681 lines
23 KiB
Python

"""
This module defines various message types used for agent-to-agent communication.
Each message type inherits either from the BaseChatMessage class or BaseAgentEvent
class and includes specific fields relevant to the type of message being sent.
"""
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from typing import Any, Dict, Generic, List, Literal, Mapping, Optional, Type, TypeVar
from autogen_core import Component, ComponentBase, FunctionCall, Image
from autogen_core.code_executor import CodeBlock, CodeResult
from autogen_core.memory import MemoryContent
from autogen_core.models import (
FunctionExecutionResult,
LLMMessage,
RequestUsage,
UserMessage,
)
from autogen_core.utils import schema_to_pydantic_model
from pydantic import BaseModel, Field, computed_field
from typing_extensions import Annotated, Self
class BaseMessage(BaseModel, ABC):
"""Abstract base class for all message types in AgentChat.
.. warning::
If you want to create a new message type, do not inherit from this class.
Instead, inherit from :class:`BaseChatMessage` or :class:`BaseAgentEvent`
to clarify the purpose of the message type.
"""
@abstractmethod
def to_text(self) -> str:
"""Convert the message content to a string-only representation
that can be rendered in the console and inspected by the user or conditions.
This is not used for creating text-only content for models.
For :class:`BaseChatMessage` types, use :meth:`to_model_text` instead."""
...
def dump(self) -> Mapping[str, Any]:
"""Convert the message to a JSON-serializable dictionary.
The default implementation uses the Pydantic model's
:meth:`model_dump` method to convert the message to a dictionary.
Override this method if you want to customize the serialization
process or add additional fields to the output.
"""
return self.model_dump()
@classmethod
def load(cls, data: Mapping[str, Any]) -> Self:
"""Create a message from a dictionary of JSON-serializable data.
The default implementation uses the Pydantic model's
:meth:`model_validate` method to create the message from the data.
Override this method if you want to customize the deserialization
process or add additional fields to the input data."""
return cls.model_validate(data)
class BaseChatMessage(BaseMessage, ABC):
"""Abstract base class for chat messages.
.. note::
If you want to create a new message type that is used for agent-to-agent
communication, inherit from this class, or simply use
:class:`StructuredMessage` if your content type is a subclass of
Pydantic BaseModel.
This class is used for messages that are sent between agents in a chat
conversation. Agents are expected to process the content of the
message using models and return a response as another :class:`BaseChatMessage`.
"""
source: str
"""The name of the agent that sent this message."""
models_usage: RequestUsage | None = None
"""The model client usage incurred when producing this message."""
metadata: Dict[str, str] = {}
"""Additional metadata about the message."""
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
"""The time when the message was created."""
@abstractmethod
def to_model_text(self) -> str:
"""Convert the content of the message to text-only representation.
This is used for creating text-only content for models.
This is not used for rendering the message in console. For that, use
:meth:`~BaseMessage.to_text`.
The difference between this and :meth:`to_model_message` is that this
is used to construct parts of the a message for the model client,
while :meth:`to_model_message` is used to create a complete message
for the model client.
"""
...
@abstractmethod
def to_model_message(self) -> UserMessage:
"""Convert the message content to a :class:`~autogen_core.models.UserMessage`
for use with model client, e.g., :class:`~autogen_core.models.ChatCompletionClient`.
"""
...
class BaseTextChatMessage(BaseChatMessage, ABC):
"""Base class for all text-only :class:`BaseChatMessage` types.
It has implementations for :meth:`to_text`, :meth:`to_model_text`,
and :meth:`to_model_message` methods.
Inherit from this class if your message content type is a string.
"""
content: str
"""The content of the message."""
def to_text(self) -> str:
return self.content
def to_model_text(self) -> str:
return self.content
def to_model_message(self) -> UserMessage:
return UserMessage(content=self.content, source=self.source)
class BaseAgentEvent(BaseMessage, ABC):
"""Base class for agent events.
.. note::
If you want to create a new message type for signaling observable events
to user and application, inherit from this class.
