Mark Harley 44ddf9e104
Refactor into automl subpackage (#809)
* Refactor into automl subpackage

Moved some of the packages into an automl subpackage to tidy before the
task-based refactor. This is in response to discussions with the group
and a comment on the first task-based PR.

Only changes here are moving subpackages and modules into the new
automl, fixing imports to work with this structure and fixing some
dependencies in setup.py.

* Fix doc building post automl subpackage refactor

* Fix broken links in website post automl subpackage refactor

* Fix broken links in website post automl subpackage refactor

* Remove vw from test deps as this is breaking the build

* Move default back to the top-level

I'd moved this to automl as that's where it's used internally, but had
missed that this is actually part of the public interface so makes sense
to live where it was.

* Re-add top level modules with deprecation warnings

flaml.data, flaml.ml and flaml.model are re-added to the top level,
being re-exported from flaml.automl for backwards compatability. Adding
a deprecation warning so that we can have a planned removal later.

* Fix model.py line-endings

* Pin pytorch-lightning to less than 1.8.0

We're seeing strange lightning related bugs from pytorch-forecasting
since the release of lightning 1.8.0. Going to try constraining this to
see if we have a fix.

* Fix the lightning version pin

Was optimistic with setting it in the 1.7.x range, but that isn't
compatible with python 3.6

