autogen/test/automl/test_xgboost2d_sample_size.py
Chi Wang 72caa2172d
model_history, ITER_HP, settings in AutoML(), checkpoint bug fix (#283)
if save_best_model_per_estimator is False and retrain_final is True, unfit the model after evaluation in HPO.
retrain if using ray.
update ITER_HP in config after a trial is finished.
change prophet logging level.
example and notebook update.
allow settings to be passed to AutoML constructor. Are you planning to add multi-output-regression capability to FLAML #192 Is multi-tasking allowed? #277 can pass the auotml setting to the constructor instead of requiring a derived class.
remove model_history.
checkpoint bug fix.

* model_history meaning save_best_model_per_estimator

* ITER_HP

* example update

* prophet logging level

* comment update in forecast notebook

* print format improvement

* allow settings to be passed to AutoML constructor

* checkpoint bug fix

* time limit for autohf regression test

* skip slow test on macos

* cleanup before del
2021-11-18 09:39:45 -08:00

74 lines
1.9 KiB
Python

import unittest
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from flaml.automl import AutoML
from flaml.model import XGBoostSklearnEstimator
from flaml import tune
dataset = "credit-g"
class XGBoost2D(XGBoostSklearnEstimator):
@classmethod
def search_space(cls, data_size, task):
upper = min(32768, int(data_size))
return {
"n_estimators": {
"domain": tune.lograndint(lower=4, upper=upper),
"init_value": 4,
},
"max_leaves": {
"domain": tune.lograndint(lower=4, upper=upper),
"init_value": 4,
},
}
def _test_simple(method=None, size_ratio=1.0):
automl = AutoML()
automl.add_learner(learner_name="XGBoost2D", learner_class=XGBoost2D)
X, y = fetch_openml(name=dataset, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, random_state=42
)
final_size = int(len(y_train) * size_ratio)
X_train = X_train[:final_size]
y_train = y_train[:final_size]
automl_settings = {
"estimator_list": ["XGBoost2D"],
# "metric": 'accuracy',
"task": "classification",
"log_file_name": f"test/xgboost2d_{dataset}_{method}_{final_size}.log",
# "log_training_metric": True,
# "split_type": split_type,
"n_jobs": 1,
"hpo_method": method,
"log_type": "all",
"time_budget": 3600,
}
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
def _test_grid_1():
_test_simple(method="grid", size_ratio=1.0 / 3.0)
def _test_grid_2():
_test_simple(method="grid", size_ratio=2.0 / 3.0)
def _test_grid_4():
_test_simple(method="grid", size_ratio=0.5)
def _test_grid_3():
_test_simple(method="grid", size_ratio=1.0)
if __name__ == "__main__":
unittest.main()