Agent events are used to signal actions and thoughts produced by agents
and teams to user and applications. They are not used for agent-to-agent
communication and are not expected to be processed by other agents.
You should override the :meth:`to_text` method if you want to provide
a custom rendering of the content.
"""
source: str
"""The name of the agent that sent this message."""
models_usage: RequestUsage | None = None
"""The model client usage incurred when producing this message."""
metadata: Dict[str, str] = {}
"""Additional metadata about the message."""
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
"""The time when the message was created."""
StructuredContentType = TypeVar("StructuredContentType", bound=BaseModel, covariant=True)
"""Type variable for structured content types."""
class StructuredMessage(BaseChatMessage, Generic[StructuredContentType]):
"""A :class:`BaseChatMessage` type with an unspecified content type.
To create a new structured message type, specify the content type
as a subclass of `Pydantic BaseModel <https://docs.pydantic.dev/latest/concepts/models/>`_.
.. code-block:: python
from pydantic import BaseModel
from autogen_agentchat.messages import StructuredMessage
class MyMessageContent(BaseModel):
text: str
number: int
message = StructuredMessage[MyMessageContent](
content=MyMessageContent(text="Hello", number=42),
source="agent1",
)
print(message.to_text()) # {"text": "Hello", "number": 42}
.. code-block:: python
from pydantic import BaseModel
from autogen_agentchat.messages import StructuredMessage
class MyMessageContent(BaseModel):
text: str
number: int
message = StructuredMessage[MyMessageContent](
content=MyMessageContent(text="Hello", number=42),
source="agent",
format_string="Hello, {text} {number}!",
)
print(message.to_text()) # Hello, agent 42!
"""
content: StructuredContentType
"""The content of the message. Must be a subclass of
`Pydantic BaseModel <https://docs.pydantic.dev/latest/concepts/models/>`_."""
format_string: Optional[str] = None
"""(Experimental) An optional format string to render the content into a human-readable format.
The format string can use the fields of the content model as placeholders.
For example, if the content model has a field `name`, you can use
`{name}` in the format string to include the value of that field.
The format string is used in the :meth:`to_text` method to create a
human-readable representation of the message.
This setting is experimental and will change in the future.
"""
@computed_field
def type(self) -> str:
return self.__class__.__name__
def to_text(self) -> str:
if self.format_string is not None:
return self.format_string.format(**self.content.model_dump())
else:
return self.content.model_dump_json()
def to_model_text(self) -> str:
if self.format_string is not None:
return self.format_string.format(**self.content.model_dump())
else:
return self.content.model_dump_json()
def to_model_message(self) -> UserMessage:
return UserMessage(
content=self.content.model_dump_json(),
source=self.source,
)
class StructureMessageConfig(BaseModel):
"""The declarative configuration for the structured output."""
json_schema: Dict[str, Any]
format_string: Optional[str] = None
content_model_name: str
class StructuredMessageFactory(ComponentBase[StructureMessageConfig], Component[StructureMessageConfig]):
""":meta private:
A component that creates structured chat messages from Pydantic models or JSON schemas.
This component helps you generate strongly-typed chat messages with content defined using a Pydantic model.
It can be used in declarative workflows where message structure must be validated, formatted, and serialized.
You can initialize the component directly using a `BaseModel` subclass, or dynamically from a configuration
object (e.g., loaded from disk or a database).
### Example 1: Create from a Pydantic Model
.. code-block:: python
from pydantic import BaseModel
from autogen_agentchat.messages import StructuredMessageFactory
class TestContent(BaseModel):
field1: str
field2: int
format_string = "This is a string {field1} and this is an int {field2}"
sm_component = StructuredMessageFactory(input_model=TestContent, format_string=format_string)
message = sm_component.StructuredMessage(
source="test_agent", content=TestContent(field1="Hello", field2=42), format_string=format_string
)
print(message.to_model_text()) # Output: This is a string Hello and this is an int 42
config = sm_component.dump_component()
s_m_dyn = StructuredMessageFactory.load_component(config)
message = s_m_dyn.StructuredMessage(
source="test_agent",
content=s_m_dyn.ContentModel(field1="dyn agent", field2=43),
format_string=s_m_dyn.format_string,
)
print(type(message)) # StructuredMessage[GeneratedModel]
print(message.to_model_text()) # Output: This is a string dyn agent and this is an int 43
Attributes:
component_config_schema (StructureMessageConfig): Defines the configuration structure for this component.
component_provider_override (str): Path used to reference this component in external tooling.
component_type (str): Identifier used for categorization (e.g., "structured_message").
