mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-15 19:23:36 +00:00

* Refactor into automl subpackage Moved some of the packages into an automl subpackage to tidy before the task-based refactor. This is in response to discussions with the group and a comment on the first task-based PR. Only changes here are moving subpackages and modules into the new automl, fixing imports to work with this structure and fixing some dependencies in setup.py. * Fix doc building post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Remove vw from test deps as this is breaking the build * Move default back to the top-level I'd moved this to automl as that's where it's used internally, but had missed that this is actually part of the public interface so makes sense to live where it was. * Re-add top level modules with deprecation warnings flaml.data, flaml.ml and flaml.model are re-added to the top level, being re-exported from flaml.automl for backwards compatability. Adding a deprecation warning so that we can have a planned removal later. * Fix model.py line-endings * Pin pytorch-lightning to less than 1.8.0 We're seeing strange lightning related bugs from pytorch-forecasting since the release of lightning 1.8.0. Going to try constraining this to see if we have a fix. * Fix the lightning version pin Was optimistic with setting it in the 1.7.x range, but that isn't compatible with python 3.6 * Remove lightning version pin * Revert dependency version changes * Minor change to retrigger the build * Fix line endings in ml.py and model.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
452 lines
16 KiB
Python
452 lines
16 KiB
Python
import pandas as pd
|
|
from itertools import chain
|
|
import numpy as np
|
|
|
|
from flaml.automl.data import (
|
|
SUMMARIZATION,
|
|
SEQREGRESSION,
|
|
SEQCLASSIFICATION,
|
|
MULTICHOICECLASSIFICATION,
|
|
TOKENCLASSIFICATION,
|
|
NLG_TASKS,
|
|
)
|
|
|
|
|
|
def todf(X, Y, column_name):
|
|
"""
|
|
todf converts Y from any format (list, pandas.Series, numpy array) to a DataFrame before being returned
|
|
"""
|
|
if Y is not None:
|
|
Y = pd.DataFrame(Y, index=X.index)
|
|
Y.columns = column_name
|
|
return Y
|
|
|
|
|
|
def tokenize_text(X, Y=None, task=None, hf_args=None, tokenizer=None):
|
|
label_col_name = None
|
|
# label_col_name is the name of the label column Y, label_col_name = ['labels'] for TOKENCLASSIFICATION and SUMMARIZATION,
|
|
# label_col_name = ['label'] for other tasks. todf is used by all tasks except for SUMMARIZATION,
|
|
# because the outputs of tokenize_seq2seq are already two DataFrames so no conversion needed.
|
|
if task in (SEQCLASSIFICATION, SEQREGRESSION):
|
|
X_tokenized = tokenize_onedataframe(
|
|
X,
|
|
tokenizer=tokenizer,
|
|
task=task,
|
|
hf_args=hf_args,
|
|
prefix_str="",
|
|
)
|
|
Y_tokenized = Y
|
|
label_col_name = ["label"]
|
|
elif task == TOKENCLASSIFICATION:
|
|
X_tokenized, Y_tokenized = tokenize_text_tokclassification(
|
|
X, Y, tokenizer=tokenizer, hf_args=hf_args
|
|
)
|
|
label_col_name = ["labels"]
|
|
elif task in NLG_TASKS:
|
|
return tokenize_seq2seq(X, Y, tokenizer=tokenizer, task=task, hf_args=hf_args)
|
|
elif task == MULTICHOICECLASSIFICATION:
|
|
X_tokenized = tokenize_text_multiplechoice(
|
|
X, tokenizer=tokenizer, hf_args=hf_args
|
|
)
|
|
label_col_name = ["label"]
|
|
Y_tokenized = Y
|
|
Y_tokenized = todf(X_tokenized, Y_tokenized, label_col_name)
