mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-13 12:01:04 +00:00
147 lines
5.2 KiB
Python
147 lines
5.2 KiB
Python
"""
|
|
This example demonstrates the mixture of agents implemented using direct
|
|
messaging and async gathering of results.
|
|
Mixture of agents: https://github.com/togethercomputer/moa
|
|
|
|
The example consists of two types of agents: reference agents and an aggregator agent.
|
|
The aggregator agent distributes tasks to reference agents and aggregates the results.
|
|
The reference agents handle each task independently and return the results to the aggregator agent.
|
|
"""
|
|
|
|
import asyncio
|
|
from dataclasses import dataclass
|
|
from typing import List
|
|
|
|
from agnext.application import SingleThreadedAgentRuntime
|
|
from agnext.components import TypeRoutedAgent, message_handler
|
|
from agnext.components.models import ChatCompletionClient, OpenAIChatCompletionClient, SystemMessage, UserMessage
|
|
from agnext.core import AgentId, CancellationToken
|
|
|
|
|
|
@dataclass
|
|
class ReferenceAgentTask:
|
|
task: str
|
|
|
|
|
|
@dataclass
|
|
class ReferenceAgentTaskResult:
|
|
result: str
|
|
|
|
|
|
@dataclass
|
|
class AggregatorTask:
|
|
task: str
|
|
|
|
|
|
@dataclass
|
|
class AggregatorTaskResult:
|
|
result: str
|
|
|
|
|
|
class ReferenceAgent(TypeRoutedAgent):
|
|
"""The reference agent that handles each task independently."""
|
|
|
|
def __init__(
|
|
self,
|
|
description: str,
|
|
system_messages: List[SystemMessage],
|
|
model_client: ChatCompletionClient,
|
|
) -> None:
|
|
super().__init__(description)
|
|
self._system_messages = system_messages
|
|
self._model_client = model_client
|
|
|
|
@message_handler
|
|
async def handle_task(
|
|
self, message: ReferenceAgentTask, cancellation_token: CancellationToken
|
|
) -> ReferenceAgentTaskResult:
|
|
"""Handle a task message. This method sends the task to the model and respond with the result."""
|
|
task_message = UserMessage(content=message.task, source=self.metadata["name"])
|
|
response = await self._model_client.create(self._system_messages + [task_message])
|
|
assert isinstance(response.content, str)
|
|
return ReferenceAgentTaskResult(result=response.content)
|
|
|
|
|
|
class AggregatorAgent(TypeRoutedAgent):
|
|
"""The aggregator agent that distribute tasks to reference agents and aggregates the results."""
|
|
|
|
def __init__(
|
|
self,
|
|
description: str,
|
|
system_messages: List[SystemMessage],
|
|
model_client: ChatCompletionClient,
|
|
references: List[AgentId],
|
|
) -> None:
|
|
super().__init__(description)
|
|
self._system_messages = system_messages
|
|
self._model_client = model_client
|
|
self._references = references
|
|
|
|
@message_handler
|
|
async def handle_task(self, message: AggregatorTask, cancellation_token: CancellationToken) -> AggregatorTaskResult:
|
|
"""Handle a task message. This method sends the task to the reference agents
|
|
and aggregates the results."""
|
|
ref_task = ReferenceAgentTask(task=message.task)
|
|
results: List[ReferenceAgentTaskResult] = await asyncio.gather(
|
|
*[await self.send_message(ref_task, ref) for ref in self._references]
|
|
)
|
|
combined_result = "\n\n".join([r.result for r in results])
|
|
response = await self._model_client.create(
|
|
self._system_messages + [UserMessage(content=combined_result, source=self.metadata["name"])]
|
|
)
|
|
assert isinstance(response.content, str)
|
|
return AggregatorTaskResult(result=response.content)
|
|
|
|
|
|
async def main() -> None:
|
|
runtime = SingleThreadedAgentRuntime()
|
|
ref1 = runtime.register_and_get(
|
|
"ReferenceAgent1",
|
|
lambda: ReferenceAgent(
|
|
description="Reference Agent 1",
|
|
system_messages=[SystemMessage("You are a helpful assistant that can answer questions.")],
|
|
model_client=OpenAIChatCompletionClient(model="gpt-3.5-turbo", temperature=0.1),
|
|
),
|
|
)
|
|
ref2 = runtime.register_and_get(
|
|
"ReferenceAgent2",
|
|
lambda: ReferenceAgent(
|
|
description="Reference Agent 2",
|
|
system_messages=[SystemMessage("You are a helpful assistant that can answer questions.")],
|
|
model_client=OpenAIChatCompletionClient(model="gpt-3.5-turbo", temperature=0.5),
|
|
),
|
|
)
|
|
ref3 = runtime.register_and_get(
|
|
"ReferenceAgent3",
|
|
lambda: ReferenceAgent(
|
|
description="Reference Agent 3",
|
|
system_messages=[SystemMessage("You are a helpful assistant that can answer questions.")],
|
|
model_client=OpenAIChatCompletionClient(model="gpt-3.5-turbo", temperature=1.0),
|
|
),
|
|
)
|
|
agg = runtime.register_and_get(
|
|
"AggregatorAgent",
|
|
lambda: AggregatorAgent(
|
|
description="Aggregator Agent",
|
|
system_messages=[
|
|
SystemMessage(
|
|
"...synthesize these responses into a single, high-quality response... Responses from models:"
|
|
)
|
|
],
|
|
model_client=OpenAIChatCompletionClient(model="gpt-3.5-turbo"),
|
|
references=[ref1, ref2, ref3],
|
|
),
|
|
)
|
|
result = await runtime.send_message(AggregatorTask(task="What are something fun to do in SF?"), agg)
|
|
while result.done() is False:
|
|
await runtime.process_next()
|
|
print(result.result())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import logging
|
|
|
|
logging.basicConfig(level=logging.WARNING)
|
|
logging.getLogger("agnext").setLevel(logging.DEBUG)
|
|
asyncio.run(main())
|