCAjiYmc/cLQexLAubChrWPL7+cNXUqjl2jwkmqbPyYzOrxIvxsTs1h/wiJ0F+PjStH+y1cRyvp9Ou9OfPVNOoy+UmafPDA5CZZDqYxXczj8V1geD6ZRtHh7Ew5hWYcZ9Z7rV3CWTsh7CG0PO6sl5N1WjWz8wWykoxb/LaDPfueETEM7T0SkTELVSRTKS2yUuHb26Gb281CZ2m/eD2P6D3zRVK6GTkFfL1ClO89YWLOxPoZycpPa94aYtIsU6XmATi4a0maeBFriLJbePC8LF7Mfl4qJTOV+XVoC1cNwPuXgGXfWC6VLUcVPaEjkuvG2DQY2Z71zxzf+4DJxdP9jS7j0k6AWz4xrtjERHPsCzYMcdst9LSKxGRylBSR6SW+HxpIu9N/hznf/vDui/B5gODHzdvBuu3rPBxv1q+j+wCB61jQhncLoZ+raIBmLPloLuGLrVFYLipEwNmto4XuYokt/dmkWSAg5vNvTu6jLnDwIfhrJvNdkQTM7uqOnDFzeYfoCjfu2MRkdNb9h78tz/sWVTxYxzeZrr9+QSYD59ERKTClNQRqSV2/vgqE7fcjj09EWdEM7jhZxjw0Mkdc8rB6bSKl15N7Nccm83GeW1NAdw5m5XUkVK4kgQbvjWzxrxkU1I1qKdzYuer6Dan39dTbDYY9SJc/D+45mvwDfD2iIwmfUyB5/yM40syRKT62fKTWQ6asg6+mACZyRU7juv7vFlf8PfiElkRkVpASR2RWqAwK5UHrY/wtTn52tGfy2z/4FBkl0ofd97WQ+xOzSEs0JeLujcCYFBbU4R1xZ4jpOcUVvocUss06W06ORXmwPqvvTaMzceWX7WLqwadr8Ibm1lM1YXdx9TqKa14s7fY7dBxnNleryVYItXSwc3w9c2ABb6BkH3QdNZzFJX/WDt+M/eqpyMiUmlK6ojUAvlrp+Fvc7DJ2ZQXAu5jRXIRV7y9iP1Hcyt13A8W7gbgil5NCAkwddWb1A+mdUwoTgvmbTtU2aFLbWOzHZ+ts/wDUzfBw47mFHAgPQ+Adt5cfnXo2NKr6pQ8qc46XmTut/wIhZX72VWj5GdCUYG3RyFyejlpMGU8FGSaTpq3zAX/MNjzB8x+pnzHKsqH3QvMtpI6IiKVpqSOSC3gs8HMiPjZ1p8vb+tLo8ggdh7O5rL/LmT7wUysCryx3nEoi/lbD2GzwYS+zUs8N7idma0zV0uwpDTdrjJ1EpLXwr7lHj+9q4h3o8ggwgP9PH7+YtWtnk5116iXmdVUkAXbf/P8+Tf/AAteA6ezas/jdML+lTDvJXh3GPy9KbzVH7JTq/a8IhXlKIKvrocjuyCyKVz2kfm5Nvbf5vk//mW+f8pq7xIzmzMkBmI6Vs2YRUTqELU0F6npMpMJ3L8QgN8DBnJvdAhf3taXa95dws7D2Qx9ZT6+dhsRQX6EH7tFFN98i7fDA48/Hh7kxyeL9gAwpF0MTaNKrncf1DaGt+fvZO7WQziclne7C0n1E1zfdMJaMxmW/Q+anOXR07s6X3m1ng5opk55uZZgLfq36YLVfoznzr3kbfjpYbMd3QbajXbv8XPSTA2RbbPMspPsP81yPLwFPr8KJkz3fjcykT/75XHYORf8QmD8FAiJMo93HAd774DF/4Fvb4db55atMcOJrcwr0JVTRERKUlJHpKbb8C02LFY4W5MbYurexEcG8cVtfbn90xUs232EIqdFanYBqdnln+J/Xb8WJz3Wq3k9wgJ8ScsuYO2+o3RvWq/SlyG1TO+bTFJnw7cw/DkIbeCxU28uLpLs5c5XxUkdzdQps44Xm6TOlplQkOOZAqoLXoVfnz7+9erPTp/UWfgGJK83y8UShoJPKX9KOZ2QtBq2/wrbfoH9K8A6YQaQfxi0HAith5k3wZ9fA3sXw7e3wqUf6I2uVB8rP4El/zXbF78NcZ1KPj/sGRPfe5eYwsk3zgK/oNMf88SkjoiIVJqSOiI13bqvAPjO0Y+IoONLTaJDA/ji1r7kFjpIzy00t5zC49u5hWTkFpKRV1TisROf69sqinMSok46pZ+PnXPbRPPjumTmbD6opE4tsHDHYfYfySUkwNfc/H2O3fsSEmC2A3zt2GxlnJXVqCfE94ADK2HVJ3Du/VV7ASc43s7cm52vjkJmktnWTJ2ya9TDLO84mgjvD4fGvaFhF4jrAjEd3DuLxbJgzvMw/yXzdberTUJn60zIOlR6IvLgJjNrAWDt5xAaC12ugO7XQEiD08/GiekIrYdCwjDT7cvX//hz4z+FTy6GjdPg1yYw/Fn3XadIRSUuhhn3me1Bj0H7C07ex8cPLvsQ3joXktfBd3eb7nqn+l2RfRiS1pjtloOqYtQiInWOkjoiNdmR3bB/OU7s/OjoQ8+gkvVDbDYbwf6+BPv70jDiDJ+cldOgtjEmqbPlEPcP15vWmmz7wSyu+t+SM+7nY7cR7O9DaIDvCfcmCdSkfhCtY8JoHRtKQoNQ6oX4k9f9BgIPrCTzj3d4JmkQOw7nckP/FozpEl9l1+JwWmxJMTN12sV5s0iyq/NVo+rV+aq6s9mg1w1m5kzyOnM7kX8oBIRDQJj5dw0IP/n+pMfCjm1HmHtff5PQ+eVxMysIYOjT0P8+M7tq/wpYOxX63XXy+Bb/x9xHJRxrWZ8CC183N2zACfXLTpyNkzAMIhqd+rpbDICxb8K3t5iZQJHNoPfNFf93FKms9H0w9RpwFkKHsTDgoVPvGx5vEjufjIN1X5p6O+c+UPq+O+ea+9jOEBbr5kGLiNRNSuqI1GD2jdMA2B/Zi0PJkSVm6lS1QW3Np9jr9qdzMDOPmDDVgaipFu80BVqjQwNoER1Mdr6D7IIic59fRG6hAzAJk8y8IjLzzty+NiLIj/y8UBb5h1IvL4kjq2ew0tmTDV+soU1sGG1iqybhsjs1m7xCJ0F+PjSLCin7Cy3LLI+x+7hnIMVLr9q553h1Sf/7oP2FcGCVKbadtAaS1kJumimiXJAFmZU4vm+gWR6Se8R8Peol6HOr2e5+jUnqrPoU+t5ZcrZB1iFYM9Vsj33TzETb9sux2T0/g+U4/WycM+l6BaQnwuxnTX2fiMbQdlQlLlSkggpyTI2n7EMm+TLuv2deEtjiXBj9DzOz57dnILrtyXWxHIXFs4tpdV7VjF1EpA5SUkekBrNv/AaANZFDIBkigj2X1IkJC6RzowjW7U9n7pZDXN6ricfOLe61MtG8ub2qd5NSZ105nBY5BUXkFDjIyi8iJ//YfUERWfkmybMnNZttB7PYlpLF/qO5pOcWAv784DuUaxzTeDzmD7KCh7F4Zxr/N2UV0+48h0A/NyVQTuAqktwmLqx8Bbxn3Atrv4CJ30PjXpUfiJI6lRPVytw6X2q+tizISYW8dMjPgLwMc5+feXzb9VyJx459nZ9hkkEARXnmZrPDBa9Dj2uPn7fTJTDzUTi0ySwdbNTz+HPL3wNHvnmsSR+T8Gk/xtxy0swb1srOPDj3QbP0bOXH8M2tcNdSCIur3DFFysOyYPqdJpkaHA1XTgb/MibIe91gligufQe+uQVu/BniOpvnDqyG6XdByrHZd6Ut5RIRkQpRUkekhgrL3Yft4Eaw+7EsqD+Q7tGZOgDntYs5ltQ5qKRODbYq8SgA3ZuVXhvJx24jLNCPsEA/yvKWNTu/iD2pOcRFBFK/oCP8azrNjy7mPxdHMvzjLDYnZ/L8j5t4ZmynMx+snFxFkju4iiQX5Ztliqera7NlJqz40GzPuBdumVf5GTsHN5n7GCV13MJmg5Boc6sop6Nkoick+uSESWCEmSW07gtY9dnxpE5hHix712z/eQYPmI5v7mCzwfmvmELMB1bCjw/BFZ+459giZbHgFdN9zu5rYi+yafleP+IFOLzVLLOaciXcMBOWf2AKklsOCKoP578MTXpXyfBFROoitVcQqaEaHVlsNloPIynfLH3ydFJncLsYAOZsPkR6TqFHzy3ukZZdwK7D2QD0aOKegtchAb50iA+nfog/1GsOrYcDUH/jJ/zz8m4AfLxoD79sSHbL+U7kmqnTLu5YHZtfnoA3e5uCuKXJyzheCBRMDZfl71d8AAdWmRkWu383X2umTvVh94GgelCvmengc6oZMN2vNvfrvoLC3GPbX5qlKOGNof3Yqh2njx9c+Lp5U73pO9j0fdWeT8Rly0/w29/M9uiXoVm/8h/Dx9fU14lKgPS98K9u8PvLJqHTYRzcudTMiBMREbdRUkekJrIsGruSOp0uObbUxfNJna6NI2gXF0ZuoYOpyxM9em5xj1XHll61ahBSdcv3XAVfV3/KwOYh3HxuCwAe/notyel5bj3V5mRXO/Nws4xg43TzxLwXj9dDOdGvT0HmAdNWetixNzOz/2Y6tJSVo8ic5/2R8M4g0xXJWWQ6u8R3r9T1iBc0HwARTSE/HTb/YOJo0ZvmuT63lt7C3N3iOsM595jtHx403dREqtLBTfD1TYAFZ90Eva6v+LGC6sGVU83MN2eh6Qx3+cdw+Ueld5UTEZFKUVJHpAayHVhFSMFBLL9gaDvKa0kdm83G9ec0B+CjhXsocjg9en6pPNfSqx5V2Za+1RAzYycvHdZ9yUMj2tG5UQRHcwq5d+oqHE7rjIcoi/ScQvYfNTMr2saFmTcpWSfMBvruLtiz6PjXuxccn5VzwetmWU1cZzPO3yad+YS5R02note7wxcTIHGRmV3R+XK4eTZMmG5mXUjNYrdDt6vM9qpPTJvyQ5tM560eEzw3