Raises:
ValueError: If neither `json_schema` nor `input_model` is provided.
Args:
json_schema (Optional[str]): JSON schema to dynamically create a Pydantic model.
input_model (Optional[Type[BaseModel]]): A subclass of `BaseModel` that defines the expected message structure.
format_string (Optional[str]): Optional string to render content into a human-readable format.
content_model_name (Optional[str]): Optional name for the generated Pydantic model.
"""
component_config_schema = StructureMessageConfig
component_provider_override = "autogen_agentchat.messages.StructuredMessageFactory"
component_type = "structured_message"
def __init__(
self,
json_schema: Optional[Dict[str, Any]] = None,
input_model: Optional[Type[BaseModel]] = None,
format_string: Optional[str] = None,
content_model_name: Optional[str] = None,
) -> None:
self.format_string = format_string
if json_schema:
self.ContentModel = schema_to_pydantic_model(
json_schema, model_name=content_model_name or "GeneratedContentModel"
)
elif input_model:
self.ContentModel = input_model
else:
raise ValueError("Either `json_schema` or `input_model` must be provided.")
self.StructuredMessage = StructuredMessage[self.ContentModel] # type: ignore[name-defined]
def _to_config(self) -> StructureMessageConfig:
return StructureMessageConfig(
json_schema=self.ContentModel.model_json_schema(),
format_string=self.format_string,
content_model_name=self.ContentModel.__name__,
)
@classmethod
def _from_config(cls, config: StructureMessageConfig) -> "StructuredMessageFactory":
return cls(
json_schema=config.json_schema,
format_string=config.format_string,
content_model_name=config.content_model_name,
)
class TextMessage(BaseTextChatMessage):
"""A text message with string-only content."""
type: Literal["TextMessage"] = "TextMessage"
class MultiModalMessage(BaseChatMessage):
"""A multimodal message."""
content: List[str | Image]
"""The content of the message."""
type: Literal["MultiModalMessage"] = "MultiModalMessage"
def to_model_text(self, image_placeholder: str | None = "[image]") -> str:
"""Convert the content of the message to a string-only representation.
If an image is present, it will be replaced with the image placeholder
by default, otherwise it will be a base64 string when set to None.
"""
text = ""
for c in self.content:
if isinstance(c, str):
text += c
elif isinstance(c, Image):
if image_placeholder is not None:
text += f" {image_placeholder}"
else:
text += f" {c.to_base64()}"
return text
def to_text(self, iterm: bool = False) -> str:
result: List[str] = []
for c in self.content:
if isinstance(c, str):
result.append(c)
else:
if iterm:
# iTerm2 image rendering protocol: https://iterm2.com/documentation-images.html
image_data = c.to_base64()
result.append(f"\033]1337;File=inline=1:{image_data}\a\n")
else:
result.append("<image>")
return "\n".join(result)
def to_model_message(self) -> UserMessage:
return UserMessage(content=self.content, source=self.source)
class StopMessage(BaseTextChatMessage):
"""A message requesting stop of a conversation."""
type: Literal["StopMessage"] = "StopMessage"
class HandoffMessage(BaseTextChatMessage):
"""A message requesting handoff of a conversation to another agent."""
target: str
"""The name of the target agent to handoff to."""
context: List[LLMMessage] = []
"""The model context to be passed to the target agent."""
type: Literal["HandoffMessage"] = "HandoffMessage"
class ToolCallSummaryMessage(BaseTextChatMessage):
"""A message signaling the summary of tool call results."""
