autogen/python/examples/patterns/orchestrator.py

162 lines
5.9 KiB
Python

import argparse
import asyncio
import json
import logging
import os
import sys
from typing import Callable
import openai
from agnext.application import (
SingleThreadedAgentRuntime,
)
from agnext.components.models import OpenAIChatCompletionClient, SystemMessage
from agnext.components.tools import BaseTool
from agnext.core import AgentRuntime, CancellationToken
from pydantic import BaseModel, Field
from tavily import TavilyClient # type: ignore
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from common.agents import ChatCompletionAgent, OpenAIAssistantAgent
from common.memory import BufferedChatMemory
from common.patterns._orchestrator_chat import OrchestratorChat
from common.types import TextMessage
logging.basicConfig(level=logging.WARNING)
logging.getLogger("agnext").setLevel(logging.DEBUG)
class SearchQuery(BaseModel):
query: str = Field(description="The search query.")
class SearchResult(BaseModel):
result: str = Field(description="The search results.")
class SearchTool(BaseTool[SearchQuery, SearchResult]):
def __init__(self) -> None:
super().__init__(
args_type=SearchQuery,
return_type=SearchResult,
name="search",
description="Search the web.",
)
async def run(self, args: SearchQuery, cancellation_token: CancellationToken) -> SearchResult:
client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY")) # type: ignore
result = await asyncio.create_task(client.search(args.query)) # type: ignore
if result:
return SearchResult(result=json.dumps(result, indent=2, ensure_ascii=False))
return SearchResult(result="No results found.")
def software_development(runtime: AgentRuntime) -> OrchestratorChat: # type: ignore
developer = runtime.register_and_get_proxy(
"Developer",
lambda: ChatCompletionAgent(
description="A developer that writes code.",
system_messages=[SystemMessage("You are a Python developer.")],
memory=BufferedChatMemory(buffer_size=10),
model_client=OpenAIChatCompletionClient(model="gpt-4-turbo"),
),
)
tester_oai_assistant = openai.beta.assistants.create(
model="gpt-4-turbo",
description="A software tester that runs test cases and reports results.",
instructions="You are a software tester that runs test cases and reports results.",
)
tester_oai_thread = openai.beta.threads.create()
tester = runtime.register_and_get_proxy(
"Tester",
lambda: OpenAIAssistantAgent(
description="A software tester that runs test cases and reports results.",
client=openai.AsyncClient(),
assistant_id=tester_oai_assistant.id,
thread_id=tester_oai_thread.id,
),
)
product_manager = runtime.register_and_get_proxy(
"ProductManager",
lambda: ChatCompletionAgent(
description="A product manager that performs research and comes up with specs.",
system_messages=[
SystemMessage(
"You are a product manager good at translating customer needs into software specifications."
),
SystemMessage("You can use the search tool to find information on the web."),
],
memory=BufferedChatMemory(buffer_size=10),
model_client=OpenAIChatCompletionClient(model="gpt-4-turbo"),
tools=[SearchTool()],
),
)
planner = runtime.register_and_get_proxy(
"Planner",
lambda: ChatCompletionAgent(
description="A planner that organizes and schedules tasks.",
system_messages=[SystemMessage("You are a planner of complex tasks.")],
memory=BufferedChatMemory(buffer_size=10),
model_client=OpenAIChatCompletionClient(model="gpt-4-turbo"),
),
)
orchestrator = runtime.register_and_get_proxy(
"Orchestrator",
lambda: ChatCompletionAgent(
description="An orchestrator that coordinates the team.",
system_messages=[
SystemMessage("You are an orchestrator that coordinates the team to complete a complex task.")
],
memory=BufferedChatMemory(buffer_size=10),
model_client=OpenAIChatCompletionClient(model="gpt-4-turbo"),
),
)
return OrchestratorChat(
"A software development team.",
runtime,
orchestrator=orchestrator.id,
planner=planner.id,
specialists=[developer.id, product_manager.id, tester.id],
)
async def run(message: str, user: str, scenario: Callable[[AgentRuntime], OrchestratorChat]) -> None: # type: ignore
runtime = SingleThreadedAgentRuntime()
chat = scenario(runtime)
run_context = runtime.start()
response = await runtime.send_message(TextMessage(content=message, source=user), chat.id)
print((await response).content) # type: ignore
await run_context.stop()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run a orchestrator demo.")
choices = {"software_development": software_development}
parser.add_argument("--verbose", action="store_true", help="Enable verbose logging.")
parser.add_argument(
"--scenario",
choices=list(choices.keys()),
help="The scenario to demo.",
default="software_development",
)
parser.add_argument(
"--user",
default="Customer",
help="The user to send the message. Default is 'Customer'.",
)
parser.add_argument("--message", help="The message to send.", required=True)
args = parser.parse_args()
if args.verbose:
logging.basicConfig(level=logging.WARNING)
logging.getLogger("agnext").setLevel(logging.DEBUG)
handler = logging.FileHandler("inner_outter.log")
logging.getLogger("agnext").addHandler(handler)
asyncio.run(run(args.message, args.user, choices[args.scenario]))