mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-31 12:52:18 +00:00

* adding automl.score * fixing the metric name in train_with_config * adding pickle after score * fixing a bug in automl.pickle
519 lines
19 KiB
Python
519 lines
19 KiB
Python
import unittest
|
|
import numpy as np
|
|
import scipy.sparse
|
|
from sklearn.datasets import load_iris, load_wine
|
|
|
|
|
|
from flaml import AutoML
|
|
from flaml.data import CLASSIFICATION, get_output_from_log
|
|
from flaml.model import LGBMEstimator, XGBoostSklearnEstimator, SKLearnEstimator
|
|
from flaml import tune
|
|
from flaml.training_log import training_log_reader
|
|
|
|
|
|
class MyRegularizedGreedyForest(SKLearnEstimator):
|
|
def __init__(self, task="binary", **config):
|
|
|
|
super().__init__(task, **config)
|
|
|
|
if task in CLASSIFICATION:
|
|
from rgf.sklearn import RGFClassifier
|
|
|
|
self.estimator_class = RGFClassifier
|
|
else:
|
|
from rgf.sklearn import RGFRegressor
|
|
|
|
self.estimator_class = RGFRegressor
|
|
|
|
@classmethod
|
|
def search_space(cls, data_size, task):
|
|
space = {
|
|
"max_leaf": {
|
|
"domain": tune.lograndint(lower=4, upper=data_size[0]),
|
|
"init_value": 4,
|
|
},
|
|
"n_iter": {
|
|
"domain": tune.lograndint(lower=1, upper=data_size[0]),
|
|
"init_value": 1,
|
|
},
|
|
"n_tree_search": {
|
|
"domain": tune.lograndint(lower=1, upper=32768),
|
|
"init_value": 1,
|
|
},
|
|
"opt_interval": {
|
|
"domain": tune.lograndint(lower=1, upper=10000),
|
|
"init_value": 100,
|
|
},
|
|
"learning_rate": {"domain": tune.loguniform(lower=0.01, upper=20.0)},
|
|
"min_samples_leaf": {
|
|
"domain": tune.lograndint(lower=1, upper=20),
|
|
"init_value": 20,
|
|
},
|
|
}
|
|
return space
|
|
|
|
@classmethod
|
|
def size(cls, config):
|
|
max_leaves = int(round(config["max_leaf"]))
|
|
n_estimators = int(round(config["n_iter"]))
|
|
return (max_leaves * 3 + (max_leaves - 1) * 4 + 1.0) * n_estimators * 8
|
|
|
|
@classmethod
|
|
def cost_relative2lgbm(cls):
|
|
return 1.0
|
|
|
|
|
|
class MyLargeXGB(XGBoostSklearnEstimator):
|
|
@classmethod
|
|
def search_space(cls, **params):
|
|
return {
|
|
"n_estimators": {
|
|
"domain": tune.lograndint(lower=4, upper=32768),
|
|
"init_value": 32768,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
"max_leaves": {
|
|
"domain": tune.lograndint(lower=4, upper=3276),
|
|
"init_value": 3276,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
}
|
|
|
|
|
|
class MyLargeLGBM(LGBMEstimator):
|
|
@classmethod
|
|
def search_space(cls, **params):
|
|
return {
|
|
"n_estimators": {
|
|
"domain": tune.lograndint(lower=4, upper=32768),
|
|
"init_value": 32768,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
"num_leaves": {
|
|
"domain": tune.lograndint(lower=4, upper=3276),
|
|
"init_value": 3276,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
}
|
|
|
|
|
|
def custom_metric(
|
|
X_val,
|
|
y_val,
|
|
estimator,
|
|
labels,
|
|
X_train,
|
|
y_train,
|
|
weight_val=None,
|
|
weight_train=None,
|
|
config=None,
|
|
groups_val=None,
|
|
groups_train=None,
|
|
):
|
|
from sklearn.metrics import log_loss
|
|
import time
|
|
|
|
start = time.time()
|
|
y_pred = estimator.predict_proba(X_val)
|
|
pred_time = (time.time() - start) / len(X_val)
|
|
val_loss = log_loss(y_val, y_pred, labels=labels, sample_weight=weight_val)
|
|
y_pred = estimator.predict_proba(X_train)
|
|
train_loss = log_loss(y_train, y_pred, labels=labels, sample_weight=weight_train)
|
|
alpha = 0.5
|
|
return val_loss * (1 + alpha) - alpha * train_loss, {
|
|
"val_loss": val_loss,
|
|
"train_loss": train_loss,
|
|
"pred_time": pred_time,
|
|
}
|
|
|
|
|
|
class TestMultiClass(unittest.TestCase):
|
|
def test_custom_learner(self):
|
|
automl = AutoML()
|
|
automl.add_learner(learner_name="RGF", learner_class=MyRegularizedGreedyForest)
|
|
X_train, y_train = load_wine(return_X_y=True)
|
|
settings = {
|
|
"time_budget": 8, # total running time in seconds
|
|
"estimator_list": ["RGF", "lgbm", "rf", "xgboost"],
|
|
"task": "classification", # task type
|
|
"sample": True, # whether to subsample training data
|
|