jgEPm9kOWcmmG5hIVclJM0ulCrKg+bkw8u+VP2Z0AkycAUOeMrNzOlTxDDcRkTpMSR2RGsi28WsArDYjwT+EDC8ldQDGdmtEvWA/9h/N5ddNBz1+fqkcV5HkHqeop+MWdrspoAmw/iv8fe28fmV3gv19WLwzjed+2IRlVT6xsznZLL1qFBlkvhd2zDZPtDwP2o0BRwFMvRrSdpllNd/9n3m+53Wmc4vdxyw5AFj5CexbUfqJUneYWievdDBtsdMTITjKFLm9dz1c8r+SBXal5ul2pbnfOe94gq/7tRAU6bkx+AXCBf8y2ys+gN1/eO7cUnc4iuDL6+DILlM/57KP3JeMbtgFzr3ffTWnRESkVErqiNQ0loV903cAODtcBOC1mToAgX4+XNnbFFL84I9dHj+/VJzDabFm71EAujeNrNqTtTnWmjlxCRTm0iI6hOcuMoWS3/9jFw9/tbZSM73yixwsOtaavb2rSPLOOeY+YShc/A407Go6KE2+3CRj0nZAWEMY9szxAzU9G7qMByz48UFwHhuTZcGOOfDZ5fBGD9PdpTAbYjrAhW/AfRtgyBMQ3rDC1yDVSL3m0GIAYJkuQDb78bbnntS8P/SYaLa//z9TsFnEnX75K+yaB34hcOXnEBLl7RGJiEg5qfuVSE2Tsh5bZhJFdn+sludR6HCSXeAAvJPUAbjm7Ga8PX8nS3alsfFABh3iw70yDimfLcmZZBc4CA3wpXVMWNWeLLo1hMWb+jWJi6HVeVzUvTGFDou/fL2WL1fs40hOIf++qvsZW53nFjjYmJTBxgPprN+fwfoD6WxNyaTQYWb7tG8YbrpeuWY2tDrPtOS9cir8b7DpzHJ4q3nu/FdM3YcTDXvG1FI5sNJ0PPINgMX/NUtwXNqMhLNvhxYDT+6EJLVDt2tg13yz3e58qN/CO+MY9gxsnQmp203B2cGPe2ccUvus/BiWvGW2L34bYjt6dzwiIlIhSuqI1DTbfgHgUGhHon0Di5deAYR7KakTHxnEyE5x/LA2iQ8X7uKlS7t6ZRxSPq6lV92aROJjr+LEhM0GLQfCminmU+FW5wFwea8m1Av2567JK/l1UwoT3lvK/yb2Kk5QZuQVsmF/BhsOpLPhQAbr96ez41AWpZXhiQjyo1uTSK44q4lJHBXlQmismU0DZhbNVZ+bgsaFOdDxYmg3+uQDhcXCeY/Cz4/BTw8df9wvBLpfY2ZsRLVy97+QVDftL4CfIiHvKPS9y3vjCIqEEc/D1zfC6slK6oh7JC6BGfeb7fP+auJdRERqJCV1RGqarSapczCiK9EcX3oVFuBb9W/MT+OGc5rzw9okpq0+wCMj2xEVGuCW4zqdFisTj5CaXUCRw6LI6aSgyImfj53B7WMID1Qh2ooqrqdT1UuvXFocS+rsnFfi4WEdYvn4ht7c9NFylu5O47K3FtI6Joz1B9LZk5pT6qGiQwPo3CicjvERdDp237heEDbXrJkVx5ZetTyv5Eyahl1NAePNP0D/e0891t63wKrP4OAG0wmpz60moePJmiriXf7BJlayUsyyPG9qOcjcZxwwS7D8Ar06HKnhctLgqxtMZ6oOY2HAQ2d+jYiIVFtK6ojUJDlpsG8pACnhXejA8aSOt2bpuPRoWo/OjSJYtz+dz5ft5c7zEip9zLTsAh74YjVzthwq9fmEmFAm39SHmHC9wakIV+er7lVZJPlELQea+6TVpnPUCQmSPi2jmHprXya8v5StKVlsTckqfq5RZBCdGoXTKT6Cjsfuz/h/7iqS3Grwyc816W1up+PjB9fNgEOboXFvz7Sxluonvpu3R2AER5nuWwVZcHQPNGjr7RFJTWVZ8N3dkLEP6reEsW9qCamISA2nv1JFapIds8FyYjVoT65/NODdIskncrU3v/+LNXyyaA+3DGiJn0/Fa7Ev3pnKPZ+vIiUjH39fO53iw/H1sePnY8PPx86GAxlsP5jFFe8sZvLNfWgYEeTGq6n90rIL2HU4G4AeTTyU1AmPh6jWkLrNtBNvP6bE0x3iw/n2jn58viyR8EA/OjWKoEPDcOqF+JfvPNmHIWmt2XbNcKiI4PrQrF/FXy/iLjYb1GsBKevgyG4ldaTilr0Lm2eA3Q8ufR8CqriemoiIVDkldUSqQlEB+JbzjWhZHKun40wYBseaoLiSOpHB3l+GdH6Xhjz/42aSM/L4aX0yF3aNL/cxHE6Lf8/ezr9+24rTglYNQvj3VT1M8dsT7E3LYfw7i9l1OJvL317E5JvOpkn9YHddSq236tjSq1YNQojwZOy0HGiSOrvmnZTUAWhSP5iHRrSr3Dl2zgUsiOlo6uOI1Ab1m5ukTpq6DEoFJa+Hn/9qtoc9A/HdvTseERFxC7U0F3G3Ba/BC41h84/uPa7TAdtmAWAlDC1+uLrM1AEI8PXh6j6mvfk783fgKK2a7WmkZORxzbtLePVXk9C5tGdjvr+7/0kJHTBv/r+4rS/NooLZm5bL+HcWsyc12y3XURe4ll71aOqhWTouLY4twfpTXR23crUyP1aMWaRWqNfc3B9RUkcqoCAbvroeHPnQeoTp3iciIrWCkjoi7rb1Z/NH0/f3QO4R9x13/0rITYOACKxGZxU/nJ5TfZI6YNqbhwX4sn5/Bp8u3lPm183dcpDR//qdRTtTCfb34ZXLu/LyZV0J9j/1hMJGkUFMvaUvLRuEsP9oLpe/vYjdh5XYKQtXkeTunk7qNO8P2ODwFlP01d0sC3bMNdtK6khtUu9YS/Uju706DKmhfnoYDm+FsIYw7j+qoyMiUosoqSPibq5PUbMPwqwn3XfcY0uvSBhsirgeU51m6gA0CAvg4VFm+cxLMzdz4GjuafcvdDh54adNXPfBMlKzC2jfMJzv7+7PxT0al+l8cRGBfH7L2bSOCSUlI5/Hp62v9DXUdg6nxZq9RwHo0SzSsycPrn+8+Oyu+e4//uFtpgCoTwA0VT0cqUXqH0vqaPmVlNfaL2DVp4ANLn4HQqK9PSIREXEjJXVE3KkwFzKTjn+98mNTENYdtv1s7lsPL/Fwdel+daKrezelZ7N6ZBc4eOq7Dafcb29aDpe/vYi35+0EYELfZnx7Rz9aNQgt1/liwgJ5/7qz8LXbWLD9MMt2p1Vq/LXdluRMsgschAb40jrGC0Uyq3IJlmvpVdOzTUtqkdrCtfzq6B5wOr06FKlBktfDd/9ntgc8BC0GeHc8IiLidkrqiLjTkWPLjQLCocdEs/39PVCYV7njZiZD0hqznTCsxFPVbaYOgN1u44WLO+PnY2PWxhRmrk8+aZ+Z65M4//XfWZV4lLBAX966pgfPjO1EoJ9Phc7ZpH4wl/VqAsCrs7ZWavy1nWvpVbcmkfjYvTAF39XafNc8s1zKnU7XylykJotoAjYfKMqDrJN/poqcJPcoTL0GinLNz8RBf/H2iEREpAooqSPiTq5aB/Wamc4SobGQuh1+f7lyxz1WIJn4HhDaoMRT1TGpA9AmNoxbB7QC4Knv1pORZ8aZV+jgyenrue3TlWTkFdGtSSQ//t+5jOzUsNLnvGtwAn4+NhbuSGXJztRKH6+2ciV1ejSN9M4AmpwNPv6QsR9Sd7jvuEUFx2fGqZ6O1DY+fhBpEtdagiVn5HTCt7eaJeGRTeGS98BesQ9NRESkelNSR8SdXPV06rWAoEgY9ZL5esGrkLKx4sd11dP509IrqL5JHTBJlhbRIaRk5PPyz1vYeSiLi/6zkI8XmRlNtw5syZe39XVbK/JGkUFc7pqt82vdmq1T5HBy00fLuep/i1m/P/20+7o6X3Vv5uEiyS7+wdCkj9neNdd9x923DAqyIDgaYju777gi1UVxB6zd3hyF1ATz/wFbZ4JvIFz+ialnJiIitZKSOiLu5PpD21XQssNYaDsanEVmGVZF6iAUFcCOY3VC2pyc1MmoxkmdQD8fnruoEwCfLN7DmDcWsCkpg6gQfz68/iweHdUePx/3/hi687wE/H3sLN6ZxsIdh9167Ops5oZkft2UwsIdqYx98w9e+GkTuQWOEvskpefy7IyN7DrWIaxHEy8ldaBydXUcRWaGz7ZZsPi/8MOD8MlFpl0vQMtBYNevN6mFijtgaaaOnMbWX2DuC2b7/FeOF6cXEZFa6dS9gkWk/FxT4l2fptpsMPofpsvPvqWw/D3ofXP5jrl3MRRkQkgDaNj9pKer80wdgH6torm0Z2O+WrGPnAIHZ7esz7/Gdyc2PLBKzhcfGcQVZzXhk8V7eG3WNvq2jMJWB1q3vrfAxF7T+sEkpuXw9ryd/LQumb9d2J7kHHjkm/V8vzaJQoepYTOuWzwRwV6MmZYDYc6z5nvD6Th5WYDTAen7IG2HSeCk7TRLGVN3HCsUW1T6cW126HJ51Y9fxBtcv1u0/EpO5WgifHMTYEGvG6D71d4ekYiIVDEldUTc6cTlVy4RjWHIU/DTQ/DrJDNzJ6JR2Y9Z3Mp82EmzDwodTrKPzcaorkkdgCfO74DTadE2Loybzm1Z5cV57zivFVOX7WXp7jQW7kjlnITa3b51ZeIRViUexd/Hzle392Xt3nSemL6exLQcJn64AvOj/gAAfVrU57ZBrRjUpsFpj1nl4nuAfxjkHYUDq8HX3yyf2rcc9q80SRxH/qlf7xsI9VtCVCuo3+r4fYO2atcrtZdrFqiWX8mpLHkb8tKhUU8Y+Xdvj0ZERDxASR0Rd3E6j3e/cn2a6nLWjbDuC/Om9ccHYfxkM4vnTCwLNv9otlsPO+lp19