autogen/test/nlp/test_custom_hp.py
Xueqing Liu ca35fa969f
refactoring TransformersEstimator to support default and custom_hp (#511)
* refactoring TransformersEstimator to support default and custom_hp

* handling starting_points not in search space

* addressing starting point more than max_iter

* fixing upper < lower bug
2022-04-28 14:06:29 -04:00

37 lines
1007 B
Python

import sys
import pytest
from utils import get_toy_data_seqclassification, get_automl_settings
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
def test_custom_hp_nlp():
from flaml import AutoML
import flaml
X_train, y_train, X_val, y_val, X_test = get_toy_data_seqclassification()
automl = AutoML()
automl_settings = get_automl_settings()
automl_settings["custom_hp"] = None
automl_settings["custom_hp"] = {
"transformer": {
"model_path": {
"domain": flaml.tune.choice(["google/electra-small-discriminator"]),
},
"num_train_epochs": {"domain": 3},
}
}
automl_settings["fit_kwargs_by_estimator"] = {
"transformer": {
"output_dir": "test/data/output/",
"ckpt_per_epoch": 1,
"fp16": False,
}
}
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
if __name__ == "__main__":
test_custom_hp_nlp()