"log_file_name": "test/wine.log",
|
|
"log_training_metric": True, # whether to log training metric
|
|
"n_jobs": 1,
|
|
}
|
|
|
|
"""The main flaml automl API"""
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
|
# print the best model found for RGF
|
|
print(automl.best_model_for_estimator("RGF"))
|
|
|
|
MyRegularizedGreedyForest.search_space = lambda data_size, task: {}
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
|
|
|
def test_ensemble(self):
|
|
automl = AutoML()
|
|
automl.add_learner(learner_name="RGF", learner_class=MyRegularizedGreedyForest)
|
|
X_train, y_train = load_wine(return_X_y=True)
|
|
settings = {
|
|
"time_budget": 5, # total running time in seconds
|
|
"estimator_list": ["rf", "xgboost", "catboost"],
|
|
"task": "classification", # task type
|
|
"sample": True, # whether to subsample training data
|
|
"log_file_name": "test/wine.log",
|
|
"log_training_metric": True, # whether to log training metric
|
|
"ensemble": {
|
|
"final_estimator": MyRegularizedGreedyForest(),
|
|
"passthrough": False,
|
|
},
|
|
"n_jobs": 1,
|
|
}
|
|
|
|
"""The main flaml automl API"""
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
|
|
|
def test_dataframe(self):
|
|
self.test_classification(True)
|
|
|
|
def test_custom_metric(self):
|
|
df, y = load_iris(return_X_y=True, as_frame=True)
|
|
df["label"] = y
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"dataframe": df,
|
|
"label": "label",
|
|
"time_budget": 5,
|
|
"eval_method": "cv",
|
|
"metric": custom_metric,
|
|
"task": "classification",
|
|
"log_file_name": "test/iris_custom.log",
|
|
"log_training_metric": True,
|
|
"log_type": "all",
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
"sample_weight": np.ones(len(y)),
|
|
"pred_time_limit": 1e-5,
|
|
"ensemble": True,
|
|
}
|
|
automl_experiment.fit(**automl_settings)
|
|
print(automl_experiment.classes_)
|
|
print(automl_experiment.model)
|
|
print(automl_experiment.config_history)
|
|
print(automl_experiment.best_model_for_estimator("rf"))
|
|
print(automl_experiment.best_iteration)
|
|
print(automl_experiment.best_estimator)
|
|
automl_experiment = AutoML()
|
|
estimator = automl_experiment.get_estimator_from_log(
|
|
automl_settings["log_file_name"], record_id=0, task="multiclass"
|
|
)
|
|
print(estimator)
|
|
(
|
|
time_history,
|
|
best_valid_loss_history,
|
|
valid_loss_history,
|
|
config_history,
|
|
metric_history,
|
|
) = get_output_from_log(
|
|
filename=automl_settings["log_file_name"], time_budget=6
|
|
)
|
|
print(metric_history)
|
|
try:
|
|
import ray
|
|
|
|
df = ray.put(df)
|
|
automl_settings["dataframe"] = df
|
|
automl_settings["use_ray"] = True
|
|
automl_experiment.fit(**automl_settings)
|
|
except ImportError:
|
|
pass
|
|
|
|
def test_classification(self, as_frame=False):
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 4,
|
|
"metric": "accuracy",
|
|
"task": "classification",
|
|
"log_file_name": "test/iris.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
|
if as_frame:
|
|
# test drop column
|
|
X_train.columns = range(X_train.shape[1])
|
|
X_train[X_train.shape[1]] = np.zeros(len(y_train))
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
print(automl_experiment.classes_)
|
|
print(automl_experiment.predict(X_train)[:5])
|
|
print(automl_experiment.model)
|
|
print(automl_experiment.config_history)
|
|
print(automl_experiment.best_model_for_estimator("catboost"))
|
|
print(automl_experiment.best_iteration)
|
|
print(automl_experiment.best_estimator)
|
|
del automl_settings["metric"]
|
|
del automl_settings["model_history"]
|
|
del automl_settings["log_training_metric"]
|
|
automl_experiment = AutoML(task="classification")
|
|
duration = automl_experiment.retrain_from_log(
|
|
log_file_name=automl_settings["log_file_name"],
|
|
X_train=X_train,
|
|
y_train=y_train,
|
|
train_full=True,
|
|
record_id=0,
|
|
)
|
|
print(duration)
|
|
print(automl_experiment.model)
|
|
print(automl_experiment.predict_proba(X_train)[:5])
|
|
|
|
def test_micro_macro_f1(self):
|
|
automl_experiment_micro = AutoML()
|
|