type: Literal["ToolCallSummaryMessage"] = "ToolCallSummaryMessage"
tool_calls: List[FunctionCall]
"""The tool calls that were made."""
results: List[FunctionExecutionResult]
"""The results of the tool calls."""
class ToolCallRequestEvent(BaseAgentEvent):
"""An event signaling a request to use tools."""
content: List[FunctionCall]
"""The tool calls."""
type: Literal["ToolCallRequestEvent"] = "ToolCallRequestEvent"
def to_text(self) -> str:
return str(self.content)
class CodeGenerationEvent(BaseAgentEvent):
"""An event signaling code generation event."""
retry_attempt: int
"Retry number, 0 means first generation"
content: str
"The complete content as string."
code_blocks: List[CodeBlock]
"List of code blocks present in content"
type: Literal["CodeGenerationEvent"] = "CodeGenerationEvent"
def to_text(self) -> str:
return self.content
class CodeExecutionEvent(BaseAgentEvent):
"""An event signaling code execution event."""
retry_attempt: int
"Retry number, 0 means first execution"
result: CodeResult
"Code Execution Result"
type: Literal["CodeExecutionEvent"] = "CodeExecutionEvent"
def to_text(self) -> str:
return self.result.output
class ToolCallExecutionEvent(BaseAgentEvent):
"""An event signaling the execution of tool calls."""
content: List[FunctionExecutionResult]
"""The tool call results."""
type: Literal["ToolCallExecutionEvent"] = "ToolCallExecutionEvent"
def to_text(self) -> str:
return str(self.content)
class UserInputRequestedEvent(BaseAgentEvent):
"""An event signaling a that the user proxy has requested user input. Published prior to invoking the input callback."""
request_id: str
"""Identifier for the user input request."""
content: Literal[""] = ""
"""Empty content for compat with consumers expecting a content field."""
type: Literal["UserInputRequestedEvent"] = "UserInputRequestedEvent"
def to_text(self) -> str:
return str(self.content)
class MemoryQueryEvent(BaseAgentEvent):
"""An event signaling the results of memory queries."""
content: List[MemoryContent]
"""The memory query results."""
type: Literal["MemoryQueryEvent"] = "MemoryQueryEvent"
def to_text(self) -> str:
return str(self.content)
class ModelClientStreamingChunkEvent(BaseAgentEvent):
"""An event signaling a text output chunk from a model client in streaming mode."""
content: str
"""A string chunk from the model client."""
type: Literal["ModelClientStreamingChunkEvent"] = "ModelClientStreamingChunkEvent"
def to_text(self) -> str:
return self.content
class ThoughtEvent(BaseAgentEvent):
"""An event signaling the thought process of a model.
It is used to communicate the reasoning tokens generated by a reasoning model,
or the extra text content generated by a function call."""
content: str
"""The thought process of the model."""
type: Literal["ThoughtEvent"] = "ThoughtEvent"
def to_text(self) -> str:
return self.content
class SelectSpeakerEvent(BaseAgentEvent):
"""An event signaling the selection of speakers for a conversation."""
content: List[str]
"""The names of the selected speakers."""
type: Literal["SelectSpeakerEvent"] = "SelectSpeakerEvent"
def to_text(self) -> str:
return str(self.content)
class SelectorEvent(BaseAgentEvent):
"""An event emitted from the `SelectorGroupChat`."""
content: str
"""The content of the event."""
type: Literal["SelectorEvent"] = "SelectorEvent"
def to_text(self) -> str:
return str(self.content)
class MessageFactory:
""":meta private:
A factory for creating messages from JSON-serializable dictionaries.
This is useful for deserializing messages from JSON data.
