autogen/notebook/agentchat_logging.ipynb
Braelyn Boynton 85ad929f34
AgentOps Runtime Logging Implementation (#2682)
* add agentops req

* track conversable agents with agentops

* track tool usage

* track message sending

* remove record from parent

* remove record

* simple example

* notebook example

* remove spacing change

* optional dependency

* documentation

* remove extra import

* optional import

* record if agentops

* if agentops

* wrap function auto name

* install agentops before notebook test

* documentation fixes

* notebook metadata

* notebook metadata

* pre-commit hook changes

* doc link fixes

* git lfs

* autogen tag

* bump agentops version

* log tool events

* notebook fixes

* docs

* formatting

* Updated ecosystem manual

* Update notebook for clarity

* cleaned up notebook

* updated precommit recommendations

* Fixed links to screenshots and examples

* removed unused files

* changed notebook hyperlink

* update docusaurus link path

* reverted setup.py

* change setup again

* undo changes

* revert conversable agent

* removed file not in branch

* Updated notebook to look nicer

* change letter

* revert setup

* revert setup again

* change ref link

* change reflink

* remove optional dependency

* removed duplicated section

* Addressed clarity commetns from howard

* minor updates to wording

* formatting and pr fixes

* added info markdown cell

* better docs

* notebook

* observability docs

* pre-commit fixes

* example images in notebook

* example images in docs

* example images in docs

* delete agentops ong

* doc updates

* docs updates

* docs updates

* use agent as extra_kwarg

* add logging tests

* pass function properly

* create table

* dummy function name

* log chat completion source name

* safe serialize

* test fixes

* formatting

* type checks

---------

Co-authored-by: reibs <areibman@gmail.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
Co-authored-by: Howard Gil <howardbgil@gmail.com>
Co-authored-by: Alex Reibman <meta.alex.r@gmail.com>
2024-06-07 06:01:03 +00:00