* Remove lightning version pin

* Revert dependency version changes

* Minor change to retrigger the build

* Fix line endings in ml.py and model.py

Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
2022-12-06 15:46:08 -05:00

750 lines
24 KiB
Python

# !
# * Copyright (c) FLAML authors. All rights reserved.
# * Licensed under the MIT License. See LICENSE file in the
# * project root for license information.
import time
import numpy as np
import pandas as pd
from sklearn.metrics import (
mean_squared_error,
r2_score,
roc_auc_score,
accuracy_score,
mean_absolute_error,
log_loss,
average_precision_score,
f1_score,
mean_absolute_percentage_error,
ndcg_score,
)
from sklearn.model_selection import RepeatedStratifiedKFold, GroupKFold, TimeSeriesSplit
from flaml.automl.model import (
XGBoostSklearnEstimator,
XGBoost_TS,
XGBoostLimitDepthEstimator,
XGBoostLimitDepth_TS,
RandomForestEstimator,
RF_TS,
LGBMEstimator,
LGBM_TS,
LRL1Classifier,
LRL2Classifier,
CatBoostEstimator,
ExtraTreesEstimator,
ExtraTrees_TS,
KNeighborsEstimator,
Prophet,
ARIMA,
SARIMAX,
TransformersEstimator,
TemporalFusionTransformerEstimator,
TransformersEstimatorModelSelection,
)
from flaml.automl.data import CLASSIFICATION, group_counts, TS_FORECAST
import logging
logger = logging.getLogger(__name__)
sklearn_metric_name_set = {
"r2",
"rmse",
"mae",
"mse",
"accuracy",
"roc_auc",
"roc_auc_ovr",
"roc_auc_ovo",
"roc_auc_weighted",
"roc_auc_ovr_weighted",
"roc_auc_ovo_weighted",
"log_loss",
"mape",
"f1",
"ap",
"ndcg",
"micro_f1",
"macro_f1",
}
huggingface_metric_to_mode = {
"accuracy": "max",
"bertscore": "max",
"bleu": "max",
"bleurt": "max",
"cer": "min",
"chrf": "min",
"code_eval": "max",
"comet": "max",
"competition_math": "max",
"coval": "max",
"cuad": "max",
"f1": "max",
"gleu": "max",
"google_bleu": "max",
"matthews_correlation": "max",
"meteor": "max",
"pearsonr": "max",
"precision": "max",
"recall": "max",
"rouge": "max",
"sacrebleu": "max",
"sari": "max",
"seqeval": "max",
"spearmanr": "max",
"ter": "min",
"wer": "min",
}
huggingface_submetric_to_metric = {"rouge1": "rouge", "rouge2": "rouge"}
def get_estimator_class(task, estimator_name):
# when adding a new learner, need to add an elif branch
if "xgboost" == estimator_name:
estimator_class = XGBoost_TS if task in TS_FORECAST else XGBoostSklearnEstimator
elif "xgb_limitdepth" == estimator_name:
estimator_class = (
XGBoostLimitDepth_TS if task in TS_FORECAST else XGBoostLimitDepthEstimator
)
elif "rf" == estimator_name:
estimator_class = RF_TS if task in TS_FORECAST else RandomForestEstimator
elif "lgbm" == estimator_name:
estimator_class = LGBM_TS if task in TS_FORECAST else LGBMEstimator
elif "lrl1" == estimator_name:
estimator_class = LRL1Classifier
elif "lrl2" == estimator_name:
estimator_class = LRL2Classifier
elif "catboost" == estimator_name:
estimator_class = CatBoostEstimator
elif "extra_tree" == estimator_name:
estimator_class = ExtraTrees_TS if task in TS_FORECAST else ExtraTreesEstimator
elif "kneighbor" == estimator_name:
estimator_class = KNeighborsEstimator
elif "prophet" in estimator_name:
estimator_class = Prophet
elif estimator_name == "arima":
estimator_class = ARIMA
elif estimator_name == "sarimax":
estimator_class = SARIMAX
elif estimator_name == "transformer":
estimator_class = TransformersEstimator
elif estimator_name == "tft":
estimator_class = TemporalFusionTransformerEstimator
elif estimator_name == "transformer_ms":
estimator_class = TransformersEstimatorModelSelection
else:
raise ValueError(
estimator_name + " is not a built-in learner. "
"Please use AutoML.add_learner() to add a customized learner."
)
return estimator_class
def metric_loss_score(
metric_name,
y_processed_predict,
y_processed_true,
labels=None,
sample_weight=None,
groups=None,
):
