mirror of
https://github.com/microsoft/autogen.git
synced 2025-08-10 01:32:03 +00:00

* Add isort * Apply isort on py files * Fix circular import * Fix format for notebooks * Fix format --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com>
64 lines
2.6 KiB
Python
Executable File
64 lines
2.6 KiB
Python
Executable File
#!/usr/bin/env python3 -m pytest
|
|
|
|
import os
|
|
import sys
|
|
|
|
from autogen import ConversableAgent, UserProxyAgent, config_list_from_json
|
|
from autogen.agentchat.contrib.capabilities.teachability import Teachability
|
|
from autogen.formatting_utils import colored
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), "../.."))
|
|
from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402
|
|
|
|
# Specify the model to use. GPT-3.5 is less reliable than GPT-4 at learning from user input.
|
|
filter_dict = {"model": ["gpt-4-0125-preview"]}
|
|
# filter_dict = {"model": ["gpt-3.5-turbo-1106"]}
|
|
# filter_dict = {"model": ["gpt-4-0613"]}
|
|
# filter_dict = {"model": ["gpt-3.5-turbo"]}
|
|
# filter_dict = {"model": ["gpt-4"]}
|
|
# filter_dict = {"model": ["gpt-35-turbo-16k", "gpt-3.5-turbo-16k"]}
|
|
|
|
|
|
def create_teachable_agent(reset_db=False):
|
|
"""Instantiates a teachable agent using the settings from the top of this file."""
|
|
# Load LLM inference endpoints from an env variable or a file
|
|
# See https://microsoft.github.io/autogen/docs/FAQ#set-your-api-endpoints
|
|
# and OAI_CONFIG_LIST_sample
|
|
config_list = config_list_from_json(env_or_file=OAI_CONFIG_LIST, filter_dict=filter_dict, file_location=KEY_LOC)
|
|
|
|
# Start by instantiating any agent that inherits from ConversableAgent.
|
|
teachable_agent = ConversableAgent(
|
|
name="teachable_agent",
|
|
llm_config={"config_list": config_list, "timeout": 120, "cache_seed": None}, # Disable caching.
|
|
)
|
|
|
|
# Instantiate the Teachability capability. Its parameters are all optional.
|
|
teachability = Teachability(
|
|
verbosity=0, # 0 for basic info, 1 to add memory operations, 2 for analyzer messages, 3 for memo lists.
|
|
reset_db=reset_db,
|
|
path_to_db_dir="./tmp/interactive/teachability_db",
|
|
recall_threshold=1.5, # Higher numbers allow more (but less relevant) memos to be recalled.
|
|
)
|
|
|
|
# Now add the Teachability capability to the agent.
|
|
teachability.add_to_agent(teachable_agent)
|
|
|
|
return teachable_agent
|
|
|
|
|
|
def interact_freely_with_user():
|
|
"""Starts a free-form chat between the user and a teachable agent."""
|
|
|
|
# Create the agents.
|
|
print(colored("\nLoading previous memory (if any) from disk.", "light_cyan"))
|
|
teachable_agent = create_teachable_agent(reset_db=False)
|
|
user = UserProxyAgent("user", human_input_mode="ALWAYS", code_execution_config={})
|
|
|
|
# Start the chat.
|
|
teachable_agent.initiate_chat(user, message="Greetings, I'm a teachable user assistant! What's on your mind today?")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
"""Lets the user test a teachable agent interactively."""
|
|
interact_freely_with_user()
|