IrqF4tzf8sItiPV67o5rHzNYwI4sreTfho0R5enbWVvi2j2Hckl41JGWxKyiAxLYewQF/qh/gTFRpAVIi/uYX6ExUSQESQH3ZvdIWqINcsnQu6xhMTFsjQDoH0aVmfl3/ewseL94BlMbR9LHecl0D3pl5ccnUiH19ofo6p+fDeULBKWZpo9zNvYl1JmxMTOGHxWmIldY+WX8npWBZs/M5sn3Mv+AZ4dTgiIuIZSuqIuEtmkplZYPMxrWdPZPeBC16Ht8+FLT/Cpu9MvZ0z2b/SLD/xDSo1qZOea5aghAX6eqc1dTV2x3kJTFm2l+V7jtD56Z+LZzSVhY/dRr1gf6JD/U9K/NQ/lvgxCSCzHR7k67UlXvuP5ha3jL+x//EZYmGBfkwa24nxvRqxcMF8JlzcDT+/apb4azvaJHUsJwSEQ6Me0PgsaNQLYtqZ7yN1axE5zvWBQU4q5GVAYLhXhyPVTNJqSE8Ev2BIGOrt0YiIiIcoqSPiLq7p8JFNzCyEP4vtYD45+/1l+PEhUyg2KPL0x1z7ublvdz4EhJ30dHpe9a6n402x4YFMOLsZ7y7YRXaBA38fO61jQ2nfMJyWDULIyXeQml1AalY+adkFxdsZeUU4nBaHs/I5nHWa5T8nCAvw5cJu8VzVpykd4yNKPJdf5ODXjQf5csVeDmXm88SYDpzdMspt1/nxwt04nBZ9W0bRIf7kN3gJMaFsrZryRZXX/VrzJjU0FqLbaOaNyJkEhkNwlEnqHNkNDbt4e0S1W+4R2LsUQmMg/uSadqeVmQwfj4XYjqaduCcS/65ZOglDTZdBERGpE5TUEXGX0urp/NmAh2DjNFPw9den4YLXTr2voxDWf222u44vdZfq3PmqOnhkVDv6t44mLiKQVg1Cy9Rpq6DIyZGcAg67kj1ZxxM+xdvZx5/Lyi8iM7+Iz5Yk8tmSRLo2ieTq3k1p3zCcb1ft59tV+ziSc3yZ3JX/W8zN57bk/mFtCPSr3CyU7PwiJi9NBErO0qkx7HZTMFlEyq5ei2NJnV1K6rhbZgokLoQ9x24pGwAL7L5w5VRoXcbZL5ZlOl4e2mxuHcaWbXZuZViWmQUMVX8uERGpVpTUEXGXP7czL41fIFzwL/jwfFjxgenS06xf6ftu/8384R4SAy3PK3UX1/IrJXVK5+djZ1DbmHK9xt/XTmx4YJm7c+UVOli55wifLU3klw3JrNl7lDV7j5bYJzY8gEt7NiY1q4DPl+3lnfk7mbflEK9e0a3U2TVl9dWKfWTmFdEiOoTB7cp3nSJSQ9VrDvuXq1iyOxxNPJbA+cPcp24/eZ/gaMg5DF9MgOu+NwWIz2TNFLO01OXnx6H1cPALct/Y/+zgJjN+H39zLhERqTOU1BFxlz+3Mz+V5v2hxwRY+bH5JO+2BaUXM3Qtvep8aenLuYAMLb/yukA/H/olRNMvIZrDWfl8uXwfU5YmcuBoLkPax3DFWU0Y0LoBvsdmCQ1tH8tfvlnLlpRMxr65gJvObUmXRhHERwbRqF4QUSH+ZarP43RafPCHibnrz2leowo7i0gluD44UFvz8rEsk/RwJXD2LIT0vX/ayQaxncyHLa5bYCRMvhx2zoHPLoMbfoHohFOfJ30//PQXsz3gYVj9malzs/ANGPhwVV3d8Vk6rQar1pKISB2jpI6Iu5Rl+ZXLsGdgy0w4vBV+/yec91jJ5/PSj3e96nLFKQ+jmTrVS3RoALcPasVtA1vitCi1ePXQDrH83HQAj36zjl82pvDfuTtKPB/ga6dRZBDxkUHERwbSKDLY3NcLolFkEA0jgvD3tfPb5oPsTs0hPNCXS3o09tQlioi3qQNW+f3+Ciz+D2QfKvm43dfUymnWD5r2g6Z9IKiUDoFXfAIfjjGFiD+9CG6cBWFxJ+9nWfDd3ZCfbgq+D3wEGrSFr280Y+h2FURU0c/rjVp6JSJSVympI+IurqnwZ5qpA+aPxlEvwlfXmz/0Ol5suv24bJxuOmk1aAcNu57yMKqpUz3ZbDZ8TjNxJio0gLev7cl3aw4wa2MKB47msv9oLgcz88kvcrLzcDY7D2ef4tjQIDSAQodpAX5ln6aEBOhHuUid4fodo+VXZZOfCXOeA2cR+AaaDnuuWTiNzwL/kDMfIyAMrv4K3htmkmmfXgrX/wCBJQvjs/Jj2PEb+ATAuP+aWbadLoFl75laPbOegkvfc/81pu6AgxtMkqrtKPcfX0REqjW9ExBxh7wMU/8GypbUAeh4Eaydatbdf/9/cP3M491/1kw1912uOG3HjKPHkjrhSurUODabjbHdGjG2W6PixwqKnCSn57H/WJLnwNFc9h/J5UC6ud9/NJf8IicHM01XLn9fOxP7NvfSFYiIV7iWXx3dawrq++jn/2nt/sMkdCKbwV3LSl/uXBahDeDab+C94ZCyDv43BNqNhhYDoGlf8zfAz381+w55Ahq0Mds2G4z6O7w9ENZ/BWfdBM36uufaXDZON/ctBpQ+00hERGo1JXVE3MH1iWlwVNnXsttsMPpl2L0A9i6BFe+bP/aOJsKeBYDNFFI+Dc3UqV38fe00jQqmaVTprWgtyyItu8AkfY7k0jQqmPjIKiy8KSLVT2icmQniyIf0facvzi+mFg6YWjMVTei41G9pZux8dCGkboM//mVudj8IioSCTGhyNpx9R8nXNewKPSfCig/hp4fhlrlgr1z3wxJcSZ32F7rvmCIiUmOcub+viJxZeerpnCiyCQx+wmz/OgkyDsDaL8zXzfufce19ep6pqRMZrKROXWCz2YgKDaBL40hGdW5Ix/iIM79IRGoXu/2EJViqq3NGO1xJndK7SJZbfDf4v5Vw0dvQ7WqIaALOQlOvxzcIxv2n9ITN4CcgIAKS18K8l8zve3c4ssfU+rHZod0Y9xxTRERqFM3UEXGHsrQzP5XeN8O6L02L2h8fMsWTAbqOP+NLNVNHRKQOqt8CDm8xHbBaeXsw1Vj6fvPvhA2an+u+44ZEm9/RXceb4shHdkPiIlMUOeoU/yEh0TDoL/DzozDv7+YW0RSa9IamZ5v7mI6n7HZ5Spu+N/dN+5klYiIiUucoqSPiDmVtZ14auw9c8C94ZyBsnmEe8w0s0zTqdCV1RETqHhVLLptd88x9fHcIrl8157DZTJKtLB/q9L7FFG7ePANS1ptW5+mJptYOgH8oNOoJTfqYTlyNzzq5GPOfuVqZd9DSKxGRukpJHRF3qOjyK5e4TtDv/2DBK+brdueXqTZPRp5amouI1Dlqa1427l56VVk+vjDoEXPLz4T9K2DvUkhcDPuWQX6GSUS5klHYIKaDmcXTpI+5t/tA7hHISYOsFFOTD6D9BV67LBER8S4ldUTcoTztzE9l4MPmE7fU7dD92jPu7nBCToEDUFJHRKROcc0KSdvt1WFUa5YFO+ea7ZbVJKlzooAwaDnI3ACcTji0GfYuPp7oObLLtCo/uAFWfHDqYzU+C8LjPTFqERGphpTUEaksR6FpLQuV60LiF2Tamh/eCs3POePuOY7j22GBSuqIiNQZJy6/siyzBEhKStkA2QfBL9jMcKnu7HaI7WBuvW4wj2UdNAkeV6LnwCqw+5q25a5bcJSZ6SsiInWWkjoilZW+DyyHaTEbGle5Y4U2KHOhwxyz8oqwQF987PqDXkSkzohsBthMC+2cVFOEF8DpMIVzIxqb2ix1OdnjamXerF/lW5l7S2gMtB9jbqAEnoiIlEpJHZHKOnJCkWS73WOnzT2W1NHSKxGROsYv0Cy3ydhvZuuERENBDnxz8/GC+/VaQOfLoMvlEN3aq8P1Clc9neq49KqilNAREZFSeO4dqEhtVZl25pWQXWT+uFNSR0SkDnItwUrbBdmH4eMLTULHx98sOTqyC+a/BP/uBW8PhIX/howkz41vx2z44HyY/Swc3Oy58wIU5cOehWa7uhRJFhERqSKaqSNSWZVpZ14JmqkjIlKH1WsBe/4wyZO5z0PaTlNjZfwUaNgFNv8I676EHb9B0mpz++VxaDHAzODpcOGZ22VXVH4WfHs7ZCXDngUw/x8Q2wk6XWJu9ZpVzXld9i6BolwIiTHdo0RERGoxJXVEKqu485VnZ+q4aupEBiupIyJS57g+SFgz2dxHNoNrvj6+1KrLZeaWfRg2fAvrvjIFd10ts394ANoMh86XQ+vhZkmXuyx4xSR0Ipqawr/bf4OU9eb22yRo3Bs6XwodxkFYrPvO61K89GqQliyJiEitp6SOSGUd8dJMnWPdrzRTR0SkDjpxyW98d7jqC1NY989CoqH3zeZ2ZLdJ7qz70rTP3vS9uQVEQIcLTIKn+bmVqw+Xtsss9QIY9Xdodz7kpJnzrP8Kdv0O+5aa28y/mPN1vhTaX2BmGrmDq0iyll6JiEgdoKSOSGVYFqTtNtserqmTc6ymTriSOiIidU/zcyG8MTQ5C8a+Cf4hZ35NveYw4EE49wEza2btF7D+a1NwedWn5tZqMFzyHgTXr9i4Zj0BjnwzS6btaPNYcH3oOdHcMpOPzxzav/z4zKEZ90PrYWZ5VsuhFTs3mATSgdVmu+Wgih9HRESkhlBSR6QyctJMS1mAyKaePbVq6oiI1F1hsXDf+ootL7LZIK6zuQ2dBIkLzeydNVNNjZ53BsIVn0LDruU77s55ZkaOzQdGvFD62MLi4OzbzS1tF2z4BtZ9DQc3wJYfYcuP+PoF0yO0GxztCA0SyjeGXfMACxq0Mx3CREREajl1vxKpDNfSq7B48Avy6KlVKFlEpI5zR70Yux2a94cL/gU3/Wrqwx1NhPeGw5rPy34cRxHMfNRsn3WjqaVzJvVbmFlDdyyEOxbDuQ9CvebYCnNocmQhvu+cCwvfMMcu0xgKYctPZluzdEREpI5QUkekMoqLJDf3+Klz1NJcRETcKa4T3DLHFE4uyoNvb4UfH4KigjO/duWHZrZNUD0Y9Gj5zx3THoY8Af+3mqLrfuFQaHtshTmmY9e7QyBpzcmvyc+CxMUw/2X4eBz8vRmsnWqea6l6OiIiUjdo+ZVIZbjamXu4ng5Ajgoli4iIuwXVgyunwrwXYd7fYek7EBBuEi6nkpMGs58z2+f9teL1eABsNqxGPViY8BfOb3QE39+eMu3Y3znPtGIvyjMziY7ugZzU0sffZhQkDKn4GERERGoQJXVEKsNLna9ANXVERKSK2O1w3qMQ3hC+vwdWTzbJmlN1xVr4BuSmQYP20PN694zBZsPqdg20Gw0/PQwbp8HaUpaDBUdDs35mCVnz/mYMleneJSIiUsMoqSNSGanbzX1UK4+fWjV1RESkSnW9En55EjIPQOIiaH7Oyfs4HbBmitk+71HwcfOflmGxcPlHsG0W7JoPYQ2hXjPTnCCyKQRGuPd8IiIiNYySOiKVcXibuY9q7dHTFhQ5KXCqpo6IiFQh3wBoPwZWf2Zan5eW1Nk5FzKTji97qiqth5mbiIiIlKD5qSIVlZNmppuDx2fqZOQVAqbxSVigkjoiIlJFOl1s7jdOK70LlWuWTqdLwdffY8MSERERQ0kdkYpyLb0KbwT+IR49dfqxtVdhAb742N3Q0lZERKQ0LQZBcJQpSrxrXsnn8jJg0wyz3e1KT49MREREUFJHpOK8WE8nI9fM1AnX0isREalKPr7QYZzZXv9Nyec2ToOiXIhuC/E9PD0yERERQUkdkYorrqeT4PFTpx9bfhURpLJYIiJSxTpdYu43fQ9F+ccfX3OsG1XX8WY9sIiIiHickjoiFVU8U8ezRZLh+PKrCNXTERGRqta0r+k6lZ8O238zjx3ZDXv+AGzQ5Qpvjk5ERKROU1JHpKKKkzqen6mj5VciIuIxdjt0PFYwef3X5t41S6flIIho5JVhiYiIiJI6IhXjdELqDrMd7YXlV7lafiUiIh7kWoK15UcoyD7e9aqrCiSLiIh4k5I6IhWRvhcc+WD3g4imnj+9a6aOll+JiIgnNOoB9ZpDYQ78Osksv/IPhfZjvD0yERGROk1JHZGKcC29qt/SdAbxsPS8YzV1tPxKREQ8wWY7Pltn6dvmvsM48A/x2pBERERESR2RivFiPR04saaOll+JiIiHuJI6Ll3He2ccIiIiUkxJHZGKcCV1vFBPB44vv4rUTB0REfGUmA7QoJ3ZjmgKzc7x7nhERERESR2RCjm8zdx7baaOWX6l7lciIuIxNhv0vN5s977ZdMUSERERr9LaDZGKcHW+imrt8VMfzMwj8UiOOX2Iv8fPLyIidVifWyFhKES18vZIREREBCV1RMqvMNd0vwKvzNT5x8wt5BU6aRZq0SYm1OPnFxGROsxm89rSYxERETmZ5s2KlFfaTsCCwAgIiT7p6U1JGfxtxka2H8xy+6nX7Uvnq5X7ALi4uQO73eb2c4iIiIiIiEjNUO6kzvz587nggguIj4/HZrMxbdq0Es9fd9112Gy2EreRI0eW2CctLY2rr76a8PBwIiMjufHGG8nKcv8bYJEqcWI9HVvJpEqhw8ntn67gvQW7GP3677w5ZztFDqdbTmtZFpO+34BlwYVdGtI8zC2HFRERERERkRqq3Emd7OxsunbtyptvvnnKfUaOHElSUlLxbcqUKSWev/rqq9mwYQOzZs1ixowZzJ8/n1tuuaX8oxfxhuJ25ifX0/l82V52p+Zgt0FBkZN//LyFcf/5g40HMip92hlrk1i+5wiBfnYeHO75Wj4iIiIiIiJSvZS7ps6oUaMYNWrUafcJCAggLi6u1Oc2bdrEzJkzWbZsGb169QLgjTfeYPTo0bz88svEx8eXd0ginlWc1ClZUyCnoIjXfzOzeJ66oCOhAb48M2Mj6/dncOG/F3DHoFbcOTiBAF+fcp8yr9DB33/aDMBtA1vRMCKQVZW7ChEREREREanhqqRQ8ty5c4mJiaFevXoMHjyYZ599lqioKAAWLVpEZGRkcUIHYOjQodjtdpYsWcJFF1100vHy8/PJz88v/jojw8x6KCwspLCwsCouoVJcY6qOY5PK8zm8DTtQVK8F1gn/x/+bt5NDmfk0qRfEpd0b4u9rp2+LSJ76fhOzNh3k9dnb+Wl9Ei9c1ImujSPKdc635u5k/9FcGkYEckPfpooxKTPFiniC4kzcSfEknqA4E3dTTIk7lSeObJZlWRU9kc1m49tvv2XcuHHFj33++ecEBwfTokULduzYwWOPPUZoaCiLFi3Cx8eH559/no8++ogtW7aUOFZMTAyTJk3i9ttvP+k8Tz/9NJMmTTrp8cmTJxMcHFzR4YuUn2Uxat0d+DuymdP2WTKCmwKQVQjPrPIh32FjQmsHPaOtE1/C6jQbX+20k1Vkw4bFeQ0tRjVx4l+GSTtH8+G51T4UOE8+toiIiIiIiNQuOTk5XHXVVaSnpxMeHn7afd0+U2f8+PHF2507d6ZLly60atWKuXPnMmTIkAod89FHH+X+++8v/jojI4MmTZowfPjwM16gNxQWFjJr1iyGDRuGn5+ft4cj7pSTit/qbAD6j50Afiap+PxPW8h37KFDwzD+es3ZJ3WlOh+4PbuAZ3/czPdrk5mdZGNnQSjPj+vIWc3rnfJ0eYUO/m/qGgqch+neJILHr+2NzWZTjEmZKVbEExRn4k6KJ/EExZm4m2JK3Mm1OqksqmT51YlatmxJdHQ027dvZ8iQIcTFxXHw4MES+xQVFZGWlnbKOjwBAQEEBASc9Lifn1+1/oap7uOTCkjfbe7DG+MXbJZQ7TuSw2dL9gLwl1HtCQjwL/WlsZF+vHFVT8Z2S+Gv09axOzWHq95bxoS+zXh4ZDtCA0p+O+4/msttn6xg3f50fO02nr6wE/7+JY+tGJOyUqyIJyjOxJ0UT+IJijNxN8WUuEN5Yqjc3a/Ka9++faSmptKwYUMA+vbty9GjR1mxYkXxPrNnz8bpdNKnT5+qHo5I5biKJEcfL5L8yqytFDic9GsVxbmto894iKEdYvnlvoFc0asJAB8v2sOIV+fz+7ZDxfss3pnKhW8sYN3+dOoF+/HxDb3p2iTSrZciIiIiIiIiNVu5Z+pkZWWxffv24q937drF6tWrqV+/PvXr12fSpElccsklxMXFsWPHDh5++GESEhIYMWIEAO3bt2fkyJHcfPPNvPXWWxQWFnLXXXcxfvx4db6S6u+w6W7l6ny1OTmDb1ftB+CRke2w2WynemUJEUF+vHhpF8Z0bchfvl7H/qO5XPveUi7v1Zg2sWH8/afNFDktOjQM5+1re9KkvmpHiYiIiIiISEnlnqmzfPlyunfvTvfu3QG4//776d69O08++SQ+Pj6sXbuWCy+8kDZt2nDjjTfSs2dPfv/99xLLpz777DPatWvHkCFDGD16NP379+edd95x31WJVJXiduatAXhj9nYsC87v3LBCM2nObd2AX+4bwMS+zQD4Yvk+nv1hE0VOiwu7xvP17f2U0BEREREREZFSlXumzqBBgzhdw6yff/75jMeoX78+kydPLu+pRbyvOKmTwMGMPH5enwzAneclnOZFpxcS4MuksZ04v0s8j3y9lsS0HP4ysh03nduizDN/REREREREpO6p8kLJIrWG0wFpO812dAJTl+2lyGnRo2kkHeIr34Wtd4v6zLpvAJl5RdQLKb3YsoiIiIiIiIhLlRdKFqk1jiaCowB8AnCENWbK0kQArjm7mdtO4etjV0JHREREREREykRJHZGySt1h7uu3ZPbWVA6k51Ev2I/RnRt6d1wiIiIiIiJSJympI1IW+Vmwe77ZjmrFp4v3AHB5ryYE+vl4cWAiIiIiIiJSV6mmjghAUQHkHYW8DMhPN/dZB2H/cti7BJLXg+UAID2kBfPXHALgqj5NvThoERERERERqcuU1BHZMA1r+p3YCrJOv194Y2jWj4+dw7CsLAa0aUCzqBDPjFFERERERETkT5TUkTrt0L5thH19O4HOHAAyCSLHFkKOLYR83zCCm/WkaddB0KQ3RDQmv8jBBy/MBuAazdIRERERERERL1JSR+qkzLxC3p67nXMX3UAfWw4rnQlcXvAkRX/+llgH4wOb8HjrOEKBn9Ylk5ZdQMOIQAa3i/HK2EVERERERERASR2pYwqKnExZmsi/ftvGRXnf0sdvI3kE4HPJ//ijRQcy84rIyi8iK6+IuVsO8t4fu/h82V4WbD/MPy/rWlwg+creTfH1UZ1xERERERER8R4ldaROsCyLH9cl84+fN7M7NYfWtn08EvAFAAHn/52uXXsAEBt+/DX9W0czrEMsD3y5hn1Hchn/v8VYFvjabYw/q4k3LkNERERERESkmKYaSK23ZGcqF/1nIXdOXsnu1BziQuxMjX4ffwqh9XBsva4/5Wv7tIzip3vO5YpeTbAs89jwjrHEhAd6aPQiIiIiIiIipdNMHam1th/M5O8/beHXTSkABPv7cMuAltzhnIz/ws0QVB8ufANsttMeJyzQjxcv7cKwDrH8tD6Ze4e29sTwRURERERERE5LSR2pdVIy8njt161MXbYXpwU+x5ZL3TO0NTFH1sAH/zI7jnkVwuLKfNyhHWIZ2iG2ikYtIiIiIiIiUj5K6kitkZlXyDvzd/Lu77vILXQAMKJjLA+PbEerBqGQnwXf3gqWE7pcAR3HeXfAIiIiIiIiIpWgpI7UChsPZDDh/aUczsoHoEfTSB4b3Z5ezesf3+mXx+HILghvBKNe8tJIRURERERERNxDSR2p8bLyi7hz8koOZ+XTIjqER0a2ZUTHOGwn1srZ+gus+MBsj/sPBEV6ZawiIiIiIiIi7qKkjtRolmXxxLT17DqcTcOIQL65vR/1QvxL7pSdCt/dZbb73A4tB3l8nCIiIiIiIiLuppbmUqN9tWIf367aj4/dxutXdj85oWNZ8MN9kJUC0W1h6FPeGaiIiIiIiIiImympIzXW9oOZPDl9AwD3DW3NWSfWz3FZ+wVsnA52X7j4bfAL8vAoRURERERERKqGll9Jme08lMXszQdJSs8jKT2XA0fNvb+vnTYxYbSODaNtXChtYsNo1SCUQD+fKhtLXqGDOz9bRW6hg3MSorh9UMLJO6Xvgx8fMtsD/wLx3atsPCIiIiIiIiKepqSOlMnuw9mMfv138gqdpT6/Ny2X3zYfLP7aboPmUSG0jg2lbWwYbeLCaBMbRovoEPx8Kj9B7JkZG9mSkkl0qD+vXtENH7ut5A5OJ0y7HfLTofFZ0P++Sp9TREREREREpDpRUkfOyLIsnpi+nrxCJ21iQxnYpgENI4KIjwykYUQQOQUOth3MZEtyJttSstiSkkl6biE7D2ez83A2P29IKT6Wn4+NFtEhtIkNK761jQujaf3gkxMzp/D9mgNMXpKIzQavXtGNmLDAk3da+jbsmg9+wXDR2+CjUBcREREREZHaRe905Yy+W3OA37cdxt/XzjvX9qJ5dMhJ+/RtFVW8bVkWhzLz2ZKSydaULLYmZ7L1oEn4ZOUXmcdSsoCk4tcE+NpJiDFLty7r2Zh+CdGljmXHoSz+8vVaAO4Y1IpzWzc4eadDW+DXp8328L9BVKsKX7uIiIiIiIhIdaWkjpxWek4hf5uxEYC7z0soNaHzZzabjZjwQGLCA0skXSzL4kB6nknypGSyJcUkerYdzCSv0MmGAxlsOJDBd2sO8NoV3biga3yJ4+YWOLjj05VkFzjo06I+9w1tc/LJHYXwzS1QlAcJQ6HXjZX7BxARERERERGpppTUkdP6+8zNHM4qICEmlFsGtqzUsWw2G40ig2gUGcR57WKKH3c4LfYdyWFLcibTVx/gh3VJ3PP5KhxOi3HdGxXv98T09cfq6ATwxpXd8S2tNs+8lyBpNQTVgwv/DbayLekSERERERERqWmU1JFTWrEnjSlLEwF4blwnAnyrppuVj91Gs6gQmkWFMLR9LKEBvkxdvpf7vlhNkdPi0p6N+WLZXr5asQ+7Dd64sjsx4aXU0dm3HH7/p9k+/xUIb1gl4xURERERERGpDpTUkVIVOpw89s16AC7v1Zg+LaPO8Ar3sNttvHBxZ3x8bExekshDX61h1+Es3v19FwAPDG9bon5PsYJss+zKckDny6DTxR4Zr4iIiIiIiIi3KKkjTF+9nwXbDhPk70OQnw9B/j7sSc1hS0om9UP8eXRUe4+Ox2638dy4TvjabXy8aA9vztkBwKC2Dbh94CmKHq/8GNJ2QFg8jP6HB0crIiIiIiIi4h1K6tRxK/Yc4b6pq3FapT//19HtqRfi79lBYervTLqwIz52Gx/8sZv4iEBevbwb9tLanlsWrPzEbJ97v6mnIyIiIiIiIlLLKalTh+UWOHjwyzU4LTi3dTTdm0SSU+Agp9BBXoGDlg1CuLhHozMfqIrYbDaeHNOB4R3iaBMbeurkUtJqOLgBfAKg86UeHaOIiIiIiIiItyipU4e99PNmdh3OJi48kH9f1YOIID/vDsjpgLVfQGwHaNgVMImdUmvonGjVZ+a+/RjN0hEREREREZE6Q0mdOmrRjlQ++GM3AH+/pLP3EzqOQlPoeMM34BsE1/0AjXue+XWFebDuC7Pd/ZqqHaOIiIiIiIhINWL39gDE87Lyi3joqzUAXNm7CYPaxnh3QIV5MPVak9ABKMqFyZdD2s4zv3bLD5CXDuGNocXAqh2niIiIiIiISDWimTo10J7UbOZsPkh4kB/1gv2pF+JP/WB/6oX4ERrgi81WSjHhEzz/4yb2HcmlUWQQfz2/g4dGfQoF2fD51bBzDvgGwkVvwYJXIWkNfHop3DgLQk6z/GrVp+a+21Vg9/HMmEVERERERESqASV1apjUrHzGv7OYpPS8Up/3tduKkzyRwX7UDzFJn3rBJgFU4HAyeUkiAP+4rAuhAV4Mgbx0mHwFJC4CvxC46nNoMQCa9oV3h5kW5Z9fCROmg1/Qya9P3wc75pjtbld5duwiIiIiIiIiXqakTg3icFrc8/lqktLzaBgRSEJMKGnZBRzJLuBITiG5hQ6KnBaHMvM5lJl/2mNd1685/VpFe2jkpchJg08vhgOrICACrvkampxlnguLg2u+gveGwd4lptbOZR+ePBNn9RTAgubnQv0Wnr4CEREREREREa9SUqcGee3XrSzYfpggPx8+vL43bePCSjyfW+DgSE6BuWUXkpZTwNGcguLET1pOIUdzCogK8efhkW29dBVAZgp8Mg4OboTgKLj22+JuV8UatIXxU8x+m76D6XfC6JchINQ873TCatfSq6s9OXoRERERERGRakFJnRpi9uYU3pi9HYAXLu58UkIHIMjfhyD/IOIjS1mqVF2k74OPLjRLq0LjzNKqmHal79v8HFNj56sbYc0U2LMQxv0HmveHxIVwZDf4h0GHCz16CSIiIiIiIiLVgZI6NcDetBzu/Xw1ABP6NmNc90beHVBFpe2Ej8ZCeiJENIWJ06F+y9O/ptMlENIApt0JR/fAh+dDn9shK/nY8xeBf0jVj11ERERERESkmlFSpxp5Z/4O3luwi2ZRIbSPC6N9w3DaxIXx5PT1ZOQV0a1JJH89v723h1kxBzfDx2NNMqZ+K5j4HUQ0LttrWwyA2/+AXx6HlR/Bkv8ef677tVUzXhEREREREZFqTkmdamLK0kSe/3EzACkZ+SzdlVbi+XrBfvzn6h4E+NbAtt1Ja01tnJxUiOkA106DsNjyHSMwHC58HdpfCN/dDZkHILoNND6rKkYsIiIiIiIiUu0pqVMN/Lwhmb9+uw6Am/q3oEN8OJuTM9mUlMGmpEyy84t448oe1btWzqnsXQafXWLal8d3h2u+geD6FT9e66FwxyJTY6fVYLDZ3DdWERERERERkRpESR0vW7IzlbunrMJpwfizmvDX89tj+1Oiwum0sNtrYPJi1+8w+QoozIamfeGqqRAYUfnjBkXC2bdX/jgiIiIiIiIiNZiSOl60OTmDmz5eTkGRk6HtY3l2XKeTEjpAzUzobJsFU6+BojxoOQjGT1ZBYxERERERERE3snt7AHXVviM5THx/KZl5RZzVvB7/vqo7vj615L9j43SYcqVJ6LQZBVdOVUJHRERERERExM00U8cLLMvijs9WkpKRT5vYUN6dcBaBfjWwAHJp1nwO024HywkdL4aL3wEfP2+PSkRERERERKTWqSVTQ2oWm83G38Z2onOjCD6+oQ8RwbUk6bH8ffj2NpPQ6XYNXPKuEjoiIiIiIiIiVUQzdbyka5NIvrvrnFJr6FQLWYdg2y+QthPSdhy73wXBUdDvLuh+LfgGHN9/4b/hl7+a7d63wMgXwa6coYiIiIiIiEhVUVLHi6ptQif3CLx1DmSlnPxcfgb88ADMfxnOuQd6TISFb8Dc583z59wLQ59Wq3ERERERERGRKqakjpxswasmoRMWD21HQv1WENUK6jWHXfNhwWuQeQBm/gXmPG8SPQCDH4dzH1RCR0RERERERMQDlNSRko7uhcVvme0xr5qkzoli2kPP62D1ZFjwChxNNI+PeAH63uHRoYqIiIiIiIjUZUrqSElzngdHPjTrD21GlL6PbwD0uh66XwObvofAcEgY6tlxioiIiIiIiNRxSurIccnrYM0Usz3smTMvo/Lxg04XV/24REREREREROQkak8kx/36NGBBx4ugcU9vj0ZERERERERETkNJnbrGUQT5WSc/vnMubP8V7L4w+AmPD0tEREREREREykfLr+qSzGT49FI4tAnajIQeE6DVELDZYdaTZp9eN5pOVyIiIiIiIiJSrSmpU1cc2QMfj4Uju8zXm2eYW1hDaNIHktaAfxgMfNi74xQRERERERGRMtHyq7rg0BZ4f6RJ6NRrDtd8A2ffAUH1ITMJNk4z+/W/B0KivTlSERERERERESkjzdSp7Q6sgk8uhtw0aNAOrp0G4Q0hYQgMfRq2/AirJ4PNxyR6RERERERERKRGUFKnNtuzECZfAfkZEN/dzNAJrn/8ed8A0+mq40XeG6OIiIiIiIiIVIiSOrXVtlkw9RooyoNm/eHKKRAY7u1RiYiIiIiIiIibKKlTG234Fr6+GZyF0HoEXP4R+AV5e1QiIiIiIiIi4kYqlFzbrPwYvrrBJHQ6XQLjP1NCR0RERERERKQWUlKnNln4b/jubrCc0PM6uPh/4OPn7VGJiIiIiIiISBXQ8qvawLJg7gsw70Xzdb//g2HPgM3m3XGJiIiIiIiISJVRUqemczrh50dhyVvm68FPwLkPKKEjIiIiIiIiUsspqVOTOYrg+/+D1Z+Zr0e/DL1v9u6YRERERERERMQjVFOnOsnLgB1zzOybMynKh6+uMwkdmw9c9LYSOiIiIiIiIiJ1iJI61cl3d8En42D2306/X0E2TBkPm74HH3+4/GPoOt4jQxQRERERERGR6kFJneriyG7Y+J3ZXvAq7JxX+n5FBSahs2M2+AXDVV9A+zEeG6aIiIiIiIiIVA9K6lQXS/8HWGbmDRZ8eytkp5bcx7LMbJ5d88E/FCZMh1bneWO0IiIiIiIiIuJlSupUB/lZsPITs33xOxDdBjKT4Lu7TSLHZc5zsHaqqaFz+UfQpLd3xisiIiIiIiIiXqekTnWwdirkp0P9ltB+LFzynpmxs+UHWP6e2WfFhzD/H2b7gtcgYai3RisiIiIiIiIi1YCSOt5mWbDkbbPd+1aw26FhFxg6yTz2819h0Zsw437z9YCHoccE74xVRERERERERKoNJXW8bedcOLzF1MjpdtXxx/vcZmbjFOXBz4+B5YCuV8J5j3ltqCIiIiIiIiJSfSip422uWTrdrobA8OOP2+0w7r8QEmO+bjEQLngdbDbPj1FEREREREREqh1fbw+gTkvbCVtnmu3et5z8fGgMTPze7NPrBvD19+z4RERERERERKTaUlLHm5a+C1iQMAyiE0rfJ6aduYmIiIiIiIiInEDLr7wlPwtWHWtj3uc2745FRERERERERGocJXW8Zc0UyM+AqARoNdjboxERERERERGRGkZJHW9Z95W5d7UxFxEREREREREpB9XU8ZYJ02D919BhrLdHIiIiIiIiIiI1kJI63uIXBN2v8fYoRERERERERKSG0rofEREREREREZEaSEkdEREREREREZEaSEkdEREREREREZEaSEkdEREREREREZEaSEkdEREREREREZEaSEkdEREREREREZEaSEkdEREREREREZEaSEkdEREREREREZEaSEkdEREREREREZEaSEkdEREREREREZEaqNxJnfnz53PBBRcQHx+PzWZj2rRpJZ63LIsnn3yShg0bEhQUxNChQ9m2bVuJfdLS0rj66qsJDw8nMjKSG2+8kaysrEpdiIiIiIiIiIhIXVLupE52djZdu3blzTffLPX5l156iddff5233nqLJUuWEBISwogRI8jLyyve5+qrr2bDhg3MmjWLGTNmMH/+fG655ZaKX4WIiIiIiIiISB3jW94XjBo1ilGjRpX6nGVZvPbaazz++OOMHTsWgI8//pjY2FimTZvG+PHj2bRpEzNnzmTZsmX06tULgDfeeIPRo0fz8ssvEx8fX4nLERERERERERGpG8qd1DmdXbt2kZyczNChQ4sfi4iIoE+fPixatIjx48ezaNEiIiMjixM6AEOHDsVut7NkyRIuuuiik46bn59Pfn5+8dcZGRkAFBYWUlhY6M5LcAvXmKrj2KR2UIxJWSlWxBMUZ+JOiifxBMWZuJtiStypPHHk1qROcnIyALGxsSUej42NLX4uOTmZmJiYkoPw9aV+/frF+/zZCy+8wKRJk056/JdffiE4ONgdQ68Ss2bN8vYQpJZTjElZKVbEExRn4k6KJ/EExZm4m2JK3CEnJ6fM+7o1qVNVHn30Ue6///7irzMyMmjSpAnDhw8nPDzciyMrXWFhIbNmzWLYsGH4+fl5ezhSCynGpKwUK+IJijNxJ8WTeILiTNxNMSXu5FqdVBZuTerExcUBkJKSQsOGDYsfT0lJoVu3bsX7HDx4sMTrioqKSEtLK379nwUEBBAQEHDS435+ftX6G6a6j09qPsWYlJViRTxBcSbupHgST1CcibsppsQdyhND5e5+dTotWrQgLi6O3377rfixjIwMlixZQt++fQHo27cvR48eZcWKFcX7zJ49G6fTSZ8+fdw5HBERERERERGRWqvcM3WysrLYvn178de7du1i9erV1K9fn6ZNm3Lvvffy7LPP0rp1a1q0aMETTzxBfHw848aNA6B9+/aMHDmSm2++mbfeeovCwkLuuusuxo8fX+bOV5ZlAeWbkuRJhYWF5OTkkJGRoSytVAnFmJSVYkU8QXEm7qR4Ek9QnIm7KabEnVy5Dlfu47SscpozZ44FnHSbOHGiZVmW5XQ6rSeeeMKKjY21AgICrCFDhlhbtmwpcYzU1FTryiuvtEJDQ63w8HDr+uuvtzIzM8s8hr1795Y6Bt1000033XTTTTfddNNNN91000232nDbu3fvGfMjNssqS+qnenE6nRw4cICwsDBsNpu3h3MSVyHnvXv3VstCzlLzKcakrBQr4gmKM3EnxZN4guJM3E0xJe5kWRaZmZnEx8djt5++ak6N6H71Z3a7ncaNG3t7GGcUHh6ub2ipUooxKSvFiniC4kzcSfEknqA4E3dTTIm7RERElGk/txZKFhERERERERERz1BSR0RERERERESkBlJSpwoEBATw1FNPERAQ4O2hSC2lGJOyUqyIJyjOxJ0UT+IJijNxN8WUeEuNLJQsIiIiIiIiIlLXaaaOiIiIiIiIiEgNpKSOiIiIiIiIiEgNpKSOiIiIiIiIiEgNpKSOiIiIiIiIiEgNpKSOSDWk+uUiIiIiItVHVlaWt4cgUioldcrB6XQC4HA4vDwSqc0yMzMpLCws/loJHjmVtLQ0UlJSKCgoAI7/jBJxl7179zJz5kxvD0NqkR07dvD000+zfft2bw9FarHdu3dz++238/PPP3t7KFIL7NmzhxEjRvDII48A+ntLqh8ldcro/vvv55prrgHAx8fHy6OR2siyLO677z5GjBjB6NGjefLJJ8nNzcVmsymxIyVYlsX//d//0bdvXy688EJGjRrF0aNHsdvtihVxm23bttGsWTMuvvhitm3b5u3hSA1nWRa33347rVu3JikpicaNG3t7SFJLPfbYY7Rv357Dhw+Tk5Oj34tSYZZlceutt5KQkMDixYuZN28eTqcTu11voaV6UUSewapVqxg2bBiffvopU6dOLc74a7aOuNP8+fPp1KkTixcv5sEHH6Rly5Z88803PProo94emlQzP/zwAx06dGD58uX8+9//5pZbbiE5OZm7774bAJvN5uURSm1RWFjIiBEjiIqK4tlnn/X2cKQGmzJlCtHR0SxdupSlS5fy9ttvExgYCGg2qrjX7NmzmTdvHtOmTePLL7/koosu0u9FqZBXXnmFyMhIVq9ezcqVK3n++efx8/MjJSXF20MTOYmvtwdQ3S1btoxGjRpx3333MWXKFB588EFGjBiBj48PlmXpF4VUWk5ODl9++SV9+/bljTfeICgoiLFjx/LPf/6Tn376ifT0dCIiIrw9TKkm5s6dy5gxY3juuefw9/cHTPL5xCV7Iu6wZs0a/P39+fLLLznnnHO4/vrrGTRokLeHJTXQRx99RHh4ODNmzKBhw4asX7+eAwcOkJCQQFxcHMHBwfqbStziww8/pFWrVowYMYLFixczY8YMWrVqRf/+/WndurW3hyc1xLZt25g+fTr/+te/uO666wA4cuQIa9asKf5gXz+zpDrRTJ0zGDt2LA888ACjR4/mxhtvJDU1lVdffRXQekpxj8LCQvr06cOtt95KUFAQTqcTHx8fCgsLyczMJDw8XJ9kSrGHH36YO++8szihk5KSwtKlS2natCmLFi3y8uikpjvx95qfnx/NmjXj7LPPZsiQITz11FMAZGdne2t4UkO99NJL2O12/vOf/3DppZdywQUX8MADD9C/f39uvvlmQLMMpXKcTic5OTkcOHCA4cOH8+qrrzJ27FjWr1/Ps88+y+DBg/n666+9PUypIZo1a8bcuXOLEzqWZREZGUnLli2ZM2cOoJ9ZUr1ops4JXnjhBQ4ePEi7du24/vrr8ff3JzY2ltjYWAC6devGxIkTefHFF7npppsICwvTukoptz/HWURERHG9Jjg+FT09PZ0WLVrol0YdVtrPpAYNGtCgQQMA3nvvPW677TZ69erFr7/+yquvvsoNN9zApEmTCAoK8vLopSYoLcZc1q5dS0ZGBgCfffYZjRo1YtSoURw6dIh3332Xbt26eWnUUp2VFlNdunRh9OjRvPTSS1xyySV8+eWX+Pn5sXnzZm644QaeffZZHn/8cX3yLWVWWpwFBwcD8P7779O0aVOmTJnCgAED8PX1ZezYsbz//vskJCTQtWtXL49eqptT/S50vc+z2Ww0aNCA/Px88vPzAc3UkepF2Qhgy5YtdOzYkSlTppCUlMSjjz7KiBEjWLJkCXD8TXZkZCRXXHEFDRo04MEHH/TmkKUGOlWcLV68GDj+CbnrF8SyZcvo168foJoDdc2Zfia5BAQE8PPPP7Nw4ULmzJnDBx98wKuvvsru3bu9M3CpMcoSY/v27WPs2LEAzJo1i4CAAGbNmsU999yjhI6c5FQx9ccffwDw3HPP8eCDD/Lcc8/Rq1cvunbtyhVXXMGkSZP45z//SVFRkd4gyRmdKs5cM1VvuukmFixYwOzZs2nbti2+vubz66eeeopVq1Zx+PBhbw5fqpkz/S50fXDvdDpp2LAhzZs3Z8GCBd4cskiplNTBFB6NiIhg5cqVfP7552zcuJEjR47wyiuvsGPHDmw2G0VFRQC0b9+e2267jSlTprBx40bsdjvz5s3jyJEjXr4Kqe5OFWevvvoqO3bswG63F38ikJKSwoYNGxg4cCBgEj07d+4EtOyvLjjTzySXq6++msGDBxe/EerSpQt2u53Nmzd7a+hSQ5wuxrZs2QKAr68vX331FQMGDOCuu+7iwQcfJCoqqvhnkciJThVTr7/+Olu3biU8PJxHHnmEFi1alHhdo0aN8Pf3Z9OmTV4audQkp/tbKjExkcGDBzNo0CB8fX1