# y_processed_predict and y_processed_true are processed id labels if the original were the token labels
if is_in_sklearn_metric_name_set(metric_name):
return sklearn_metric_loss_score(
metric_name,
y_processed_predict,
y_processed_true,
labels,
sample_weight,
groups,
)
else:
try:
import datasets
datasets_metric_name = huggingface_submetric_to_metric.get(
metric_name, metric_name.split(":")[0]
)
metric = datasets.load_metric(datasets_metric_name)
metric_mode = huggingface_metric_to_mode[datasets_metric_name]
if metric_name.startswith("seqeval"):
y_processed_true = [
[labels[tr] for tr in each_list] for each_list in y_processed_true
]
elif metric in ("pearsonr", "spearmanr"):
y_processed_true = (
y_processed_true.to_list()
if isinstance(y_processed_true, pd.Series)
else list(y_processed_true)
)
score_dict = metric.compute(
predictions=y_processed_predict, references=y_processed_true
)
if "rouge" in metric_name:
score = score_dict[metric_name].mid.fmeasure
elif metric_name.startswith("seqeval"):
metric_submetric_names = metric_name.split(":")
score = score_dict[
metric_submetric_names[1]
if len(metric_submetric_names) > 1
else "overall_accuracy"
]
else:
score = score_dict[metric_name]
except ImportError:
raise ValueError(
metric_name
+ " is not an built-in sklearn metric and nlp is not installed. "
"Currently built-in sklearn metrics are: "
"r2, rmse, mae, mse, accuracy, roc_auc, roc_auc_ovr, roc_auc_ovo,"
"log_loss, mape, f1, micro_f1, macro_f1, ap. "
"If the metric is an nlp metric, please pip install flaml[nlp] ",
"or pass a customized metric function to AutoML.fit(metric=func)",
)
# If the metric is not found from huggingface dataset metric list (i.e., FileNotFoundError)
# ask the user to provide a custom metric
except FileNotFoundError:
raise ValueError(
metric_name + " is neither an sklearn metric nor a huggingface metric. "
"Currently built-in sklearn metrics are: "
"r2, rmse, mae, mse, accuracy, roc_auc, roc_auc_ovr, roc_auc_ovo,"
"log_loss, mape, f1, micro_f1, macro_f1, ap. "
"Currently built-in huggingface metrics are: "
+ ", ".join(huggingface_metric_to_mode.keys())
+ ". Please pass a customized metric function to AutoML.fit(metric=func)"
)
if metric_mode == "max":
return 1 - score
else:
return score
def is_in_sklearn_metric_name_set(metric_name):
return metric_name.startswith("ndcg") or metric_name in sklearn_metric_name_set
def is_min_metric(metric_name):
return (
metric_name in ["rmse", "mae", "mse", "log_loss", "mape"]
or huggingface_metric_to_mode.get(metric_name, None) == "min"
)
def sklearn_metric_loss_score(
metric_name,
y_predict,
y_true,
labels=None,
sample_weight=None,
groups=None,
):
"""Loss using the specified metric.
Args:
metric_name: A string of the metric name, one of
'r2', 'rmse', 'mae', 'mse', 'accuracy', 'roc_auc', 'roc_auc_ovr',
'roc_auc_ovo', 'roc_auc_weighted', 'roc_auc_ovo_weighted', 'roc_auc_ovr_weighted',
'log_loss', 'mape', 'f1', 'ap', 'ndcg', 'micro_f1', 'macro_f1'.
y_predict: A 1d or 2d numpy array of the predictions which can be
used to calculate the metric. E.g., 2d for log_loss and 1d
for others.
y_true: A 1d numpy array of the true labels.
labels: A list or an array of the unique labels.
sample_weight: A 1d numpy array of the sample weight.
groups: A 1d numpy array of the group labels.
Returns:
score: A float number of the loss, the lower the better.
"""
metric_name = metric_name.lower()
if "r2" == metric_name:
score = 1.0 - r2_score(y_true, y_predict, sample_weight=sample_weight)
elif metric_name == "rmse":
score = np.sqrt(
mean_squared_error(y_true, y_predict, sample_weight=sample_weight)
)
elif metric_name == "mae":
score = mean_absolute_error(y_true, y_predict, sample_weight=sample_weight)
elif metric_name == "mse":
score = mean_squared_error(y_true, y_predict, sample_weight=sample_weight)
elif metric_name == "accuracy":
score = 1.0 - accuracy_score(y_true, y_predict, sample_weight=sample_weight)