400 lines
14 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Runtime Logging with AutoGen \n",
"\n",
"AutoGen offers utilities to log data for debugging and performance analysis. This notebook demonstrates how to use them. \n",
"\n",
"we log data in different modes:\n",
"- SQlite Database\n",
"- File \n",
"\n",
"In general, users can initiate logging by calling `autogen.runtime_logging.start()` and stop logging by calling `autogen.runtime_logging.stop()`"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Logging session ID: 6e08f3e0-392b-434e-8b69-4ab36c4fcf99\n",
"\u001B[33muser_proxy\u001B[0m (to assistant):\n",
"\n",
"What is the height of the Eiffel Tower? Only respond with the answer and terminate\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33massistant\u001B[0m (to user_proxy):\n",
"\n",
"The height of the Eiffel Tower is approximately 330 meters.\n",
"\n",
"TERMINATE\n",
"\n",
"--------------------------------------------------------------------------------\n"
]
}
],
"source": [
"import json\n",
"\n",
"import pandas as pd\n",
"\n",
"import autogen\n",
"from autogen import AssistantAgent, UserProxyAgent\n",
"\n",
"# Setup API key. Add your own API key to config file or environment variable\n",
"llm_config = {\n",
" \"config_list\": autogen.config_list_from_json(\n",
" env_or_file=\"OAI_CONFIG_LIST\",\n",
" ),\n",
" \"temperature\": 0.9,\n",
"}\n",
"\n",
"# Start logging\n",
"logging_session_id = autogen.runtime_logging.start(config={\"dbname\": \"logs.db\"})\n",
"print(\"Logging session ID: \" + str(logging_session_id))\n",
"\n",
"# Create an agent workflow and run it\n",
"assistant = AssistantAgent(name=\"assistant\", llm_config=llm_config)\n",
"user_proxy = UserProxyAgent(\n",
" name=\"user_proxy\",\n",
" code_execution_config=False,\n",
" human_input_mode=\"NEVER\",\n",
" is_termination_msg=lambda msg: \"TERMINATE\" in msg[\"content\"],\n",
")\n",
"\n",
"user_proxy.initiate_chat(\n",
" assistant, message=\"What is the height of the Eiffel Tower? Only respond with the answer and terminate\"\n",
")\n",
"autogen.runtime_logging.stop()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Getting Data from the SQLite Database \n",
"\n",
"`logs.db` should be generated, by default it's using SQLite database. You can view the data with GUI tool like `sqlitebrowser`, using SQLite command line shell or using python script:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"def get_log(dbname=\"logs.db\", table=\"chat_completions\"):\n",
" import sqlite3\n",
"\n",
" con = sqlite3.connect(dbname)\n",
" query = f\"SELECT * from {table}\"\n",
" cursor = con.execute(query)\n",
" rows = cursor.fetchall()\n",
" column_names = [description[0] for description in cursor.description]\n",
" data = [dict(zip(column_names, row)) for row in rows]\n",
" con.close()\n",
" return data"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>invocation_id</th>\n",
" <th>client_id</th>\n",
" <th>wrapper_id</th>\n",
" <th>session_id</th>\n",
" <th>request</th>\n",
" <th>response</th>\n",
" <th>is_cached</th>\n",
" <th>cost</th>\n",
" <th>start_time</th>\n",
" <th>end_time</th>\n",
" <th>total_tokens</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>e8bb00d7-6da5-4407-a949-e19b55d53da8</td>\n",
" <td>139819167322784</td>\n",
" <td>139823225568704</td>\n",
" <td>8821a150-8c78-4d05-a858-8a64f1d18648</td>\n",
" <td>You are a helpful AI assistant.\\nSolve tasks u...</td>\n",
" <td>The height of the Eiffel Tower is approximatel...</td>\n",
" <td>1</td>\n",
" <td>0.01572</td>\n",
" <td>2024-02-13 15:06:22.082896</td>\n",
" <td>2024-02-13 15:06:22.083169</td>\n",
" <td>507</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>c8522790-0067-484b-bb37-d39ae80db98b</td>\n",
" <td>139823225568656</td>\n",
" <td>139823225563040</td>\n",
" <td>fb0ef547-a2ac-428b-8c20-a5e63263b8e1</td>\n",
" <td>You are a helpful AI assistant.\\nSolve tasks u...</td>\n",
" <td>The height of the Eiffel Tower is approximatel...</td>\n",
" <td>1</td>\n",
" <td>0.01572</td>\n",
" <td>2024-02-13 15:06:23.498758</td>\n",
" <td>2024-02-13 15:06:23.499045</td>\n",
" <td>507</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>91c3f6c0-c6f7-4306-89cd-f304c9556de4</td>\n",
" <td>139823225449024</td>\n",
" <td>139819166072448</td>\n",
" <td>6e08f3e0-392b-434e-8b69-4ab36c4fcf99</td>\n",
" <td>You are a helpful AI assistant.\\nSolve tasks u...</td>\n",
" <td>The height of the Eiffel Tower is approximatel...</td>\n",
" <td>1</td>\n",
" <td>0.01572</td>\n",
" <td>2024-02-13 15:06:24.688990</td>\n",
" <td>2024-02-13 15:06:24.689238</td>\n",
" <td>507</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id invocation_id client_id wrapper_id \\\n",
"0 1 e8bb00d7-6da5-4407-a949-e19b55d53da8 139819167322784 139823225568704 \n",
"1 2 c8522790-0067-484b-bb37-d39ae80db98b 139823225568656 139823225563040 \n",
"2 3 91c3f6c0-c6f7-4306-89cd-f304c9556de4 139823225449024 139819166072448 \n",
"\n",
" session_id \\\n",