|
|
return X_tokenized, Y_tokenized
|
|
|
|
|
|
def tokenize_seq2seq(X, Y, tokenizer, task=None, hf_args=None):
|
|
model_inputs = tokenize_onedataframe(
|
|
X,
|
|
tokenizer=tokenizer,
|
|
task=task,
|
|
hf_args=hf_args,
|
|
prefix_str="summarize: ",
|
|
)
|
|
model_outputs = None
|
|
if Y is not None:
|
|
model_outputs = tokenize_onedataframe(
|
|
Y.to_frame(),
|
|
tokenizer=tokenizer,
|
|
task=task,
|
|
hf_args=hf_args,
|
|
prefix_str="",
|
|
)
|
|
model_outputs["labels"] = [
|
|
[(each_l if each_l != tokenizer.pad_token_id else -100) for each_l in label]
|
|
for label in model_outputs["input_ids"]
|
|
]
|
|
model_outputs = model_outputs.drop(
|
|
columns=["attention_mask", "input_ids", "decoder_input_ids"]
|
|
)
|
|
return model_inputs, model_outputs
|
|
|
|
|
|
def tokenize_and_align_labels(
|
|
examples,
|
|
tokenizer,
|
|
label_to_id,
|
|
b_to_i_label,
|
|
hf_args=None,
|
|
X_sent_key=None,
|
|
Y_sent_key=None,
|
|
return_column_name=False,
|
|
):
|
|
# tokenize_and_align_labels is only called by the token-classification task
|
|
tokenized_inputs = tokenizer(
|
|
[list(examples[X_sent_key])],
|
|
padding="max_length"
|
|
if hf_args and hf_args.pad_to_max_length
|
|
else False, # to be consistent with https://github.com/huggingface/transformers/blob/main/examples/pytorch/token-classification/run_ner.py#L394
|
|
truncation=True,
|
|
max_length=hf_args.max_seq_length if hf_args else None,
|
|
# We use this argument because the texts in our dataset are lists of words (with a label for each word).
|
|
is_split_into_words=True,
|
|
)
|
|
if Y_sent_key is not None:
|
|
previous_word_idx = None
|
|
label_ids = []
|
|
for word_idx in tokenized_inputs.word_ids(batch_index=0):
|
|
if word_idx is None:
|
|
label_ids.append(-100)
|
|
elif word_idx != previous_word_idx:
|
|
label_ids.append(label_to_id[examples[Y_sent_key][word_idx]])
|
|
# For the other tokens in a word, we set the label to either the current label or -100, depending on
|
|
# the label_all_tokens flag.
|
|
else:
|
|
# Use the label_all_tokens to control whether to copy the label to all subtokens or to pad the additional tokens as -100
|
|
if hf_args.label_all_tokens:
|
|
# If the B- word is converted into multiple subtokens, map the additional subtokens to I-
|
|
label_ids.append(
|
|
b_to_i_label[label_to_id[examples[Y_sent_key][word_idx]]]
|
|
)
|
|
else:
|
|
label_ids.append(-100)
|
|
previous_word_idx = word_idx
|
|
tokenized_inputs["labels"] = label_ids
|
|
tmp_column_names = sorted(tokenized_inputs.keys())
|
|
tokenized_input_and_labels = [tokenized_inputs[x] for x in tmp_column_names]
|
|
for key_idx, each_key in enumerate(tmp_column_names):
|
|
if each_key != "labels":
|
|
tokenized_input_and_labels[key_idx] = tokenized_input_and_labels[key_idx][0]
|
|
if return_column_name:
|
|
return tokenized_input_and_labels, tmp_column_names
|
|
else:
|
|
return tokenized_input_and_labels
|
|
|
|
|
|
def tokenize_text_tokclassification(X, Y, tokenizer, hf_args=None):
|
|
|
|
# If the label_all_tokens flag is True, prepare two dicts label_to_id and b_to_i_label to convert the B- labels to I- labels
|
|
label_to_id = {i: i for i in range(len(hf_args.label_list))}
|
|
b_to_i_label = []
|
|
for idx, label in enumerate(hf_args.label_list):
|
|
if label.startswith("B-") and label.replace("B-", "I-") in hf_args.label_list:
|
|