elif metric_name == "roc_auc":
score = 1.0 - roc_auc_score(y_true, y_predict, sample_weight=sample_weight)
elif metric_name == "roc_auc_ovr":
score = 1.0 - roc_auc_score(
y_true, y_predict, sample_weight=sample_weight, multi_class="ovr"
)
elif metric_name == "roc_auc_ovo":
score = 1.0 - roc_auc_score(
y_true, y_predict, sample_weight=sample_weight, multi_class="ovo"
)
elif metric_name == "roc_auc_weighted":
score = 1.0 - roc_auc_score(
y_true, y_predict, sample_weight=sample_weight, average="weighted"
)
elif metric_name == "roc_auc_ovo_weighted":
score = 1.0 - roc_auc_score(
y_true,
y_predict,
sample_weight=sample_weight,
average="weighted",
multi_class="ovo",
)
elif metric_name == "roc_auc_ovr_weighted":
score = 1.0 - roc_auc_score(
y_true,
y_predict,
sample_weight=sample_weight,
average="weighted",
multi_class="ovr",
)
elif "log_loss" == metric_name:
score = log_loss(y_true, y_predict, labels=labels, sample_weight=sample_weight)
elif "mape" == metric_name:
try:
score = mean_absolute_percentage_error(y_true, y_predict)
except ValueError:
return np.inf
elif "micro_f1" == metric_name:
score = 1 - f1_score(
y_true, y_predict, sample_weight=sample_weight, average="micro"
)
elif "macro_f1" == metric_name:
score = 1 - f1_score(
y_true, y_predict, sample_weight=sample_weight, average="macro"
)
elif "f1" == metric_name:
score = 1 - f1_score(y_true, y_predict, sample_weight=sample_weight)
elif "ap" == metric_name:
score = 1 - average_precision_score(
y_true, y_predict, sample_weight=sample_weight
)
elif "ndcg" in metric_name:
if "@" in metric_name:
k = int(metric_name.split("@", 1)[-1])
counts = group_counts(groups)
score = 0
psum = 0
for c in counts:
score -= ndcg_score(
np.asarray([y_true[psum : psum + c]]),
np.asarray([y_predict[psum : psum + c]]),
k=k,
)
psum += c
score /= len(counts)
score += 1
else:
score = 1 - ndcg_score([y_true], [y_predict])
return score
def get_y_pred(estimator, X, eval_metric, obj):
if eval_metric in ["roc_auc", "ap", "roc_auc_weighted"] and "binary" in obj:
y_pred_classes = estimator.predict_proba(X)
y_pred = y_pred_classes[:, 1] if y_pred_classes.ndim > 1 else y_pred_classes
elif eval_metric in [
"log_loss",
"roc_auc",
"roc_auc_ovr",
"roc_auc_ovo",
"roc_auc_ovo_weighted",
"roc_auc_ovr_weighted",
]:
y_pred = estimator.predict_proba(X)
else:
y_pred = estimator.predict(X)
return y_pred
def _eval_estimator(
config,
estimator,
X_train,
y_train,
X_val,
y_val,
weight_val,
groups_val,
eval_metric,
obj,
labels=None,
log_training_metric=False,
fit_kwargs={},
):
if isinstance(eval_metric, str):
pred_start = time.time()
val_pred_y = get_y_pred(estimator, X_val, eval_metric, obj)
pred_time = (time.time() - pred_start) / X_val.shape[0]
val_loss = metric_loss_score(
eval_metric,
y_processed_predict=val_pred_y,
y_processed_true=y_val,
labels=labels,
sample_weight=weight_val,
groups=groups_val,
)
metric_for_logging = {"pred_time": pred_time}
if log_training_metric:
train_pred_y = get_y_pred(estimator, X_train, eval_metric, obj)
metric_for_logging["train_loss"] = metric_loss_score(
eval_metric,
train_pred_y,
y_train,
labels,
fit_kwargs.get("sample_weight"),
fit_kwargs.get("groups"),
)
else: # customized metric function
val_loss, metric_for_logging = eval_metric(
X_val,
y_val,
estimator,
labels,
X_train,
y_train,
weight_val,
fit_kwargs.get("sample_weight"),
config,
groups_val,
fit_kwargs.get("groups"),
)
pred_time = metric_for_logging.get("pred_time", 0)
val_pred_y = None
# eval_metric may return val_pred_y but not necessarily. Setting None for now.
return val_loss, metric_for_logging, pred_time, val_pred_y
def get_val_loss(
config,
estimator,
X_train,
y_train,
X_val,
y_val,
weight_val,
groups_val,
eval_metric,
obj,
labels=None,
budget=None,
log_training_metric=False,
fit_kwargs={},
free_mem_ratio=0,
):
start = time.time()
# if groups_val is not None:
# fit_kwargs['groups_val'] = groups_val
# fit_kwargs['X_val'] = X_val
# fit_kwargs['y_val'] = y_val
estimator.fit(X_train, y_train, budget, free_mem_ratio, **fit_kwargs)
val_loss, metric_for_logging, pred_time, _ = _eval_estimator(
config,
estimator,
X_train,
y_train,
X_val,
y_val,
weight_val,
groups_val,
eval_metric,
obj,
labels,
log_training_metric,
fit_kwargs,
)
if hasattr(estimator, "intermediate_results"):
metric_for_logging["intermediate_results"] = estimator.intermediate_results
train_time = time.time() - start
return val_loss, metric_for_logging, train_time, pred_time
def default_cv_score_agg_func(val_loss_folds, log_metrics_folds):
metric_to_minimize = sum(val_loss_folds) / len(val_loss_folds)
metrics_to_log = None
for single_fold in log_metrics_folds:
if metrics_to_log is None:
metrics_to_log = single_fold
elif isinstance(metrics_to_log, dict):
metrics_to_log = {k: metrics_to_log[k] + v for k, v in single_fold.items()}
else:
metrics_to_log += single_fold
if metrics_to_log:
n = len(val_loss_folds)
metrics_to_log = (
{k: v / n for k, v in metrics_to_log.items()}
if isinstance(metrics_to_log, dict)
else metrics_to_log / n
)
return metric_to_minimize, metrics_to_log
def evaluate_model_CV(
config,
estimator,
X_train_all,
y_train_all,
budget,
kf,
task,
eval_metric,
best_val_loss,
cv_score_agg_func=None,
log_training_metric=False,
fit_kwargs={},
free_mem_ratio=0,
):
if cv_score_agg_func is None:
cv_score_agg_func = default_cv_score_agg_func
start_time = time.time()
val_loss_folds = []
log_metric_folds = []
metric = None
train_time = pred_time = 0
total_fold_num = 0
n = kf.get_n_splits()
X_train_split, y_train_split = X_train_all, y_train_all
if task in CLASSIFICATION:
labels = np.unique(y_train_all)
else:
labels = fit_kwargs.get(
"label_list"
) # pass the label list on to compute the evaluation metric
groups = None
shuffle = getattr(kf, "shuffle", task not in TS_FORECAST)
if isinstance(kf, RepeatedStratifiedKFold):
kf = kf.split(X_train_split, y_train_split)
elif isinstance(kf, GroupKFold):
groups = kf.groups
kf = kf.split(X_train_split, y_train_split, groups)
shuffle = False
elif isinstance(kf, TimeSeriesSplit):
kf = kf.split(X_train_split, y_train_split)
else:
kf = kf.split(X_train_split)
rng = np.random.RandomState(2020)
budget_per_train = budget and budget / n
if "sample_weight" in fit_kwargs:
weight = fit_kwargs["sample_weight"]
weight_val = None
else:
weight = weight_val = None
for train_index, val_index in kf:
if shuffle:
train_index = rng.permutation(train_index)
if isinstance(X_train_all, pd.DataFrame):
X_train = X_train_split.iloc[train_index]
X_val = X_train_split.iloc[val_index]
else:
X_train, X_val = X_train_split[train_index], X_train_split[val_index]
y_train, y_val = y_train_split[train_index], y_train_split[val_index]
estimator.cleanup()
if weight is not None:
fit_kwargs["sample_weight"], weight_val = (
weight[train_index],
weight[val_index],
)
if groups is not None:
fit_kwargs["groups"] = groups[train_index]
groups_val = groups[val_index]
else:
groups_val = None
val_loss_i, metric_i, train_time_i, pred_time_i = get_val_loss(
config,
estimator,
X_train,
y_train,
X_val,
y_val,
weight_val,
groups_val,
eval_metric,
task,
labels,
budget_per_train,
log_training_metric=log_training_metric,
fit_kwargs=fit_kwargs,
free_mem_ratio=free_mem_ratio,
)
if isinstance(metric_i, dict) and "intermediate_results" in metric_i.keys():
del metric_i["intermediate_results"]
if weight is not None:
fit_kwargs["sample_weight"] = weight
total_fold_num += 1
val_loss_folds.append(val_loss_i)
log_metric_folds.append(metric_i)
train_time += train_time_i
pred_time += pred_time_i
if budget and time.time() - start_time >= budget:
break
val_loss, metric = cv_score_agg_func(val_loss_folds, log_metric_folds)
n = total_fold_num
pred_time /= n
