autogen/test/automl/test_split.py
Chi Wang 3e7aac6e8b
unify auto_reply; bug fix in UserProxyAgent; reorg agent hierarchy (#1142)
* simplify the initiation of chat

* version update

* include openai

* completion

* load config list from json

* initiate_chat

* oai config list

* oai config list

* config list

* config_list

* raise_error

* retry_time

* raise condition

* oai config list

* catch file not found

* catch openml error

* handle openml error

* handle openml error

* handle openml error

* handle openml error

* handle openml error

* handle openml error

* close #1139

* use property

* termination msg

* AIUserProxyAgent

* smaller dev container

* update notebooks

* match

* document code execution and AIUserProxyAgent

* gpt 3.5 config list

* rate limit

* variable visibility

* remove unnecessary import

* quote

* notebook comments

* remove mathchat from init import

* two users

* import location

* expose config

* return str not tuple

* rate limit

* ipython user proxy

* message

* None result

* rate limit

* rate limit

* rate limit

* rate limit

* make auto_reply a common method for all agents

* abs path

* refactor and doc

* set mathchat_termination

* code format

* modified

* emove import

* code quality

* sender -> messages

* system message

* clean agent hierarchy

* dict check

* invalid oai msg

* return

* openml error

* docstr

---------

Co-authored-by: kevin666aa <yrwu000627@gmail.com>
2023-07-25 23:46:11 +00:00

206 lines
5.8 KiB
Python

from sklearn.datasets import fetch_openml
from flaml.automl import AutoML
from sklearn.model_selection import GroupKFold, train_test_split, KFold
from sklearn.metrics import accuracy_score
dataset = "credit-g"
def _test(split_type):
from sklearn.externals._arff import ArffException
automl = AutoML()
automl_settings = {
"time_budget": 2,
# "metric": 'accuracy',
"task": "classification",
"log_file_name": "test/{}.log".format(dataset),
"model_history": True,
"log_training_metric": True,
"split_type": split_type,
}
try:
X, y = fetch_openml(name=dataset, return_X_y=True)
except (ArffException, ValueError):
from sklearn.datasets import load_wine
X, y = load_wine(return_X_y=True)
if split_type != "time":
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
else:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, shuffle=False)
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
pred = automl.predict(X_test)
acc = accuracy_score(y_test, pred)
print(acc)
def _test_uniform():
_test(split_type="uniform")
def test_time():
_test(split_type="time")
def test_groups():
from sklearn.externals._arff import ArffException
try:
X, y = fetch_openml(name=dataset, return_X_y=True)
except (ArffException, ValueError):
from sklearn.datasets import load_wine
X, y = load_wine(return_X_y=True)
import numpy as np
automl = AutoML()
automl_settings = {
"time_budget": 2,
"task": "classification",
"log_file_name": "test/{}.log".format(dataset),
"model_history": True,
"eval_method": "cv",
"groups": np.random.randint(low=0, high=10, size=len(y)),
"estimator_list": ["lgbm", "rf", "xgboost", "kneighbor"],
"learner_selector": "roundrobin",
}
automl.fit(X, y, **automl_settings)
automl_settings["eval_method"] = "holdout"
automl.fit(X, y, **automl_settings)
automl_settings["split_type"] = GroupKFold(n_splits=3)
try:
automl.fit(X, y, **automl_settings)
raise RuntimeError("GroupKFold object as split_type should fail when eval_method is holdout")
except AssertionError:
# eval_method must be 'auto' or 'cv' for custom data splitter.
pass
automl_settings["eval_method"] = "cv"
automl.fit(X, y, **automl_settings)
def test_stratified_groupkfold():
from sklearn.model_selection import StratifiedGroupKFold
from minio.error import ServerError
from flaml.data import load_openml_dataset
try:
X_train, _, y_train, _ = load_openml_dataset(dataset_id=1169, data_dir="test/")
except (ServerError, Exception):
return
splitter = StratifiedGroupKFold(n_splits=5, shuffle=True, random_state=0)
automl = AutoML()
settings = {
"time_budget": 6,
"metric": "ap",
"eval_method": "cv",
"split_type": splitter,
"groups": X_train["Airline"],
"estimator_list": [
"lgbm",
"rf",
"xgboost",
"extra_tree",
"xgb_limitdepth",
"lrl1",
],
}
automl.fit(X_train=X_train, y_train=y_train, **settings)
def test_rank():
from sklearn.externals._arff import ArffException
try:
X, y = fetch_openml(name=dataset, return_X_y=True)
y = y.cat.codes
except (ArffException, ValueError):
from sklearn.datasets import load_wine
X, y = load_wine(return_X_y=True)
import numpy as np
automl = AutoML()
automl_settings = {
"time_budget": 2,
"task": "rank",
"log_file_name": "test/{}.log".format(dataset),
"model_history": True,
"eval_method": "cv",
"groups": np.array([0] * 200 + [1] * 200 + [2] * 200 + [3] * 200 + [4] * 100 + [5] * 100), # group labels
"learner_selector": "roundrobin",
}
automl.fit(X, y, **automl_settings)
automl = AutoML()
automl_settings = {
"time_budget": 2,
"task": "rank",
"metric": "ndcg@5", # 5 can be replaced by any number
"log_file_name": "test/{}.log".format(dataset),
"model_history": True,
"groups": [200] * 4 + [100] * 2, # alternative way: group counts
# "estimator_list": ['lgbm', 'xgboost'], # list of ML learners
"learner_selector": "roundrobin",
}
automl.fit(X, y, **automl_settings)
def test_object():
from sklearn.externals._arff import ArffException
try:
X, y = fetch_openml(name=dataset, return_X_y=True)
except (ArffException, ValueError):
from sklearn.datasets import load_wine
X, y = load_wine(return_X_y=True)
import numpy as np
class TestKFold(KFold):
def __init__(self, n_splits):
self.n_splits = int(n_splits)
def split(self, X):
rng = np.random.default_rng()
train_num = int(len(X) * 0.8)
for _ in range(self.n_splits):
permu_idx = rng.permutation(len(X))
yield permu_idx[:train_num], permu_idx[train_num:]
def get_n_splits(self, X=None, y=None, groups=None):
return self.n_splits
automl = AutoML()
automl_settings = {
"time_budget": 2,
"task": "classification",
"log_file_name": "test/{}.log".format(dataset),
"model_history": True,
"log_training_metric": True,
"split_type": TestKFold(5),
}
automl.fit(X, y, **automl_settings)
assert automl._state.eval_method == "cv", "eval_method must be 'cv' for custom data splitter"
kf = TestKFold(5)
kf.shuffle = True
automl_settings["split_type"] = kf
automl.fit(X, y, **automl_settings)
if __name__ == "__main__":
test_groups()