mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-26 08:34:10 +00:00

Sequence classification and regression: "seq-classification" and "seq-regression" Co-authored-by: Chi Wang <wang.chi@microsoft.com>
220 lines
6.3 KiB
Python
220 lines
6.3 KiB
Python
# This file is copied from NNI project
|
|
# https://github.com/microsoft/nni/blob/master/examples/trials/mnist-tfv1/mnist.py
|
|
|
|
"""
|
|
A deep MNIST classifier using convolutional layers.
|
|
|
|
This file is a modification of the official pytorch mnist example:
|
|
https://github.com/pytorch/examples/blob/master/mnist/main.py
|
|
"""
|
|
|
|
import os
|
|
import argparse
|
|
import logging
|
|
import nni
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
from nni.utils import merge_parameter
|
|
from torchvision import datasets, transforms
|
|
|
|
logger = logging.getLogger("mnist_AutoML")
|
|
|
|
|
|
class Net(nn.Module):
|
|
def __init__(self, hidden_size):
|
|
super(Net, self).__init__()
|
|
self.conv1 = nn.Conv2d(1, 20, 5, 1)
|
|
self.conv2 = nn.Conv2d(20, 50, 5, 1)
|
|
self.fc1 = nn.Linear(4 * 4 * 50, hidden_size)
|
|
self.fc2 = nn.Linear(hidden_size, 10)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(self.conv1(x))
|
|
x = F.max_pool2d(x, 2, 2)
|
|
x = F.relu(self.conv2(x))
|
|
x = F.max_pool2d(x, 2, 2)
|
|
x = x.view(-1, 4 * 4 * 50)
|
|
x = F.relu(self.fc1(x))
|
|
x = self.fc2(x)
|
|
return F.log_softmax(x, dim=1)
|
|
|
|
|
|
def train(args, model, device, train_loader, optimizer, epoch):
|
|
model.train()
|
|
for batch_idx, (data, target) in enumerate(train_loader):
|
|
if (args["batch_num"] is not None) and batch_idx >= args["batch_num"]:
|
|
break
|
|
data, target = data.to(device), target.to(device)
|
|
optimizer.zero_grad()
|
|
output = model(data)
|
|
loss = F.nll_loss(output, target)
|
|
loss.backward()
|
|
optimizer.step()
|
|
if batch_idx % args["log_interval"] == 0:
|
|
logger.info(
|
|
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
|
|
epoch,
|
|
batch_idx * len(data),
|
|
len(train_loader.dataset),
|
|
100.0 * batch_idx / len(train_loader),
|
|
loss.item(),
|
|
)
|
|
)
|
|
|
|
|
|
def test(args, model, device, test_loader):
|
|
model.eval()
|
|
test_loss = 0
|
|
correct = 0
|
|
with torch.no_grad():
|
|
for data, target in test_loader:
|
|
data, target = data.to(device), target.to(device)
|
|
output = model(data)
|
|
# sum up batch loss
|
|
test_loss += F.nll_loss(output, target, reduction="sum").item()
|
|
# get the index of the max log-probability
|
|
pred = output.argmax(dim=1, keepdim=True)
|
|
correct += pred.eq(target.view_as(pred)).sum().item()
|
|
|
|
test_loss /= len(test_loader.dataset)
|
|
|
|
accuracy = 100.0 * correct / len(test_loader.dataset)
|
|
|
|
logger.info(
|
|
"\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
|
|
test_loss, correct, len(test_loader.dataset), accuracy
|
|
)
|
|
)
|
|
|
|
return accuracy
|
|
|
|
|
|
def main(args):
|
|
use_cuda = not args["no_cuda"] and torch.cuda.is_available()
|
|
|
|
torch.manual_seed(args["seed"])
|
|
|
|
device = torch.device("cuda" if use_cuda else "cpu")
|
|
|
|
kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {}
|
|
|
|
data_dir = args["data_dir"]
|
|
|
|
train_loader = torch.utils.data.DataLoader(
|
|
datasets.MNIST(
|
|
data_dir,
|
|
train=True,
|
|
download=True,
|
|
transform=transforms.Compose(
|
|
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
|
|
),
|
|
),
|
|
batch_size=args["batch_size"],
|
|
shuffle=True,
|
|
**kwargs
|
|
)
|
|
test_loader = torch.utils.data.DataLoader(
|
|
datasets.MNIST(
|
|
data_dir,
|
|
train=False,
|
|
transform=transforms.Compose(
|
|
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
|
|
),
|
|
),
|
|
batch_size=1000,
|
|
shuffle=True,
|
|
**kwargs
|
|
)
|
|
|
|
hidden_size = args["hidden_size"]
|
|
|
|
model = Net(hidden_size=hidden_size).to(device)
|
|
optimizer = optim.SGD(model.parameters(), lr=args["lr"], momentum=args["momentum"])
|
|
|
|
for epoch in range(1, args["epochs"] + 1):
|
|
train(args, model, device, train_loader, optimizer, epoch)
|
|
test_acc = test(args, model, device, test_loader)
|
|
|
|
# report intermediate result
|
|
nni.report_intermediate_result(test_acc)
|
|
logger.debug("test accuracy %g", test_acc)
|
|
logger.debug("Pipe send intermediate result done.")
|
|
|
|
# report final result
|
|
nni.report_final_result(test_acc)
|
|
logger.debug("Final result is %g", test_acc)
|
|
logger.debug("Send final result done.")
|
|
|
|
|
|
def get_params():
|
|
# Training settings
|
|
parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
|
|
parser.add_argument("--data_dir", type=str, default="./data", help="data directory")
|
|
parser.add_argument(
|
|
"--batch_size",
|
|
type=int,
|
|
default=64,
|
|
metavar="N",
|
|
help="input batch size for training (default: 64)",
|
|
)
|
|
parser.add_argument("--batch_num", type=int, default=None)
|
|
parser.add_argument(
|
|
"--hidden_size",
|
|
type=int,
|
|
default=512,
|
|
metavar="N",
|
|
help="hidden layer size (default: 512)",
|
|
)
|
|
parser.add_argument(
|
|
"--lr",
|
|
type=float,
|
|
default=0.01,
|
|
metavar="LR",
|
|
help="learning rate (default: 0.01)",
|
|
)
|
|
parser.add_argument(
|
|
"--momentum",
|
|
type=float,
|
|
default=0.5,
|
|
metavar="M",
|
|
help="SGD momentum (default: 0.5)",
|
|
)
|
|
parser.add_argument(
|
|
"--epochs",
|
|
type=int,
|
|
default=10,
|
|
metavar="N",
|
|
help="number of epochs to train (default: 10)",
|
|
)
|
|
parser.add_argument(
|
|
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
|
|
)
|
|
parser.add_argument(
|
|
"--no_cuda", action="store_true", default=False, help="disables CUDA training"
|
|
)
|
|
parser.add_argument(
|
|
"--log_interval",
|
|
type=int,
|
|
default=1000,
|
|
metavar="N",
|
|
help="how many batches to wait before logging training status",
|
|
)
|
|
|
|
args, _ = parser.parse_known_args()
|
|
return args
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
# get parameters form tuner
|
|
tuner_params = nni.get_next_parameter()
|
|
logger.debug(tuner_params)
|
|
params = vars(merge_parameter(get_params(), tuner_params))
|
|
print(params)
|
|
main(params)
|
|
except Exception as exception:
|
|
logger.exception(exception)
|
|
raise
|