return val_loss, metric, train_time, pred_time
def compute_estimator(
X_train,
y_train,
X_val,
y_val,
weight_val,
groups_val,
budget,
kf,
config_dic,
task,
estimator_name,
eval_method,
eval_metric,
best_val_loss=np.Inf,
n_jobs=1,
estimator_class=None,
cv_score_agg_func=None,
log_training_metric=False,
fit_kwargs={},
free_mem_ratio=0,
):
estimator_class = estimator_class or get_estimator_class(task, estimator_name)
estimator = estimator_class(
**config_dic,
task=task,
n_jobs=n_jobs,
)
if isinstance(estimator, TransformersEstimator):
# TODO: move the partial function to nlp
fit_kwargs["metric"] = eval_metric
fit_kwargs["X_val"] = X_val
fit_kwargs["y_val"] = y_val
if "holdout" == eval_method:
val_loss, metric_for_logging, train_time, pred_time = get_val_loss(
config_dic,
estimator,
X_train,
y_train,
X_val,
y_val,
weight_val,
groups_val,
eval_metric,
task,
labels=fit_kwargs.get(
"label_list"
), # pass the label list on to compute the evaluation metric
budget=budget,
log_training_metric=log_training_metric,
fit_kwargs=fit_kwargs,
free_mem_ratio=0,
)
else:
val_loss, metric_for_logging, train_time, pred_time = evaluate_model_CV(
config_dic,
estimator,
X_train,
y_train,
budget,
kf,
task,
eval_metric,
best_val_loss,
cv_score_agg_func,
log_training_metric=log_training_metric,
fit_kwargs=fit_kwargs,
free_mem_ratio=0,
)
if isinstance(estimator, TransformersEstimator):
del fit_kwargs["metric"], fit_kwargs["X_val"], fit_kwargs["y_val"]
return estimator, val_loss, metric_for_logging, train_time, pred_time
def train_estimator(
config_dic,
X_train,
y_train,
task,
estimator_name,
n_jobs=1,
estimator_class=None,
budget=None,
fit_kwargs={},
eval_metric=None,
free_mem_ratio=0,
):
start_time = time.time()
estimator_class = estimator_class or get_estimator_class(task, estimator_name)
estimator = estimator_class(
**config_dic,
task=task,
n_jobs=n_jobs,
)
if isinstance(estimator, TransformersEstimator):
fit_kwargs["metric"] = eval_metric
if X_train is not None:
train_time = estimator.fit(
X_train, y_train, budget, free_mem_ratio, **fit_kwargs
)
else:
estimator = estimator.estimator_class(**estimator.params)
train_time = time.time() - start_time
return estimator, train_time
def get_classification_objective(num_labels: int) -> str:
if num_labels == 2:
objective_name = "binary"
else:
objective_name = "multiclass"
return objective_name
def norm_confusion_matrix(y_true, y_pred):
"""normalized confusion matrix.
Args:
estimator: A multi-class classification estimator.
y_true: A numpy array or a pandas series of true labels.
y_pred: A numpy array or a pandas series of predicted labels.
Returns:
A normalized confusion matrix.
"""
from sklearn.metrics import confusion_matrix
conf_mat = confusion_matrix(y_true, y_pred)
norm_conf_mat = conf_mat.astype("float") / conf_mat.sum(axis=1)[:, np.newaxis]
return norm_conf_mat
def multi_class_curves(y_true, y_pred_proba, curve_func):
"""Binarize the data for multi-class tasks and produce ROC or precision-recall curves.
Args:
y_true: A numpy array or a pandas series of true labels.
y_pred_proba: A numpy array or a pandas dataframe of predicted probabilites.
curve_func: A function to produce a curve (e.g., roc_curve or precision_recall_curve).
Returns:
A tuple of two dictionaries with the same set of keys (class indices).
The first dictionary curve_x stores the x coordinates of each curve, e.g.,
curve_x[0] is an 1D array of the x coordinates of class 0.
The second dictionary curve_y stores the y coordinates of each curve, e.g.,
curve_y[0] is an 1D array of the y coordinates of class 0.
"""
from sklearn.preprocessing import label_binarize
classes = np.unique(y_true)
y_true_binary = label_binarize(y_true, classes=classes)
curve_x, curve_y = {}, {}
for i in range(len(classes)):
curve_x[i], curve_y[i], _ = curve_func(y_true_binary[:, i], y_pred_proba[:, i])
return curve_x, curve_y