autogen/test/automl/test_forecast.py
Mark Harley 44ddf9e104
Refactor into automl subpackage (#809)
* Refactor into automl subpackage

Moved some of the packages into an automl subpackage to tidy before the
task-based refactor. This is in response to discussions with the group
and a comment on the first task-based PR.

Only changes here are moving subpackages and modules into the new
automl, fixing imports to work with this structure and fixing some
dependencies in setup.py.

* Fix doc building post automl subpackage refactor

* Fix broken links in website post automl subpackage refactor

* Fix broken links in website post automl subpackage refactor

* Remove vw from test deps as this is breaking the build

* Move default back to the top-level

I'd moved this to automl as that's where it's used internally, but had
missed that this is actually part of the public interface so makes sense
to live where it was.

* Re-add top level modules with deprecation warnings

flaml.data, flaml.ml and flaml.model are re-added to the top level,
being re-exported from flaml.automl for backwards compatability. Adding
a deprecation warning so that we can have a planned removal later.

* Fix model.py line-endings

* Pin pytorch-lightning to less than 1.8.0

We're seeing strange lightning related bugs from pytorch-forecasting
since the release of lightning 1.8.0. Going to try constraining this to
see if we have a fix.

* Fix the lightning version pin

Was optimistic with setting it in the 1.7.x range, but that isn't
compatible with python 3.6

