autogen/test/test_notebook_example.py
Xueqing Liu eeaf5b5963
space -> main (#148)
* subspace in flow2

* search space and trainable from AutoML

* experimental features: multivariate TPE, grouping, add_evaluated_points

* test experimental features

* readme

* define by run

* set time_budget_s for bs

Co-authored-by: liususan091219 <Xqq630517>

* version

* acl

* test define_by_run_func

* size

* constraints

Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2021-08-02 16:10:26 -07:00

72 lines
3.3 KiB
Python

def test_automl(budget=5):
from flaml.data import load_openml_dataset
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir='test/')
''' import AutoML class from flaml package '''
from flaml import AutoML
automl = AutoML()
settings = {
"time_budget": budget, # total running time in seconds
"metric": 'accuracy', # primary metrics can be chosen from: ['accuracy','roc_auc','f1','log_loss','mae','mse','r2']
"task": 'classification', # task type
"log_file_name": 'airlines_experiment.log', # flaml log file
}
'''The main flaml automl API'''
automl.fit(X_train=X_train, y_train=y_train, **settings)
''' retrieve best config and best learner'''
print('Best ML leaner:', automl.best_estimator)
print('Best hyperparmeter config:', automl.best_config)
print('Best accuracy on validation data: {0:.4g}'.format(1 - automl.best_loss))
print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))
print(automl.model.estimator)
''' pickle and save the automl object '''
import pickle
with open('automl.pkl', 'wb') as f:
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
''' compute predictions of testing dataset '''
y_pred = automl.predict(X_test)
print('Predicted labels', y_pred)
print('True labels', y_test)
y_pred_proba = automl.predict_proba(X_test)[:, 1]
''' compute different metric values on testing dataset'''
from flaml.ml import sklearn_metric_loss_score
print('accuracy', '=', 1 - sklearn_metric_loss_score('accuracy', y_pred, y_test))
print('roc_auc', '=', 1 - sklearn_metric_loss_score('roc_auc', y_pred_proba, y_test))
print('log_loss', '=', sklearn_metric_loss_score('log_loss', y_pred_proba, y_test))
from flaml.data import get_output_from_log
time_history, best_valid_loss_history, valid_loss_history, config_history, train_loss_history = \
get_output_from_log(filename=settings['log_file_name'], time_budget=60)
for config in config_history:
print(config)
print(automl.prune_attr)
print(automl.max_resource)
print(automl.min_resource)
def test_mlflow():
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "mlflow"])
import mlflow
from flaml.data import load_openml_task
X_train, X_test, y_train, y_test = load_openml_task(task_id=7592, data_dir='test/')
''' import AutoML class from flaml package '''
from flaml import AutoML
automl = AutoML()
settings = {
"time_budget": 5, # total running time in seconds
"metric": 'accuracy', # primary metrics can be chosen from: ['accuracy','roc_auc','f1','log_loss','mae','mse','r2']
"estimator_list": ['lgbm', 'rf', 'xgboost'], # list of ML learners
"task": 'classification', # task type
"sample": False, # whether to subsample training data
"log_file_name": 'adult.log', # flaml log file
}
mlflow.set_experiment("flaml")
with mlflow.start_run():
'''The main flaml automl API'''
automl.fit(X_train=X_train, y_train=y_train, **settings)
# subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "mlflow"])
if __name__ == "__main__":
test_automl(300)