"""
def __init__(self) -> None:
self._message_types: Dict[str, type[BaseAgentEvent | BaseChatMessage]] = {}
# Register all message types.
self._message_types[TextMessage.__name__] = TextMessage
self._message_types[MultiModalMessage.__name__] = MultiModalMessage
self._message_types[StopMessage.__name__] = StopMessage
self._message_types[ToolCallSummaryMessage.__name__] = ToolCallSummaryMessage
self._message_types[HandoffMessage.__name__] = HandoffMessage
self._message_types[ToolCallRequestEvent.__name__] = ToolCallRequestEvent
self._message_types[ToolCallExecutionEvent.__name__] = ToolCallExecutionEvent
self._message_types[MemoryQueryEvent.__name__] = MemoryQueryEvent
self._message_types[UserInputRequestedEvent.__name__] = UserInputRequestedEvent
self._message_types[ModelClientStreamingChunkEvent.__name__] = ModelClientStreamingChunkEvent
self._message_types[ThoughtEvent.__name__] = ThoughtEvent
self._message_types[SelectSpeakerEvent.__name__] = SelectSpeakerEvent
self._message_types[CodeGenerationEvent.__name__] = CodeGenerationEvent
self._message_types[CodeExecutionEvent.__name__] = CodeExecutionEvent
def is_registered(self, message_type: type[BaseAgentEvent | BaseChatMessage]) -> bool:
"""Check if a message type is registered with the factory."""
# Get the class name of the message type.
class_name = message_type.__name__
# Check if the class name is already registered.
return class_name in self._message_types
def register(self, message_type: type[BaseAgentEvent | BaseChatMessage]) -> None:
"""Register a new message type with the factory."""
if self.is_registered(message_type):
raise ValueError(f"Message type {message_type} is already registered.")
if not issubclass(message_type, BaseChatMessage) and not issubclass(message_type, BaseAgentEvent):
raise ValueError(f"Message type {message_type} must be a subclass of BaseChatMessage or BaseAgentEvent.")
# Get the class name of the
class_name = message_type.__name__
# Check if the class name is already registered.
# Register the message type.
self._message_types[class_name] = message_type
def create(self, data: Mapping[str, Any]) -> BaseAgentEvent | BaseChatMessage:
"""Create a message from a dictionary of JSON-serializable data."""
# Get the type of the message from the dictionary.
message_type = data.get("type")
if message_type is None:
raise ValueError("Field 'type' is required in the message data to recover the message type.")
if message_type not in self._message_types:
raise ValueError(f"Unknown message type: {message_type}")
if not isinstance(message_type, str):
raise ValueError(f"Message type must be a string, got {type(message_type)}")
# Get the class for the message type.
message_class = self._message_types[message_type]
# Create an instance of the message class.
assert issubclass(message_class, BaseChatMessage) or issubclass(message_class, BaseAgentEvent)
return message_class.load(data)
ChatMessage = Annotated[
TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage,
Field(discriminator="type"),
]
"""The union type of all built-in concrete subclasses of :class:`BaseChatMessage`.
It does not include :class:`StructuredMessage` types."""
AgentEvent = Annotated[
ToolCallRequestEvent
| ToolCallExecutionEvent
| MemoryQueryEvent
| UserInputRequestedEvent
| ModelClientStreamingChunkEvent
| ThoughtEvent
| SelectSpeakerEvent
| CodeGenerationEvent
| CodeExecutionEvent,
Field(discriminator="type"),
]
"""The union type of all built-in concrete subclasses of :class:`BaseAgentEvent`."""
__all__ = [
"AgentEvent",
"BaseMessage",
"ChatMessage",
"BaseChatMessage",
"BaseAgentEvent",
"BaseTextChatMessage",
"StructuredContentType",
"StructuredMessage",
"StructuredMessageFactory",
"HandoffMessage",
"MultiModalMessage",
"StopMessage",
"TextMessage",
"ToolCallExecutionEvent",
"ToolCallRequestEvent",
"ToolCallSummaryMessage",
"MemoryQueryEvent",
"UserInputRequestedEvent",
"ModelClientStreamingChunkEvent",
"ThoughtEvent",
"SelectSpeakerEvent",
"MessageFactory",
"CodeGenerationEvent",
"CodeExecutionEvent",
]