"0 8821a150-8c78-4d05-a858-8a64f1d18648 \n",
"1 fb0ef547-a2ac-428b-8c20-a5e63263b8e1 \n",
"2 6e08f3e0-392b-434e-8b69-4ab36c4fcf99 \n",
"\n",
" request \\\n",
"0 You are a helpful AI assistant.\\nSolve tasks u... \n",
"1 You are a helpful AI assistant.\\nSolve tasks u... \n",
"2 You are a helpful AI assistant.\\nSolve tasks u... \n",
"\n",
" response is_cached cost \\\n",
"0 The height of the Eiffel Tower is approximatel... 1 0.01572 \n",
"1 The height of the Eiffel Tower is approximatel... 1 0.01572 \n",
"2 The height of the Eiffel Tower is approximatel... 1 0.01572 \n",
"\n",
" start_time end_time total_tokens \n",
"0 2024-02-13 15:06:22.082896 2024-02-13 15:06:22.083169 507 \n",
"1 2024-02-13 15:06:23.498758 2024-02-13 15:06:23.499045 507 \n",
"2 2024-02-13 15:06:24.688990 2024-02-13 15:06:24.689238 507 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def str_to_dict(s):\n",
" return json.loads(s)\n",
"\n",
"\n",
"log_data = get_log()\n",
"log_data_df = pd.DataFrame(log_data)\n",
"\n",
"log_data_df[\"total_tokens\"] = log_data_df.apply(\n",
" lambda row: str_to_dict(row[\"response\"])[\"usage\"][\"total_tokens\"], axis=1\n",
")\n",
"\n",
"log_data_df[\"request\"] = log_data_df.apply(lambda row: str_to_dict(row[\"request\"])[\"messages\"][0][\"content\"], axis=1)\n",
"\n",
"log_data_df[\"response\"] = log_data_df.apply(\n",
" lambda row: str_to_dict(row[\"response\"])[\"choices\"][0][\"message\"][\"content\"], axis=1\n",
")\n",
"\n",
"log_data_df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Computing Cost \n",
"\n",
"One use case of logging data is to compute the cost of a session."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total tokens for all sessions: 1521, total cost: 0.0472\n",
"Total tokens for session 6e08f3e0-392b-434e-8b69-4ab36c4fcf99: 507, cost: 0.0157\n"
]
}
],
"source": [
"# Sum totoal tokens for all sessions\n",
"total_tokens = log_data_df[\"total_tokens\"].sum()\n",
"\n",
"# Sum total cost for all sessions\n",
"total_cost = log_data_df[\"cost\"].sum()\n",
"\n",
"# Total tokens for specific session\n",
"session_tokens = log_data_df[log_data_df[\"session_id\"] == logging_session_id][\"total_tokens\"].sum()\n",
"session_cost = log_data_df[log_data_df[\"session_id\"] == logging_session_id][\"cost\"].sum()\n",
"\n",
"print(\"Total tokens for all sessions: \" + str(total_tokens) + \", total cost: \" + str(round(total_cost, 4)))\n",
"print(\n",
" \"Total tokens for session \"\n",
" + str(logging_session_id)\n",
" + \": \"\n",
" + str(session_tokens)\n",
" + \", cost: \"\n",
" + str(round(session_cost, 4))\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Log data in File mode\n",
"\n",
"By default, the log type is set to `sqlite` as shown above, but we introduced a new parameter for the `autogen.runtime_logging.start()`\n",
"\n",
"the `logger_type = \"file\"` will start to log data in the File mode."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Logging session ID: ed493ebf-d78e-49f0-b832-69557276d557\n",
"\u001B[33muser_proxy\u001B[0m (to assistant):\n",
"\n",
"What is the height of the Eiffel Tower? Only respond with the answer and terminate\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001B[33massistant\u001B[0m (to user_proxy):\n",
"\n",
"The height of the Eiffel Tower is 330 meters.\n",
"TERMINATE\n",
"\n",
"--------------------------------------------------------------------------------\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"import autogen\n",
"from autogen import AssistantAgent, UserProxyAgent\n",
"\n",
"# Setup API key. Add your own API key to config file or environment variable\n",
"llm_config = {\n",
" \"config_list\": autogen.config_list_from_json(\n",
" env_or_file=\"OAI_CONFIG_LIST\",\n",
" ),\n",
" \"temperature\": 0.9,\n",
"}\n",
"\n",
"# Start logging with logger_type and the filename to log to\n",
"logging_session_id = autogen.runtime_logging.start(logger_type=\"file\", config={\"filename\": \"runtime.log\"})\n",
"print(\"Logging session ID: \" + str(logging_session_id))\n",
"\n",
"# Create an agent workflow and run it\n",
"assistant = AssistantAgent(name=\"assistant\", llm_config=llm_config)\n",
"user_proxy = UserProxyAgent(\n",
" name=\"user_proxy\",\n",
" code_execution_config=False,\n",
" human_input_mode=\"NEVER\",\n",
" is_termination_msg=lambda msg: \"TERMINATE\" in msg[\"content\"],\n",
")\n",
"\n",
"user_proxy.initiate_chat(\n",
" assistant, message=\"What is the height of the Eiffel Tower? Only respond with the answer and terminate\"\n",
")\n",
"autogen.runtime_logging.stop()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This should create a `runtime.log` file in your current directory. "
]
}
],
"metadata": {
"front_matter": {
"description": "Provide capabilities of runtime logging for debugging and performance analysis.",
"tags": [
"logging",
"debugging"
]
},
"kernelspec": {
"display_name": "autog",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}