b_to_i_label.append(hf_args.label_list.index(label.replace("B-", "I-")))
|
|
else:
|
|
b_to_i_label.append(idx)
|
|
|
|
if Y is not None:
|
|
X_and_Y = pd.concat([X, Y.to_frame()], axis=1)
|
|
X_key = list(X.keys())[0]
|
|
Y_key = list(Y.to_frame().keys())[0]
|
|
# tokenize_and_align_labels is only called by the token-classification task
|
|
_, tokenized_column_names = tokenize_and_align_labels(
|
|
X_and_Y.iloc[0],
|
|
tokenizer=tokenizer,
|
|
hf_args=hf_args,
|
|
X_sent_key=X_key,
|
|
Y_sent_key=Y_key,
|
|
return_column_name=True,
|
|
label_to_id=label_to_id,
|
|
b_to_i_label=b_to_i_label,
|
|
)
|
|
X_and_Y_tokenized = X_and_Y.apply(
|
|
lambda x: tokenize_and_align_labels(
|
|
x,
|
|
tokenizer=tokenizer,
|
|
hf_args=hf_args,
|
|
X_sent_key=X_key,
|
|
Y_sent_key=Y_key,
|
|
label_to_id=label_to_id,
|
|
b_to_i_label=b_to_i_label,
|
|
),
|
|
axis=1,
|
|
result_type="expand",
|
|
)
|
|
label_idx = tokenized_column_names.index("labels")
|
|
other_indices = sorted(
|
|
set(range(len(tokenized_column_names))).difference({label_idx})
|
|
)
|
|
other_column_names = [tokenized_column_names[x] for x in other_indices]
|
|
d = X_and_Y_tokenized.iloc[:, other_indices]
|
|
y_tokenized = X_and_Y_tokenized.iloc[:, label_idx]
|
|
else:
|
|
X_key = list(X.keys())[0]
|
|
|
|
_, tokenized_column_names = tokenize_and_align_labels(
|
|
X.iloc[0],
|
|
tokenizer=tokenizer,
|
|
hf_args=hf_args,
|
|
X_sent_key=X_key,
|
|
Y_sent_key=None,
|
|
return_column_name=True,
|
|
label_to_id=label_to_id,
|
|
b_to_i_label=b_to_i_label,
|
|
)
|
|
|
|
d = X.apply(
|
|
lambda x: tokenize_and_align_labels(
|
|
x,
|
|
tokenizer=tokenizer,
|
|
hf_args=hf_args,
|
|
X_sent_key=X_key,
|
|
Y_sent_key=None,
|
|
label_to_id=label_to_id,
|
|
b_to_i_label=b_to_i_label,
|
|
),
|
|
axis=1,
|
|
result_type="expand",
|
|
)
|
|
other_column_names = tokenized_column_names
|
|
y_tokenized = None
|
|
X_tokenized = pd.DataFrame(columns=other_column_names)
|
|
X_tokenized[other_column_names] = d
|
|
return X_tokenized, y_tokenized
|
|
|
|
|
|
def tokenize_onedataframe(
|
|
X,
|
|
tokenizer,
|
|
task=None,
|
|
hf_args=None,
|
|
prefix_str=None,
|
|
):
|
|
with tokenizer.as_target_tokenizer():
|
|
_, tokenized_column_names = tokenize_row(
|
|
dict(X.iloc[0]),
|
|
tokenizer,
|
|
prefix=(prefix_str,) if task is SUMMARIZATION else None,
|
|
task=task,
|
|
hf_args=hf_args,
|
|
return_column_name=True,
|
|
)
|
|
d = X.apply(
|
|
lambda x: tokenize_row(
|
|
x,
|
|
tokenizer,
|
|
prefix=(prefix_str,) if task is SUMMARIZATION else None,
|
|
task=task,
|
|
hf_args=hf_args,
|
|
),
|
|
axis=1,
|
|
result_type="expand",
|
|
)
|
|
X_tokenized = pd.DataFrame(columns=tokenized_column_names)
|
|
X_tokenized[tokenized_column_names] = d
|
|
return X_tokenized
|
|
|
|
|
|
def tokenize_row(
|
|
this_row,
|
|
tokenizer,
|
|
prefix=None,
|
|
task=None,
|
|
hf_args=None,
|
|
return_column_name=False,
|
|
):
|
|
if prefix:
|
|
this_row = tuple(["".join(x) for x in zip(prefix, this_row)])
|
|
|
|
# tokenizer.pad_token = tokenizer.eos_token
|
|
tokenized_example = tokenizer(
|
|
*tuple(this_row),
|
|
padding="max_length" if hf_args and hf_args.pad_to_max_length else False,
|
|
max_length=hf_args.max_seq_length if hf_args else None,
|
|
truncation=True,
|
|
)
|
|
if task in NLG_TASKS:
|
|
tokenized_example["decoder_input_ids"] = tokenized_example["input_ids"]
|
|
tmp_column_names = sorted(tokenized_example.keys())
