autogen/test/agentchat/contrib/retrievechat/test_retrievechat.py
Li Jiang 08fa1b6d08
Remove dependency on RetrieveAssistantAgent for RetrieveChat (#3320)
* Remove deps on RetrieveAssistantAgent for getting human input

* Terminate when no more context

* Add deprecation warning message

* Clean up RetrieveAssistantAgent, part 1

* Update version

* Clean up docs and notebooks
2024-08-15 16:03:06 +00:00

102 lines
2.8 KiB
Python
Executable File

#!/usr/bin/env python3 -m pytest
import os
import sys
import pytest
import autogen
sys.path.append(os.path.join(os.path.dirname(__file__), "../../.."))
from conftest import reason, skip_openai # noqa: E402
sys.path.append(os.path.join(os.path.dirname(__file__), "../.."))
from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402
try:
import chromadb
import openai
from chromadb.utils import embedding_functions as ef
from autogen import AssistantAgent
from autogen.agentchat.contrib.retrieve_user_proxy_agent import (
RetrieveUserProxyAgent,
)
except ImportError:
skip = True
else:
skip = False
reason = "do not run on MacOS or windows OR dependency is not installed OR " + reason
@pytest.mark.skipif(
sys.platform in ["darwin", "win32"] or skip or skip_openai,
reason=reason,
)
def test_retrievechat():
conversations = {}
# autogen.ChatCompletion.start_logging(conversations) # deprecated in v0.2
config_list = autogen.config_list_from_json(
OAI_CONFIG_LIST,
file_location=KEY_LOC,
)
assistant = AssistantAgent(
name="assistant",
system_message="You are a helpful assistant.",
llm_config={
"timeout": 600,
"seed": 42,
"config_list": config_list,
},
)
sentence_transformer_ef = ef.SentenceTransformerEmbeddingFunction()
ragproxyagent = RetrieveUserProxyAgent(
name="ragproxyagent",
human_input_mode="NEVER",
max_consecutive_auto_reply=2,
retrieve_config={
"docs_path": "./website/docs",
"chunk_token_size": 2000,
"model": config_list[0]["model"],
"client": chromadb.PersistentClient(path="/tmp/chromadb"),
"embedding_function": sentence_transformer_ef,
"get_or_create": True,
},
)
assistant.reset()
code_problem = "How can I use FLAML to perform a classification task, set use_spark=True, train 30 seconds and force cancel jobs if time limit is reached."
ragproxyagent.initiate_chat(
assistant, message=ragproxyagent.message_generator, problem=code_problem, search_string="spark", silent=True
)
print(conversations)
@pytest.mark.skipif(
sys.platform in ["darwin", "win32"] or skip,
reason=reason,
)
def test_retrieve_config():
# test warning message when no docs_path is provided
ragproxyagent = RetrieveUserProxyAgent(
name="ragproxyagent",
human_input_mode="NEVER",
max_consecutive_auto_reply=2,
retrieve_config={
"chunk_token_size": 2000,
"get_or_create": True,
},
)
assert ragproxyagent._docs_path is None
if __name__ == "__main__":
# test_retrievechat()
test_retrieve_config()