* Remove lightning version pin

* Revert dependency version changes

* Minor change to retrigger the build

* Fix line endings in ml.py and model.py

Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
2022-12-06 15:46:08 -05:00

601 lines
20 KiB
Python

import numpy as np
from flaml import AutoML
def test_forecast_automl(budget=5):
# using dataframe
import statsmodels.api as sm
data = sm.datasets.co2.load_pandas().data["co2"].resample("MS").mean()
data = (
data.bfill()
.ffill()
.to_frame()
.reset_index()
.rename(columns={"index": "ds", "co2": "y"})
)
num_samples = data.shape[0]
time_horizon = 12
split_idx = num_samples - time_horizon
df = data[:split_idx]
X_test = data[split_idx:]["ds"]
y_test = data[split_idx:]["y"]
automl = AutoML()
settings = {
"time_budget": budget, # total running time in seconds
"metric": "mape", # primary metric
"task": "ts_forecast", # task type
"log_file_name": "test/CO2_forecast.log", # flaml log file
"eval_method": "holdout",
"label": "y",
}
"""The main flaml automl API"""
try:
import prophet
automl.fit(dataframe=df, **settings, period=time_horizon)
except ImportError:
print("not using prophet due to ImportError")
automl.fit(
dataframe=df,
**settings,
estimator_list=["arima", "sarimax"],
period=time_horizon,
)
""" retrieve best config and best learner"""
print("Best ML leaner:", automl.best_estimator)
print("Best hyperparmeter config:", automl.best_config)
print(f"Best mape on validation data: {automl.best_loss}")
print(f"Training duration of best run: {automl.best_config_train_time}s")
print(automl.model.estimator)
""" pickle and save the automl object """
import pickle
with open("automl.pkl", "wb") as f:
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
""" compute predictions of testing dataset """
y_pred = automl.predict(X_test)
print("Predicted labels", y_pred)
print("True labels", y_test)
""" compute different metric values on testing dataset"""
from flaml.automl.ml import sklearn_metric_loss_score
mape = sklearn_metric_loss_score("mape", y_pred, y_test)
print("mape", "=", mape)
assert mape <= 0.005, "the mape of flaml should be less than 0.005"
from flaml.automl.data import get_output_from_log
(
time_history,
best_valid_loss_history,
valid_loss_history,
config_history,
metric_history,
) = get_output_from_log(filename=settings["log_file_name"], time_budget=budget)
for config in config_history:
print(config)
print(automl.resource_attr)
print(automl.max_resource)
print(automl.min_resource)
X_train = df[["ds"]]
y_train = df["y"]
automl = AutoML()
try:
automl.fit(X_train=X_train, y_train=y_train, **settings, period=time_horizon)
except ImportError:
print("not using prophet due to ImportError")
automl.fit(
X_train=X_train,
y_train=y_train,
**settings,
estimator_list=["arima", "sarimax"],
period=time_horizon,
)
def test_numpy():
X_train = np.arange("2014-01", "2021-01", dtype="datetime64[M]")
y_train = np.random.random(size=len(X_train))
automl = AutoML()
automl.fit(
X_train=X_train[:72], # a single column of timestamp
y_train=y_train[:72], # value for each timestamp
period=12, # time horizon to forecast, e.g., 12 months
task="ts_forecast",
time_budget=3, # time budget in seconds
log_file_name="test/ts_forecast.log",
n_splits=3, # number of splits
)
print(automl.predict(X_train[72:]))
automl = AutoML()
automl.fit(
X_train=X_train[:72], # a single column of timestamp
y_train=y_train[:72], # value for each timestamp
period=12, # time horizon to forecast, e.g., 12 months
task="ts_forecast",
time_budget=1, # time budget in seconds
estimator_list=["arima", "sarimax"],
log_file_name="test/ts_forecast.log",
)
print(automl.predict(X_train[72:]))
# an alternative way to specify predict steps for arima/sarimax
print(automl.predict(12))
def test_numpy_large():
import numpy as np
import pandas as pd
from flaml import AutoML
X_train = pd.date_range("2017-01-01", periods=70000, freq="T")
y_train = pd.DataFrame(np.random.randint(6500, 7500, 70000))
automl = AutoML()
automl.fit(
X_train=X_train[:-10].values, # a single column of timestamp
y_train=y_train[:-10].values, # value for each timestamp
period=10, # time horizon to forecast, e.g., 12 months
task="ts_forecast",
time_budget=10, # time budget in seconds
)
def load_multi_dataset():
"""multivariate time series forecasting dataset"""
import pandas as pd
# pd.set_option("display.max_rows", None, "display.max_columns", None)
df = pd.read_csv(
"https://raw.githubusercontent.com/srivatsan88/YouTubeLI/master/dataset/nyc_energy_consumption.csv"