|
|
|
|
if return_column_name:
|
|
return [tokenized_example[x] for x in tmp_column_names], tmp_column_names
|
|
else:
|
|
return [tokenized_example[x] for x in tmp_column_names]
|
|
|
|
|
|
def tokenize_text_multiplechoice(X, tokenizer, hf_args=None):
|
|
|
|
t = X[["sent1", "sent2", "ending0", "ending1", "ending2", "ending3"]]
|
|
_, tokenized_column_names = tokenize_swag(
|
|
t.iloc[0],
|
|
tokenizer=tokenizer,
|
|
hf_args=hf_args,
|
|
return_column_name=True,
|
|
)
|
|
d = t.apply(
|
|
lambda x: tokenize_swag(x, tokenizer=tokenizer, hf_args=hf_args),
|
|
axis=1,
|
|
result_type="expand",
|
|
)
|
|
|
|
X_tokenized = pd.DataFrame(columns=tokenized_column_names)
|
|
X_tokenized[tokenized_column_names] = d
|
|
output = X_tokenized.join(X)
|
|
return output
|
|
|
|
|
|
def tokenize_swag(this_row, tokenizer, hf_args=None, return_column_name=False):
|
|
first_sentences = [[this_row["sent1"]] * 4]
|
|
# get each 1st sentence, multiply to 4 sentences
|
|
question_headers = this_row["sent2"]
|
|
# sent2 are the noun part of 2nd line
|
|
second_sentences = [
|
|
question_headers + " " + this_row[key]
|
|
for key in ["ending0", "ending1", "ending2", "ending3"]
|
|
]
|
|
# now the 2nd-sentences are formed by combing the noun part and 4 ending parts
|
|
|
|
# Flatten out
|
|
# From 2 dimension to 1 dimension array
|
|
first_sentences = list(chain(*first_sentences))
|
|
|
|
tokenized_example = tokenizer(
|
|
*tuple([first_sentences, second_sentences]),
|
|
truncation=True,
|
|
max_length=hf_args.max_seq_length if hf_args else None,
|
|
padding="max_length" if hf_args and hf_args.pad_to_max_length else False,
|
|
)
|
|
tmp_column_names = sorted(tokenized_example.keys())
|
|
|
|
if return_column_name:
|
|
return [tokenized_example[x] for x in tmp_column_names], tmp_column_names
|
|
else:
|
|
return [tokenized_example[x] for x in tmp_column_names]
|
|
|
|
|
|
def postprocess_prediction_and_true(
|
|
task, y_pred, tokenizer, hf_args, y_true=None, X=None
|
|
):
|
|
# postprocess the matrix prediction y_pred and ground truth y_true into user readable format, e.g., for summarization, decode into text
|
|
if task == SEQCLASSIFICATION:
|
|
return np.argmax(y_pred, axis=1), y_true
|
|
elif task == SEQREGRESSION:
|
|
return np.squeeze(y_pred), y_true # predictions.reshape((len(predictions),))
|
|
elif task == TOKENCLASSIFICATION:
|
|
assert (y_true is not None) or (
|
|
X is not None
|
|
), "One of y_true and X must not be None"
|
|
## If y_true is not None, we use y_true to remove the -100 in the prediction (postprocessing), and return the postprocessed y_true and prediction
|
|
# If y_true is None, we use X to compute y_is_pad (i.e., whether y_true is -100 in that position), and use y_is_pad to remove the -100 in the prediction, and return the postprocessed prediction (not the y_true)
|
|
y_predict = pd.Series(np.argmax(y_pred, axis=2).tolist())
|
|
if y_true is None:
|
|
_, y_is_pad_df = tokenize_text(
|
|
X,
|
|
y_predict,
|
|
task=task,
|
|
hf_args=hf_args,
|
|
tokenizer=tokenizer,
|
|
)
|
|
y_is_pad = y_is_pad_df.iloc[:, 0]
|
|
else:
|
|
y_is_pad = y_true
|
|
label_len = len(hf_args.label_list)
|
|
zip_pred_ispad = [
|
|
[(p, ispd) for (p, ispd) in zip(each_pred, each_is_pad) if ispd != -100]
|
|
for (each_pred, each_is_pad) in zip(y_predict, y_is_pad)
|
|
]
|
|
y_pred_label = [
|
|
[
|
|