automl_experiment_macro = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
"task": "classification",
|
|
"log_file_name": "test/micro_macro_f1.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True)
|
|
automl_experiment_micro.fit(
|
|
X_train=X_train, y_train=y_train, metric="micro_f1", **automl_settings
|
|
)
|
|
automl_experiment_macro.fit(
|
|
X_train=X_train, y_train=y_train, metric="macro_f1", **automl_settings
|
|
)
|
|
estimator = automl_experiment_macro.model
|
|
y_pred = estimator.predict(X_train)
|
|
y_pred_proba = estimator.predict_proba(X_train)
|
|
from flaml.ml import norm_confusion_matrix, multi_class_curves
|
|
|
|
print(norm_confusion_matrix(y_train, y_pred))
|
|
from sklearn.metrics import roc_curve, precision_recall_curve
|
|
|
|
print(multi_class_curves(y_train, y_pred_proba, roc_curve))
|
|
print(multi_class_curves(y_train, y_pred_proba, precision_recall_curve))
|
|
|
|
def test_roc_auc_ovr(self):
|
|
automl_experiment = AutoML()
|
|
X_train, y_train = load_iris(return_X_y=True)
|
|
automl_settings = {
|
|
"time_budget": 1,
|
|
"metric": "roc_auc_ovr",
|
|
"task": "classification",
|
|
"log_file_name": "test/roc_auc_ovr.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"sample_weight": np.ones(len(y_train)),
|
|
"eval_method": "holdout",
|
|
"model_history": True,
|
|
}
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
|
|
def test_roc_auc_ovo(self):
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 1,
|
|
"metric": "roc_auc_ovo",
|
|
"task": "classification",
|
|
"log_file_name": "test/roc_auc_ovo.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True)
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
|
|
def test_sparse_matrix_classification(self):
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
"metric": "auto",
|
|
"task": "classification",
|
|
"log_file_name": "test/sparse_classification.log",
|
|
"split_type": "uniform",
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train = scipy.sparse.random(1554, 21, dtype=int)
|
|
y_train = np.random.randint(3, size=1554)
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
print(automl_experiment.classes_)
|
|
print(automl_experiment.predict_proba(X_train))
|
|
print(automl_experiment.model)
|
|
print(automl_experiment.config_history)
|
|
print(automl_experiment.best_model_for_estimator("extra_tree"))
|
|
print(automl_experiment.best_iteration)
|
|
print(automl_experiment.best_estimator)
|
|
|
|
def _test_memory_limit(self):
|
|
automl_experiment = AutoML()
|
|
automl_experiment.add_learner(
|
|
learner_name="large_lgbm", learner_class=MyLargeLGBM
|
|
)
|
|
automl_settings = {
|
|
"time_budget": -1,
|
|
"task": "classification",
|
|
"log_file_name": "test/classification_oom.log",
|
|
"estimator_list": ["large_lgbm"],
|
|
"log_type": "all",
|
|
"hpo_method": "random",
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True, as_frame=True)
|
|
|
|
automl_experiment.fit(
|
|
X_train=X_train, y_train=y_train, max_iter=1, **automl_settings
|
|
)
|
|
print(automl_experiment.model)
|
|
|
|
def test_time_limit(self):
|
|
automl_experiment = AutoML()
|
|
automl_experiment.add_learner(
|
|
learner_name="large_lgbm", learner_class=MyLargeLGBM
|
|
)
|
|
automl_experiment.add_learner(
|
|
learner_name="large_xgb", learner_class=MyLargeXGB
|
|
)
|
|
automl_settings = {
|
|
"time_budget": 0.5,
|
|
"task": "classification",
|
|
"log_file_name": "test/classification_timeout.log",
|
|
"estimator_list": ["catboost"],
|
|
"log_type": "all",
|
|
"hpo_method": "random",
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True, as_frame=True)
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
print(automl_experiment.model.params)
|
|
automl_settings["estimator_list"] = ["large_xgb"]
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
print(automl_experiment.model)
|
|
automl_settings["estimator_list"] = ["large_lgbm"]
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
print(automl_experiment.model)
|
|
|
|
def test_fit_w_starting_point(self, as_frame=True):
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 3,
|
|
"metric": "accuracy",
|
|