)
# preprocessing data
df["timeStamp"] = pd.to_datetime(df["timeStamp"])
df = df.set_index("timeStamp")
df = df.resample("D").mean()
df["temp"] = df["temp"].fillna(method="ffill")
df["precip"] = df["precip"].fillna(method="ffill")
df = df[:-2] # last two rows are NaN for 'demand' column so remove them
df = df.reset_index()
return df
def test_multivariate_forecast_num(budget=5):
df = load_multi_dataset()
# split data into train and test
time_horizon = 180
num_samples = df.shape[0]
split_idx = num_samples - time_horizon
train_df = df[:split_idx]
test_df = df[split_idx:]
# test dataframe must contain values for the regressors / multivariate variables
X_test = test_df[["timeStamp", "temp", "precip"]]
y_test = test_df["demand"]
# return
automl = AutoML()
settings = {
"time_budget": budget, # total running time in seconds
"metric": "mape", # primary metric
"task": "ts_forecast", # task type
"log_file_name": "test/energy_forecast_numerical.log", # flaml log file
"eval_method": "holdout",
"log_type": "all",
"label": "demand",
}
"""The main flaml automl API"""
try:
import prophet
automl.fit(dataframe=train_df, **settings, period=time_horizon)
except ImportError:
print("not using prophet due to ImportError")
automl.fit(
dataframe=train_df,
**settings,
estimator_list=["arima", "sarimax"],
period=time_horizon,
)
""" retrieve best config and best learner"""
print("Best ML leaner:", automl.best_estimator)
print("Best hyperparmeter config:", automl.best_config)
print(f"Best mape on validation data: {automl.best_loss}")
print(f"Training duration of best run: {automl.best_config_train_time}s")
print(automl.model.estimator)
""" pickle and save the automl object """
import pickle
with open("automl.pkl", "wb") as f:
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
""" compute predictions of testing dataset """
y_pred = automl.predict(X_test)
print("Predicted labels", y_pred)
print("True labels", y_test)
""" compute different metric values on testing dataset"""
from flaml.automl.ml import sklearn_metric_loss_score
print("mape", "=", sklearn_metric_loss_score("mape", y_pred, y_test))
from flaml.automl.data import get_output_from_log
(
time_history,
best_valid_loss_history,
valid_loss_history,
config_history,
metric_history,
) = get_output_from_log(filename=settings["log_file_name"], time_budget=budget)
for config in config_history:
print(config)
print(automl.resource_attr)
print(automl.max_resource)
print(automl.min_resource)
# import matplotlib.pyplot as plt
#
# plt.figure()
# plt.plot(X_test["timeStamp"], y_test, label="Actual Demand")
# plt.plot(X_test["timeStamp"], y_pred, label="FLAML Forecast")
# plt.xlabel("Date")
# plt.ylabel("Energy Demand")
# plt.legend()
# plt.show()
def load_multi_dataset_cat(time_horizon):
df = load_multi_dataset()
df = df[["timeStamp", "demand", "temp"]]
# feature engineering - use discrete values to denote different categories
def season(date):
date = (date.month, date.day)
spring = (3, 20)
summer = (6, 21)
fall = (9, 22)
winter = (12, 21)
if date < spring or date >= winter:
return "winter" # winter 0
elif spring <= date < summer:
return "spring" # spring 1
elif summer <= date < fall:
return "summer" # summer 2
elif fall <= date < winter:
return "fall" # fall 3
def get_monthly_avg(data):
data["month"] = data["timeStamp"].dt.month
data = data[["month", "temp"]].groupby("month")
data = data.agg({"temp": "mean"})
return data
monthly_avg = get_monthly_avg(df).to_dict().get("temp")
def above_monthly_avg(date, temp):
month = date.month
if temp > monthly_avg.get(month):
return 1
else:
return 0
df["season"] = df["timeStamp"].apply(season)
df["above_monthly_avg"] = df.apply(
lambda x: above_monthly_avg(x["timeStamp"], x["temp"]), axis=1
)
# split data into train and test
num_samples = df.shape[0]
split_idx = num_samples - time_horizon
train_df = df[:split_idx]
test_df = df[split_idx:]
del train_df["temp"], train_df["month"]
return train_df, test_df
def test_multivariate_forecast_cat(budget=5):
time_horizon = 180
train_df, test_df = load_multi_dataset_cat(time_horizon)
X_test = test_df[
["timeStamp", "season", "above_monthly_avg"]
] # test dataframe must contain values for the regressors / multivariate variables
y_test = test_df["demand"]
automl = AutoML()
settings = {
"time_budget": budget, # total running time in seconds
"metric": "mape", # primary metric
"task": "ts_forecast", # task type
"log_file_name": "test/energy_forecast_categorical.log", # flaml log file
"eval_method": "holdout",