L1D7p3r07+fn5JCYmevkKpDopy99brr/NCwoKaNOmDYcOHSIrK0tJaKlW6nxSp6ioiA0bNhATE1PcqjwuLo6//vWvJCYm8t577wHmj1vLsggICGD06NH079+fq6++mv79+zN69GgOHjzozcuQaq6sceb6RODXX38lOjqaHj16sHHjRgYNGkTnzp3Jzc3Vcr9arqyxAiev5542bRp9+/Zl8ODBHh2z1CxnirFPPvkEMEXcf/jhB9q2bcuqVat46qmneOqpp5g0aZISh1LCmWLqww8/BCA8PPyk1y5atIizzz6bzp07e3LIUgOdKc7+97//ERMTwwMPPEBKSgpvvPEGe/fuxWaz8eOPP5KQkMDQoUO9fBVSXZTnb3On04m/vz/R0dEkJSURGhqqWfRSrdT5d4e+vr7k5+eTm5uL0+kszupfdtll9OzZkyVLlrBq1Srg+BKYoqIi0tLSWLNmDe3atSM5OZm2bdt67Rqk+itPnAFs3LiR1q1b8+ijj9KlSxcaN25MUlKS6qTUAeWNlb1797Jr1y7uvvtu/v73vzN+/HgiIiL0x4ac0pli7Pfff2f37t08+eSTzJs3j3feeYdmzZoBcNttt/Hiiy/SsmVLb16CVDPl/bmVmJjI7t27ueuuu5g2bRoTJkwAtNRYTu90cdarVy8WLFjA2rVrGTFiBK+//jqTJ09m8ODBXHrppYwfP56hQ4fSqFEjL1+FVBfl+bnlmiU/ZMgQ1qxZU7ySQ6S6qNNJHdc370033cSvv/7KunXr8PHxKV5qddlll5GYmMj27dsBk6ldvnw5Y8aMIT8/n/Xr1/Puu+8SFhbmtWuQ6q+8cQbw3Xff8f333zN//nyWLl3Kp59+WuonnFK7lDdWtm/fzn//+18GDRrEypUr+fnnn7ntttsAdWWQ0pUlxvbt28fy5ctp06YNXbt2LRFLdrudhx56qERBZanbyvtza9u2bbz++uv07duXlStX8sMPP3DJJZcA+rklp1aWONu7d2/xLMIbb7yR6dOn89BDD5GQkMAff/zBc889p9nOApT/55arNlNmZibXX389kZGRSkJLtWKzanlEZmVlERoaWvz1iZXKi4qK8PX1JS8vj5EjR+Ln58esWbNK7JOQkMDEiRN54oknAEhNTWXz5s2cc845nr8YqbbcEWcTJkzgySefJDMzk3feeYe2bdsyZswYr1yPVB13xkpeXh4rV66kqKiIAQMGeOV6pPpx5+89dfcQcO/PrdzcXJYsWYLT6dRSUSnB3X+zS93mznhyOBz4+Pjod6JUW7U2XV1QUMDdd9/NuHHjuPjii5k6dWrxN2JhYSFAcRG19PR0Jk2axLx583jrrbeKM69HjhwhJCSE+vXrA+aHQVRUlBI6UsydcRYVFQVAWFgYDzzwgBI6tUxVxEpgYCD9+vVTQkeAqvm9pz9e67aq+LkVFBTEoEGDlNCRYlXxs0vqrqqIJ1fNHf1OlOqqViZ1PvnkE5o3b8769euZOHEimZmZ/Otf/+Lnn38GwM/PD4DXX3+d4OBgZs6cycCBA4uLQN566638/vvv/O1vfyMzM5MhQ4YA+kaWkqoqzqT2UaxIVVOMibsppsQTFGfiToonqbOsWmbLli3WpZdear366qvFj+3evduKjY21Zs2aZVmWZR09etS66qqrrPj4eOujjz6ynE5n8b6vv/66de6551qdO3e2unbtai1ZssTTlyA1gOJMykqxIlVNMSbuppgST1CciTspnqQuq3VJnbS0NGvJkiXWkSNHih9buXKlNXz4cGvRokVWYWGhZVmWtWTJEis9Pb14H4fDUWJ7586dHhuz1DyKMykrxYpUNcWYuJtiSjxBcSbupHiSuqzGF0r+6quviIyMpGPHjjRs2PCk5++66y7efvttOnXqxL59+zjrrLN47LHH6N+/f3HRK5EzUZxJWSlWpKopxsTdFFPiCYozcSfFk8hxNbamzieffEJsbCz/+Mc/uOqqq7jsssv49ttvAXA6ncX7paamMmPGDBYsWMD06dMJCwvj4YcfBtA3s5yR4kzKSrEiVU0xJu6mmBJPUJyJOymeRErh7alC5VVYWGi99tprVvv27a13333Xys/Pt/744w9rwoQJ1qhRo6y8vLzi/SzLKrFW0rIs6/HHH7e6d+9u7d+/3+Njl5pDcSZlpViRqqYYE3dTTIknKM7EnRRPIqdW42bqZGdnc+jQISZOnMj111+Pv78//fr1o0OHDmRkZFBUVASYVnXWsfZ1Lg6Hgx07dtCzZ0/i4+O9dQlSAyjOpKwUK1LVFGPiboop8QTFmbiT4knk1Hy9PYCy2LZtGwkJCdhsNiIiIrj00kvp3Lkzdrsdp9OJ3W6nSZMmZGdnF7eqg+MtyHNzc0lLS+Ppp59m5cqVvPXWWwAnfcNL3aY4k7JSrEhVU4yJuymmxBMUZ+JOiieRsqnWM3W++OILWrRowQUXXMDZZ5/Ne++9B0C3bt3w8fEp/mYG+OGHH+jWrRv+/v44HI7iY3zzzTf85S9/oWfPnmzfvp0ZM2YwaNAgAH0zC6A4k7JTrEhVU4yJuymmxBMUZ+JOiieR8qm2M3VmzZrFI488wkMPPUSrVq345ZdfuP3223E6nVx77bUEBgZis9mwLIv8/HzWr1/PQw89BJQsftWuXTt27drFZ599xpAhQ7x1OVJNKc6krBQrUtUUY+JuiinxBMWZuJPiSaQCPFrBpwxcRa0mTZpk9ezZ0yooKCh+7o477rB69eplffPNNyVes3//fqt58+bW1q1bLcuyrK1bt1r33nuv5wYtNY7iTMpKsSJVTTEm7qaYEk9QnIk7KZ5EKq7aLb9yTYfbuHEjrVq1ws/Pj8LCQgCeffZZAgMDmT59OsnJycWv+fXXX2nSpAkNGzbknnvuoUOHDiQmJlJYWIhlWV65DqneFGdSVooVqWqKMXE3xZR4guJM3EnxJFJxXl9+NWvWLL7//ntatmxJv3796N27NwBDhgzhgQcewOFwFH9T16tXjwkTJvDyyy+zefNm4uLisCyLGTNmsH79epo3b05cXByLFi2iV69eXr4yqU4UZ1JWihWpaooxcTfFlHiC4kzcSfEk4j5em6mTlJTEBRdcwDXXXENaWhrvv/8+w4cPZ+nSpQAMHDiQ8PBwJk2aBFCcbb355pvJyMhg9erVgKlqnpubS0hICG+++Sbr16/XN7MUU5xJWSlWpKopxsTdFFPiCYozcSfFk0gV8Ohir2Oys7OtiRMnWldccYW1c+fO4sd79+5tXXfddZZlWVZGRob17LPPWkFBQVZiYqJlWcfXWg4cONC66aabil+3fPlyD45eagrFmZSVYkWqmmJM3E0xJZ6gOBN3UjyJVA2vzNQJDg4mICCA6667jhYtWlBUVATA6NGj2bRpE5ZlERYWxlVXXUWPHj24/PLL2bNnDzabjcTERA4ePMi4ceOKj9ezZ09vXIZUc4ozKSvFilQ1xZi4m2JKPEFxJu6keBKpGjbL8k4VqcLCQvz8/ABwOp3Y7XauvvpqQkJCeOedd4r3279/P4MGDaKoqIhevXqxcOFC2rVrx+TJk4mNjfXG0KUGUZxJWSlWpKopxsTdFFPiCYozcSfFk4j7eS2pU5r+/ftz8803M3HiRJxOJwB2u53t27ezYsUKlixZQteuXZk4caKXRyo1meJMykqxIlVNMSbuppgST1CciTspnkQqp9okdXbu3Em/fv344YcfiqfSFRQU4O/v7+WRSW2iOJOyUqxIVVOMibsppsQTFGfiToonkcrzWvcrF1dOacGCBYSGhhZ/M0+aNIl77rmHgwcPenN4UksozqSsFCtS1RRj4m6KKfEExZm4k+JJxH18vT0Am80GwNKlS7nkkkuYNWsWt9xyCzk5OXzyySfExMR4eYRSGyjOpKwUK1LVFGPiboop8QTFmbiT4knEfarF8qu8vDw6d+7Mjh078Pf3Z9KkSTzyyCPeHpbUMoozKSvFilQ1xZi4m2JKPEFxJu6keBJxj2qR1AEYNmwYrVu35pVXXiEwMNDbw5FaSnEmZaVYkaqmGBN3U0yJJyjOxJ0UTyKVV22SOg6HAx8fH28PQ2o5xZmUlWJFqppiTNxNMSWeoDgTd1I8iVRetUnqiIiIiIiIiIhI2Xm9+5WIiIiIiIiIiJSfkjoiIiIiIiIiIjWQkjoiIiIiIiIiIjWQkjoiIiIiIiIiIjWQkjoiIiIiIiIiIjWQkjoiIiIiIiIiIjWQkjoiIiIiIiIiIjWQkjoiIiJSJ1x33XXYbDZsNht+fn7ExsYybNgw3n//fZxOZ5mP8+GHHxIZGVl1AxUREREpIyV1REREpM4YOXIkSUlJ7N69m59++onzzjuPe+65hzFjxlBUVOTt4YmIiIiUi5I6IiIiUmcEBAQQFxdHo0aN6NGjB4899hjTp0/np59+4sMPPwTglVdeoXPnzoSEhNCkSRPuuOMOsrKyAJg7dy7XX3896enpxbN+nn76aQDy8/N58MEHadSoESEhIfTp04e5c+d650JFRESkTlBSR0REROq0wYMH07VrV7755hsA7HY7r7/+Ohs2bOCjjz5i9uzZPPzwwwD069eP1157jfDwcJKSkkhKSuLBBx8E4K677mLRokV8/vnnrF27lssuu4yRI0eybds2r12biIiI1G42y7Isbw9CREREpKpdd911HD16lGnTpp303Pjx41m7di0bN2486bmvvvqK2267jcOHDwOmps69997L0aNHi/dJTEykZcuWJCYmEh8fX/z40KFD6d27N88//7zbr0dERETE19sDEBEREfE2y7Kw2WwA/Prrr7zwwgts3ryZjIwMioqKyMvLIycnh+Dg4FJfv27dOhwOB23atCnxeH5+PlFRUVU+fhEREamblNQRERGROm/Tpk20aNGC3bt3M2bMGG6//Xaee+456tevz4IFC7jxxhspKCg4ZVInKysLHx8fVqxYgY+PT4nnQkNDPXEJIiIiUgcpqSMiIiJ12uzZs1m3bh333XcfK1aswOl08s9//hO73ZQe/OKLL0rs7+/vj8PhKPFY9+7dcTgcHDx4kHPPPddjYxcREZG6TUkdERERqTPy8/NJTk7G4XCQkpLCzJkzeeGFFxgzZgwTJkxg/fr1FBYW8sYbb3DBBRfwxx9/8NZbb5U4RvPmzcnKyuK3336ja9euBAcH06ZNG66++momTJjAP//5T7p3786hQ4f47bff6NKlC+eff76XrlhERERqM3W/EhERkTpj5syZNGzYkObNmzNy5EjmzJnD66+/zvTp0/Hx8aFr16688sorvPjii3Tq1InPPvuMF154ocQx+vXrx2233cYVV1xBgwYNeOmllwD44IMPmDBhAg888ABt27Zl3LhxLFu2jKZNm3rjUkVERKQOUPcrEREREREREZEaSDN1RERERERERERqICV1RERERERERERqICV1RERERERERERqICV1RERERERERERqICV1RERERERERERqICV1RERERERERERqICV1RERERERERERqICV1RERERERERERqICV1RERERERERERqICV1RERERERERERqICV1RERERERERERqICV1RERERERERERqoP8HPbl0Fi4WjsUAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1400x700 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"ipython_user (to assistant):\n",
|
||
"\n",
|
||
"exitcode: 0 (execution succeeded)\n",
|
||
"Code output: \n",
|
||
"Axes(0.125,0.2;0.775x0.68)\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"assistant (to ipython_user):\n",
|
||
"\n",
|
||
"Great! The code executed successfully. The output `Axes(0.125,0.2;0.775x0.68)` is just a representation of the plot object. The actual plot should be displayed in your IPython environment. \n",
|
||
"\n",
|
||
"The plot should show the YTD stock price change for META and TESLA. The x-axis represents the date and the y-axis represents the closing price in USD. \n",
|
||
"\n",
|
||
"If you can see the plot and it meets your requirements, then we are done here. \n",
|
||
"\n",
|
||
"TERMINATE\n",
|
||
"\n",
|
||
"--------------------------------------------------------------------------------\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"ipy_user = IPythonUserProxyAgent(\n",
|
||
" \"ipython_user\",\n",
|
||
" human_input_mode=\"NEVER\",\n",
|
||
" max_consecutive_auto_reply=10,\n",
|
||
" is_termination_msg=lambda x: x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\") or x.get(\"content\", \"\").rstrip().endswith('\"TERMINATE\".'),\n",
|
||
")\n",
|
||
"assistant.reset()\n",
|
||
"# the assistant receives a message from the user, which contains the task description\n",
|
||
"ipy_user.initiate_chat(\n",
|
||
" assistant,\n",
|
||
" message=\"\"\"Plot a chart of META and TESLA stock price change YTD\"\"\",\n",
|
||
")"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.9.17"
|
||
},
|
||
"vscode": {
|
||
"interpreter": {
|
||
"hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1"
|
||
}
|
||
},
|
||
"widgets": {
|
||
"application/vnd.jupyter.widget-state+json": {
|
||
"state": {
|
||
"2d910cfd2d2a4fc49fc30fbbdc5576a7": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"454146d0f7224f038689031002906e6f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_e4ae2b6f5a974fd4bafb6abb9d12ff26",
|
||
"IPY_MODEL_577e1e3cc4db4942b0883577b3b52755",
|
||
"IPY_MODEL_b40bdfb1ac1d4cffb7cefcb870c64d45"
|
||
],
|
||
"layout": "IPY_MODEL_dc83c7bff2f241309537a8119dfc7555",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"577e1e3cc4db4942b0883577b3b52755": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_2d910cfd2d2a4fc49fc30fbbdc5576a7",
|
||
"max": 1,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_74a6ba0c3cbc4051be0a83e152fe1e62",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 1
|
||
}
|
||
},
|
||
"6086462a12d54bafa59d3c4566f06cb2": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"74a6ba0c3cbc4051be0a83e152fe1e62": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"7d3f3d9e15894d05a4d188ff4f466554": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"b40bdfb1ac1d4cffb7cefcb870c64d45": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_f1355871cc6f4dd4b50d9df5af20e5c8",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_ca245376fd9f4354af6b2befe4af4466",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 1/1 [00:00<00:00, 44.69it/s]"
|
||
}
|
||
},
|
||
"ca245376fd9f4354af6b2befe4af4466": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"dc83c7bff2f241309537a8119dfc7555": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"e4ae2b6f5a974fd4bafb6abb9d12ff26": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_6086462a12d54bafa59d3c4566f06cb2",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_7d3f3d9e15894d05a4d188ff4f466554",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "100%"
|
||
}
|
||
},
|
||
"f1355871cc6f4dd4b50d9df5af20e5c8": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
}
|
||
},
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
}
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|