autogen/test/agentchat/contrib/capabilities/chat_with_teachable_agent.py
Li Jiang 42b27b9a9d
Add isort (#2265)
* Add isort

* Apply isort on py files

* Fix circular import

* Fix format for notebooks

* Fix format

---------

Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2024-04-05 02:26:06 +00:00

64 lines
2.6 KiB
Python
Executable File

#!/usr/bin/env python3 -m pytest
import os
import sys
from autogen import ConversableAgent, UserProxyAgent, config_list_from_json
from autogen.agentchat.contrib.capabilities.teachability import Teachability
from autogen.formatting_utils import colored
sys.path.append(os.path.join(os.path.dirname(__file__), "../.."))
from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402
# Specify the model to use. GPT-3.5 is less reliable than GPT-4 at learning from user input.
filter_dict = {"model": ["gpt-4-0125-preview"]}
# filter_dict = {"model": ["gpt-3.5-turbo-1106"]}
# filter_dict = {"model": ["gpt-4-0613"]}
# filter_dict = {"model": ["gpt-3.5-turbo"]}
# filter_dict = {"model": ["gpt-4"]}
# filter_dict = {"model": ["gpt-35-turbo-16k", "gpt-3.5-turbo-16k"]}
def create_teachable_agent(reset_db=False):
"""Instantiates a teachable agent using the settings from the top of this file."""
# Load LLM inference endpoints from an env variable or a file
# See https://microsoft.github.io/autogen/docs/FAQ#set-your-api-endpoints
# and OAI_CONFIG_LIST_sample
config_list = config_list_from_json(env_or_file=OAI_CONFIG_LIST, filter_dict=filter_dict, file_location=KEY_LOC)
# Start by instantiating any agent that inherits from ConversableAgent.
teachable_agent = ConversableAgent(
name="teachable_agent",
llm_config={"config_list": config_list, "timeout": 120, "cache_seed": None}, # Disable caching.
)
# Instantiate the Teachability capability. Its parameters are all optional.
teachability = Teachability(
verbosity=0, # 0 for basic info, 1 to add memory operations, 2 for analyzer messages, 3 for memo lists.
reset_db=reset_db,
path_to_db_dir="./tmp/interactive/teachability_db",
recall_threshold=1.5, # Higher numbers allow more (but less relevant) memos to be recalled.
)
# Now add the Teachability capability to the agent.
teachability.add_to_agent(teachable_agent)
return teachable_agent
def interact_freely_with_user():
"""Starts a free-form chat between the user and a teachable agent."""
# Create the agents.
print(colored("\nLoading previous memory (if any) from disk.", "light_cyan"))
teachable_agent = create_teachable_agent(reset_db=False)
user = UserProxyAgent("user", human_input_mode="ALWAYS", code_execution_config={})
# Start the chat.
teachable_agent.initiate_chat(user, message="Greetings, I'm a teachable user assistant! What's on your mind today?")
if __name__ == "__main__":
"""Lets the user test a teachable agent interactively."""
interact_freely_with_user()