"log_type": "all",
"label": "demand",
}
"""The main flaml automl API"""
try:
import prophet
automl.fit(dataframe=train_df, **settings, period=time_horizon)
except ImportError:
print("not using prophet due to ImportError")
automl.fit(
dataframe=train_df,
**settings,
estimator_list=["arima", "sarimax"],
period=time_horizon,
)
""" retrieve best config and best learner"""
print("Best ML leaner:", automl.best_estimator)
print("Best hyperparmeter config:", automl.best_config)
print(f"Best mape on validation data: {automl.best_loss}")
print(f"Training duration of best run: {automl.best_config_train_time}s")
print(automl.model.estimator)
""" pickle and save the automl object """
import pickle
with open("automl.pkl", "wb") as f:
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
""" compute predictions of testing dataset """
y_pred = automl.predict(X_test)
print("Predicted labels", y_pred)
print("True labels", y_test)
""" compute different metric values on testing dataset"""
from flaml.automl.ml import sklearn_metric_loss_score
print("mape", "=", sklearn_metric_loss_score("mape", y_pred, y_test))
print("rmse", "=", sklearn_metric_loss_score("rmse", y_pred, y_test))
print("mse", "=", sklearn_metric_loss_score("mse", y_pred, y_test))
print("mae", "=", sklearn_metric_loss_score("mae", y_pred, y_test))
from flaml.automl.data import get_output_from_log
(
time_history,
best_valid_loss_history,
valid_loss_history,
config_history,
metric_history,
) = get_output_from_log(filename=settings["log_file_name"], time_budget=budget)
for config in config_history:
print(config)
print(automl.resource_attr)
print(automl.max_resource)
print(automl.min_resource)
# import matplotlib.pyplot as plt
#
# plt.figure()
# plt.plot(X_test["timeStamp"], y_test, label="Actual Demand")
# plt.plot(X_test["timeStamp"], y_pred, label="FLAML Forecast")
# plt.xlabel("Date")
# plt.ylabel("Energy Demand")
# plt.legend()
# plt.show()
def test_forecast_classification(budget=5):
from hcrystalball.utils import get_sales_data
time_horizon = 30
df = get_sales_data(n_dates=180, n_assortments=1, n_states=1, n_stores=1)
df = df[["Sales", "Open", "Promo", "Promo2"]]
# feature engineering
import numpy as np
df["above_mean_sales"] = np.where(df["Sales"] > df["Sales"].mean(), 1, 0)
df.reset_index(inplace=True)
train_df = df[:-time_horizon]
test_df = df[-time_horizon:]
X_train, X_test = (
train_df[["Date", "Open", "Promo", "Promo2"]],
test_df[["Date", "Open", "Promo", "Promo2"]],
)
y_train, y_test = train_df["above_mean_sales"], test_df["above_mean_sales"]
automl = AutoML()
settings = {
"time_budget": budget, # total running time in seconds
"metric": "accuracy", # primary metric
"task": "ts_forecast_classification", # task type
"log_file_name": "test/sales_classification_forecast.log", # flaml log file
"eval_method": "holdout",
}
"""The main flaml automl API"""
automl.fit(X_train=X_train, y_train=y_train, **settings, period=time_horizon)
""" retrieve best config and best learner"""
print("Best ML leaner:", automl.best_estimator)
print("Best hyperparmeter config:", automl.best_config)
print(f"Best mape on validation data: {automl.best_loss}")
print(f"Training duration of best run: {automl.best_config_train_time}s")
print(automl.model.estimator)
""" pickle and save the automl object """
import pickle
with open("automl.pkl", "wb") as f:
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
""" compute predictions of testing dataset """
y_pred = automl.predict(X_test)
""" compute different metric values on testing dataset"""
from flaml.automl.ml import sklearn_metric_loss_score
print(y_test)
print(y_pred)
print("accuracy", "=", 1 - sklearn_metric_loss_score("accuracy", y_pred, y_test))
from flaml.automl.data import get_output_from_log
(
time_history,
best_valid_loss_history,
valid_loss_history,
config_history,
metric_history,
) = get_output_from_log(filename=settings["log_file_name"], time_budget=budget)
for config in config_history:
print(config)
print(automl.resource_attr)
print(automl.max_resource)
print(automl.min_resource)
# import matplotlib.pyplot as plt
#
# plt.title("Learning Curve")
# plt.xlabel("Wall Clock Time (s)")
# plt.ylabel("Validation Accuracy")
# plt.scatter(time_history, 1 - np.array(valid_loss_history))
# plt.step(time_history, 1 - np.array(best_valid_loss_history), where="post")
# plt.show()
def get_stalliion_data():
from pytorch_forecasting.data.examples import get_stallion_data
data = get_stallion_data()