"task": "classification",
|
|
"log_file_name": "test/iris.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
|
if as_frame:
|
|
# test drop column
|
|
X_train.columns = range(X_train.shape[1])
|
|
X_train[X_train.shape[1]] = np.zeros(len(y_train))
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
automl_val_accuracy = 1.0 - automl_experiment.best_loss
|
|
print("Best ML leaner:", automl_experiment.best_estimator)
|
|
print("Best hyperparmeter config:", automl_experiment.best_config)
|
|
print("Best accuracy on validation data: {0:.4g}".format(automl_val_accuracy))
|
|
print(
|
|
"Training duration of best run: {0:.4g} s".format(
|
|
automl_experiment.best_config_train_time
|
|
)
|
|
)
|
|
|
|
starting_points = automl_experiment.best_config_per_estimator
|
|
print("starting_points", starting_points)
|
|
print("loss of the starting_points", automl_experiment.best_loss_per_estimator)
|
|
automl_settings_resume = {
|
|
"time_budget": 2,
|
|
"metric": "accuracy",
|
|
"task": "classification",
|
|
"log_file_name": "test/iris_resume.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
"log_type": "all",
|
|
"starting_points": starting_points,
|
|
}
|
|
new_automl_experiment = AutoML()
|
|
new_automl_experiment.fit(
|
|
X_train=X_train, y_train=y_train, **automl_settings_resume
|
|
)
|
|
|
|
new_automl_val_accuracy = 1.0 - new_automl_experiment.best_loss
|
|
print("Best ML leaner:", new_automl_experiment.best_estimator)
|
|
print("Best hyperparmeter config:", new_automl_experiment.best_config)
|
|
print(
|
|
"Best accuracy on validation data: {0:.4g}".format(new_automl_val_accuracy)
|
|
)
|
|
print(
|
|
"Training duration of best run: {0:.4g} s".format(
|
|
new_automl_experiment.best_config_train_time
|
|
)
|
|
)
|
|
|
|
def test_fit_w_starting_points_list(self, as_frame=True):
|
|
automl_experiment = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 3,
|
|
"metric": "accuracy",
|
|
"task": "classification",
|
|
"log_file_name": "test/iris.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"model_history": True,
|
|
}
|
|
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
|
if as_frame:
|
|
# test drop column
|
|
X_train.columns = range(X_train.shape[1])
|
|
X_train[X_train.shape[1]] = np.zeros(len(y_train))
|
|
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
automl_val_accuracy = 1.0 - automl_experiment.best_loss
|
|
print("Best ML leaner:", automl_experiment.best_estimator)
|
|
print("Best hyperparmeter config:", automl_experiment.best_config)
|
|
print("Best accuracy on validation data: {0:.4g}".format(automl_val_accuracy))
|
|
print(
|
|
"Training duration of best run: {0:.4g} s".format(
|
|
automl_experiment.best_config_train_time
|
|
)
|
|
)
|
|
|
|
starting_points = {}
|
|
log_file_name = automl_settings["log_file_name"]
|
|
with training_log_reader(log_file_name) as reader:
|
|
for record in reader.records():
|
|
config = record.config
|
|
learner = record.learner
|
|
if learner not in starting_points:
|
|
starting_points[learner] = []
|
|
starting_points[learner].append(config)
|
|
max_iter = sum([len(s) for k, s in starting_points.items()])
|
|
automl_settings_resume = {
|
|
"time_budget": 2,
|
|
"metric": "accuracy",
|
|
"task": "classification",
|
|
"log_file_name": "test/iris_resume_all.log",
|
|
"log_training_metric": True,
|
|
"n_jobs": 1,
|
|
"max_iter": max_iter,
|
|
"model_history": True,
|
|
"log_type": "all",
|
|
"starting_points": starting_points,
|
|
"append_log": True,
|
|
}
|
|
new_automl_experiment = AutoML()
|
|
new_automl_experiment.fit(
|
|
X_train=X_train, y_train=y_train, **automl_settings_resume
|
|
)
|
|
|
|
new_automl_val_accuracy = 1.0 - new_automl_experiment.best_loss
|
|
# print('Best ML leaner:', new_automl_experiment.best_estimator)
|
|
# print('Best hyperparmeter config:', new_automl_experiment.best_config)
|
|
print(
|
|
"Best accuracy on validation data: {0:.4g}".format(new_automl_val_accuracy)
|
|
)
|
|
# print('Training duration of best run: {0:.4g} s'.format(new_automl_experiment.best_config_train_time))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|