mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-13 10:16:06 +00:00

* Refactor into automl subpackage Moved some of the packages into an automl subpackage to tidy before the task-based refactor. This is in response to discussions with the group and a comment on the first task-based PR. Only changes here are moving subpackages and modules into the new automl, fixing imports to work with this structure and fixing some dependencies in setup.py. * Fix doc building post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Remove vw from test deps as this is breaking the build * Move default back to the top-level I'd moved this to automl as that's where it's used internally, but had missed that this is actually part of the public interface so makes sense to live where it was. * Re-add top level modules with deprecation warnings flaml.data, flaml.ml and flaml.model are re-added to the top level, being re-exported from flaml.automl for backwards compatability. Adding a deprecation warning so that we can have a planned removal later. * Fix model.py line-endings * Pin pytorch-lightning to less than 1.8.0 We're seeing strange lightning related bugs from pytorch-forecasting since the release of lightning 1.8.0. Going to try constraining this to see if we have a fix. * Fix the lightning version pin Was optimistic with setting it in the 1.7.x range, but that isn't compatible with python 3.6 * Remove lightning version pin * Revert dependency version changes * Minor change to retrigger the build * Fix line endings in ml.py and model.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
151 lines
5.6 KiB
Python
151 lines
5.6 KiB
Python
import argparse
|
|
from dataclasses import dataclass, field
|
|
|
|
from flaml.automl.data import (
|
|
NLG_TASKS,
|
|
)
|
|
from typing import Optional, List
|
|
|
|
try:
|
|
from transformers import TrainingArguments
|
|
except ImportError:
|
|
TrainingArguments = object
|
|
|
|
|
|
@dataclass
|
|
class TrainingArgumentsForAuto(TrainingArguments):
|
|
"""FLAML custom TrainingArguments.
|
|
|
|
Args:
|
|
task (str): the task name for NLP tasks, e.g., seq-classification, token-classification
|
|
output_dir (str): data root directory for outputing the log, etc.
|
|
model_path (str, optional, defaults to "facebook/muppet-roberta-base"): A string,
|
|
the path of the language model file, either a path from huggingface
|
|
model card huggingface.co/models, or a local path for the model.
|
|
fp16 (bool, optional, defaults to "False"): A bool, whether to use FP16.
|
|
max_seq_length (int, optional, defaults to 128): An integer, the max length of the sequence.
|
|
For token classification task, this argument will be ineffective.
|
|
pad_to_max_length (bool, optional, defaults to "False"):
|
|
whether to pad all samples to model maximum sentence length.
|
|
If False, will pad the samples dynamically when batching to the maximum length in the batch.
|
|
per_device_eval_batch_size (int, optional, defaults to 1): An integer, the per gpu evaluation batch size.
|
|
label_list (List[str], optional, defaults to None): A list of string, the string list of the label names.
|
|
When the task is sequence labeling/token classification, there are two formats of the labels:
|
|
(1) The token labels, i.e., [B-PER, I-PER, B-LOC]; (2) Id labels. For (2), need to pass the label_list (e.g., [B-PER, I-PER, B-LOC])
|
|
to convert the Id to token labels when computing the metric with metric_loss_score.
|
|
See the example in [a simple token classification example](../../../../Examples/AutoML-NLP#a-simple-token-classification-example).
|
|
"""
|
|
|
|
task: str = field(default="seq-classification")
|
|
|
|
output_dir: str = field(default="data/output/", metadata={"help": "data dir"})
|
|
|
|
model_path: str = field(
|
|
default="facebook/muppet-roberta-base",
|
|
metadata={
|
|
"help": "model path for HPO natural language understanding tasks, default is set to facebook/muppet-roberta-base"
|
|
},
|
|
)
|
|
|
|
fp16: bool = field(default=True, metadata={"help": "whether to use the FP16 mode"})
|
|
|
|
max_seq_length: int = field(default=128, metadata={"help": "max seq length"})
|
|
|
|
label_all_tokens: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "For NER task, whether to set the extra tokenized labels to the same label (instead of -100)"
|
|
},
|
|
)
|
|
|
|
pad_to_max_length: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Whether to pad all samples to model maximum sentence length. "
|
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch. "
|
|
},
|
|
)
|
|
|
|
per_device_eval_batch_size: int = field(
|
|
default=1,
|
|
metadata={"help": "per gpu evaluation batch size"},
|
|
)
|
|
|
|
label_list: Optional[List[str]] = field(
|
|
default=None, metadata={"help": "The string list of the label names. "}
|
|
)
|
|
|
|
eval_steps: int = field(
|
|
default=500, metadata={"help": "Run an evaluation every X steps."}
|
|
)
|
|
|
|
save_steps: int = field(
|
|
default=500, metadata={"help": "Save checkpoint every X updates steps."}
|
|
)
|
|
|
|
logging_steps: int = field(
|
|
default=500, metadata={"help": "Log every X updates steps."}
|
|
)
|
|
|
|
@staticmethod
|
|
def load_args_from_console():
|
|
from dataclasses import fields
|
|
|
|
arg_parser = argparse.ArgumentParser()
|
|
for each_field in fields(TrainingArgumentsForAuto):
|
|
print(each_field)
|
|
arg_parser.add_argument(
|
|
"--" + each_field.name,
|
|
type=each_field.type,
|
|
help=each_field.metadata["help"],
|
|
required=each_field.metadata["required"]
|
|
if "required" in each_field.metadata
|
|
else False,
|
|
choices=each_field.metadata["choices"]
|
|
if "choices" in each_field.metadata
|
|
else None,
|
|
default=each_field.default,
|
|
)
|
|
console_args, unknown = arg_parser.parse_known_args()
|
|
return console_args
|
|
|
|
|
|
@dataclass
|
|
class Seq2SeqTrainingArgumentsForAuto(TrainingArgumentsForAuto):
|
|
|
|
model_path: str = field(
|
|
default="t5-small",
|
|
metadata={
|
|
"help": "model path for HPO natural language generation tasks, default is set to t5-small"
|
|
},
|
|
)
|
|
|
|
sortish_sampler: bool = field(
|
|
default=False, metadata={"help": "Whether to use SortishSampler or not."}
|
|
)
|
|
predict_with_generate: bool = field(
|
|
default=True,
|
|
metadata={
|
|
"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."
|
|
},
|
|
)
|
|
generation_max_length: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default "
|
|
"to the `max_length` value of the model configuration."
|
|
},
|
|
)
|
|
generation_num_beams: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default "
|
|
"to the `num_beams` value of the model configuration."
|
|
},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
super().__post_init__()
|
|
if self.task in NLG_TASKS:
|
|
self.model_path = "t5-small"
|