mirror of
https://github.com/microsoft/autogen.git
synced 2025-08-04 14:52:10 +00:00

* Add isort * Apply isort on py files * Fix circular import * Fix format for notebooks * Fix format --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com>
129 lines
4.1 KiB
Python
Executable File
129 lines
4.1 KiB
Python
Executable File
#!/usr/bin/env python3 -m pytest
|
|
|
|
import unittest
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import pytest
|
|
from conftest import MOCK_OPEN_AI_API_KEY
|
|
|
|
import autogen
|
|
|
|
try:
|
|
from autogen.agentchat.contrib.llava_agent import LLaVAAgent, _llava_call_binary_with_config, llava_call
|
|
except ImportError:
|
|
skip = True
|
|
|
|
else:
|
|
skip = False
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="dependency is not installed")
|
|
class TestLLaVAAgent(unittest.TestCase):
|
|
def setUp(self):
|
|
self.agent = LLaVAAgent(
|
|
name="TestAgent",
|
|
llm_config={
|
|
"timeout": 600,
|
|
"seed": 42,
|
|
"config_list": [{"model": "llava-fake", "base_url": "localhost:8000", "api_key": MOCK_OPEN_AI_API_KEY}],
|
|
},
|
|
)
|
|
|
|
def test_init(self):
|
|
self.assertIsInstance(self.agent, LLaVAAgent)
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="dependency is not installed")
|
|
class TestLLavaCallBinaryWithConfig(unittest.TestCase):
|
|
@patch("requests.post")
|
|
def test_local_mode(self, mock_post):
|
|
# Mocking the response of requests.post
|
|
mock_response = MagicMock()
|
|
mock_response.iter_lines.return_value = [b'{"text":"response text"}']
|
|
mock_post.return_value = mock_response
|
|
|
|
# Calling the function
|
|
output = _llava_call_binary_with_config(
|
|
prompt="Test Prompt",
|
|
images=[],
|
|
config={"base_url": "http://0.0.0.0/api", "model": "test-model"},
|
|
max_new_tokens=1000,
|
|
temperature=0.5,
|
|
seed=1,
|
|
)
|
|
|
|
# Verifying the results
|
|
self.assertEqual(output, "response text")
|
|
mock_post.assert_called_once_with(
|
|
"http://0.0.0.0/api/worker_generate_stream",
|
|
headers={"User-Agent": "LLaVA Client"},
|
|
json={
|
|
"model": "test-model",
|
|
"prompt": "Test Prompt",
|
|
"max_new_tokens": 1000,
|
|
"temperature": 0.5,
|
|
"stop": "###",
|
|
"images": [],
|
|
},
|
|
stream=False,
|
|
)
|
|
|
|
@patch("replicate.run")
|
|
def test_remote_mode(self, mock_run):
|
|
# Mocking the response of replicate.run
|
|
mock_run.return_value = iter(["response ", "text"])
|
|
|
|
# Calling the function
|
|
output = _llava_call_binary_with_config(
|
|
prompt="Test Prompt",
|
|
images=["image_data"],
|
|
config={"base_url": "http://remote/api", "model": "test-model"},
|
|
max_new_tokens=1000,
|
|
temperature=0.5,
|
|
seed=1,
|
|
)
|
|
|
|
# Verifying the results
|
|
self.assertEqual(output, "response text")
|
|
mock_run.assert_called_once_with(
|
|
"http://remote/api",
|
|
input={"image": "_data", "prompt": "Test Prompt", "seed": 1},
|
|
)
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="dependency is not installed")
|
|
class TestLLavaCall(unittest.TestCase):
|
|
@patch("autogen.agentchat.contrib.llava_agent.llava_formatter")
|
|
@patch("autogen.agentchat.contrib.llava_agent.llava_call_binary")
|
|
def test_llava_call(self, mock_llava_call_binary, mock_llava_formatter):
|
|
# Set up the mocks
|
|
mock_llava_formatter.return_value = ("formatted prompt", ["image1", "image2"])
|
|
mock_llava_call_binary.return_value = "Generated Text"
|
|
|
|
# Set up the llm_config dictionary
|
|
llm_config = {
|
|
"config_list": [{"api_key": MOCK_OPEN_AI_API_KEY, "base_url": "localhost:8000"}],
|
|
"max_new_tokens": 2000,
|
|
"temperature": 0.5,
|
|
"seed": 1,
|
|
}
|
|
|
|
# Call the function
|
|
result = llava_call("Test Prompt", llm_config)
|
|
|
|
# Check the results
|
|
mock_llava_formatter.assert_called_once_with("Test Prompt", order_image_tokens=False)
|
|
mock_llava_call_binary.assert_called_once_with(
|
|
"formatted prompt",
|
|
["image1", "image2"],
|
|
config_list=llm_config["config_list"],
|
|
max_new_tokens=2000,
|
|
temperature=0.5,
|
|
seed=1,
|
|
)
|
|
self.assertEqual(result, "Generated Text")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|