hf_args.label_list[p] if 0 <= p < label_len else -1
|
|
for (p, ispd) in each_list
|
|
]
|
|
for each_list in zip_pred_ispad
|
|
] # To compute precision and recall, y_pred and y_true must be converted to string labels
|
|
# (B-PER, I-PER, etc.), so that the category-based precision/recall (i.e., PER, LOC, etc.) scores can be computed
|
|
if y_true is not None:
|
|
y_true_label = [
|
|
[tr for (p, tr) in each_list] for each_list in zip_pred_ispad
|
|
]
|
|
else:
|
|
y_true_label = None
|
|
return y_pred_label, y_true_label
|
|
elif task == SUMMARIZATION:
|
|
if isinstance(y_pred, tuple):
|
|
y_pred = np.argmax(y_pred[0], axis=2)
|
|
decoded_preds = tokenizer.batch_decode(y_pred, skip_special_tokens=True)
|
|
|
|
import nltk
|
|
|
|
nltk.download("punkt")
|
|
decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
decoded_preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in decoded_preds]
|
|
|
|
if y_true is not None:
|
|
y_true_labels = np.where(y_true != -100, y_true, tokenizer.pad_token_id)
|
|
decoded_y_true_labels = tokenizer.batch_decode(
|
|
y_true_labels, skip_special_tokens=True
|
|
)
|
|
decoded_y_true_labels = [label.strip() for label in decoded_y_true_labels]
|
|
decoded_y_true_labels = [
|
|
"\n".join(nltk.sent_tokenize(label)) for label in decoded_y_true_labels
|
|
]
|
|
else:
|
|
decoded_y_true_labels = None
|
|
|
|
return decoded_preds, decoded_y_true_labels
|
|
elif task == MULTICHOICECLASSIFICATION:
|
|
return np.argmax(y_pred, axis=1), y_true
|
|
|
|
|
|
def load_model(checkpoint_path, task, num_labels=None):
|
|
import transformers
|
|
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
from transformers import AutoConfig
|
|
from ...data import SEQCLASSIFICATION, SEQREGRESSION, TOKENCLASSIFICATION
|
|
|
|
def get_this_model(checkpoint_path, task, model_config):
|
|
from transformers import AutoModelForSequenceClassification
|
|
from transformers import AutoModelForSeq2SeqLM
|
|
from transformers import AutoModelForMultipleChoice
|
|
from transformers import AutoModelForTokenClassification
|
|
|
|
if task in (SEQCLASSIFICATION, SEQREGRESSION):
|
|
return AutoModelForSequenceClassification.from_pretrained(
|
|
checkpoint_path, config=model_config, ignore_mismatched_sizes=True
|
|
)
|
|
elif task == TOKENCLASSIFICATION:
|
|
return AutoModelForTokenClassification.from_pretrained(
|
|
checkpoint_path, config=model_config
|
|
)
|
|
elif task in NLG_TASKS:
|
|
return AutoModelForSeq2SeqLM.from_pretrained(
|
|
checkpoint_path, config=model_config
|
|
)
|
|
elif task == MULTICHOICECLASSIFICATION:
|
|
return AutoModelForMultipleChoice.from_pretrained(
|
|
checkpoint_path, config=model_config
|
|
)
|
|
|
|
def _set_model_config(checkpoint_path):
|
|
if task in (SEQCLASSIFICATION, SEQREGRESSION, TOKENCLASSIFICATION):
|
|
model_config = AutoConfig.from_pretrained(
|
|
checkpoint_path,
|
|
num_labels=model_config_num_labels,
|
|
)
|
|
return model_config
|
|
else:
|
|
model_config = AutoConfig.from_pretrained(checkpoint_path)
|
|
return model_config
|
|
|
|
current_config = AutoConfig.from_pretrained(checkpoint_path)
|
|
this_vocab_size = current_config.vocab_size
|
|
|
|
model_config_num_labels = num_labels
|
|
new_config = _set_model_config(checkpoint_path)
|
|
|
|
this_model = get_this_model(checkpoint_path, task, new_config)
|
|
this_model.resize_token_embeddings(this_vocab_size)
|
|
return this_model
|