autogen/test/ray/distribute_tune.py
Chi Wang 9e88f22167
fix a bug when using ray & update ray on aml (#455)
* fix a bug when using ray & update ray on aml
When using with_parameters(), the config argument must be the first argument in the trainable function.
* make training function runnable standalone
2022-02-11 20:14:10 -08:00

50 lines
1.7 KiB
Python

from ray_on_aml.core import Ray_On_AML
import lightgbm as lgb
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from flaml import tune
from flaml.model import LGBMEstimator
def train_breast_cancer(config):
params = LGBMEstimator(**config).params
X_train = ray.get(X_train_ref)
train_set = lgb.Dataset(X_train, label=y_train)
gbm = lgb.train(params, train_set)
preds = gbm.predict(X_test)
pred_labels = np.rint(preds)
tune.report(mean_accuracy=accuracy_score(y_test, pred_labels), done=True)
if __name__ == "__main__":
ray_on_aml = Ray_On_AML()
ray = ray_on_aml.getRay()
if ray:
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
X_train_ref = ray.put(X_train)
flaml_lgbm_search_space = LGBMEstimator.search_space(X_train.shape)
config_search_space = {
hp: space["domain"] for hp, space in flaml_lgbm_search_space.items()
}
low_cost_partial_config = {
hp: space["low_cost_init_value"]
for hp, space in flaml_lgbm_search_space.items()
if "low_cost_init_value" in space
}
analysis = tune.run(
train_breast_cancer,
metric="mean_accuracy",
mode="max",
config=config_search_space,
num_samples=-1,
time_budget_s=60,
use_ray=True,
)
# print("Best hyperparameters found were: ", analysis.best_config)
print("The best trial's result: ", analysis.best_trial.last_result)