# add time index - For datasets with no missing values, FLAML will automate this process
data["time_idx"] = data["date"].dt.year * 12 + data["date"].dt.month
data["time_idx"] -= data["time_idx"].min()
# add additional features
data["month"] = data.date.dt.month.astype(str).astype(
"category"
) # categories have be strings
data["log_volume"] = np.log(data.volume + 1e-8)
data["avg_volume_by_sku"] = data.groupby(
["time_idx", "sku"], observed=True
).volume.transform("mean")
data["avg_volume_by_agency"] = data.groupby(
["time_idx", "agency"], observed=True
).volume.transform("mean")
# we want to encode special days as one variable and thus need to first reverse one-hot encoding
special_days = [
"easter_day",
"good_friday",
"new_year",
"christmas",
"labor_day",
"independence_day",
"revolution_day_memorial",
"regional_games",
"beer_capital",
"music_fest",
]
data[special_days] = (
data[special_days]
.apply(lambda x: x.map({0: "-", 1: x.name}))
.astype("category")
)
return data, special_days
def test_forecast_panel(budget=5):
data, special_days = get_stalliion_data()
time_horizon = 6 # predict six months
training_cutoff = data["time_idx"].max() - time_horizon
data["time_idx"] = data["time_idx"].astype("int")
ts_col = data.pop("date")
data.insert(0, "date", ts_col)
# FLAML assumes input is not sorted, but we sort here for comparison purposes with y_test
data = data.sort_values(["agency", "sku", "date"])
X_train = data[lambda x: x.time_idx <= training_cutoff]
X_test = data[lambda x: x.time_idx > training_cutoff]
y_train = X_train.pop("volume")
y_test = X_test.pop("volume")
automl = AutoML()
settings = {
"time_budget": budget, # total running time in seconds
"metric": "mape", # primary metric
"task": "ts_forecast_panel", # task type
"log_file_name": "test/stallion_forecast.log", # flaml log file
"eval_method": "holdout",
}
fit_kwargs_by_estimator = {
"tft": {
"max_encoder_length": 24,
"static_categoricals": ["agency", "sku"],
"static_reals": ["avg_population_2017", "avg_yearly_household_income_2017"],
"time_varying_known_categoricals": ["special_days", "month"],
"variable_groups": {
"special_days": special_days
}, # group of categorical variables can be treated as one variable
"time_varying_known_reals": [
"time_idx",
"price_regular",
"discount_in_percent",
],
"time_varying_unknown_categoricals": [],
"time_varying_unknown_reals": [
"y", # always need a 'y' column for the target column
"log_volume",
"industry_volume",
"soda_volume",
"avg_max_temp",
"avg_volume_by_agency",
"avg_volume_by_sku",
],
"batch_size": 256,
"max_epochs": 1,
"gpu_per_trial": -1,
}
}
"""The main flaml automl API"""
automl.fit(
X_train=X_train,
y_train=y_train,
**settings,
period=time_horizon,
group_ids=["agency", "sku"],
fit_kwargs_by_estimator=fit_kwargs_by_estimator,
)
""" retrieve best config and best learner"""
print("Best ML leaner:", automl.best_estimator)
print("Best hyperparmeter config:", automl.best_config)
print(f"Best mape on validation data: {automl.best_loss}")
print(f"Training duration of best run: {automl.best_config_train_time}s")
print(automl.model.estimator)
""" pickle and save the automl object """
import pickle
with open("automl.pkl", "wb") as f:
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
""" compute predictions of testing dataset """
y_pred = automl.predict(X_test)
""" compute different metric values on testing dataset"""
from flaml.automl.ml import sklearn_metric_loss_score
print(y_test)
print(y_pred)
print("mape", "=", sklearn_metric_loss_score("mape", y_pred, y_test))
def smape(y_pred, y_test):
import numpy as np
y_test, y_pred = np.array(y_test), np.array(y_pred)
return round(
np.mean(np.abs(y_pred - y_test) / ((np.abs(y_pred) + np.abs(y_test)) / 2))
* 100,
2,
)
print("smape", "=", smape(y_pred, y_test))
# TODO: compute prediction for a specific time series
# """compute prediction for a specific time series"""
# a01_sku01_preds = automl.predict(X_test[(X_test["agency"] == "Agency_01") & (X_test["sku"] == "SKU_01")])
# print("Agency01 SKU_01 predictions: ", a01_sku01_preds)
from flaml.automl.data import get_output_from_log
(
time_history,
best_valid_loss_history,
valid_loss_history,
config_history,
metric_history,
) = get_output_from_log(filename=settings["log_file_name"], time_budget=budget)
for config in config_history:
print(config)
print(automl.resource_attr)
print(automl.max_resource)
print(automl.min_resource)
if __name__ == "__main__":
test_forecast_automl(60)
test_multivariate_forecast_num(5)
test_multivariate_forecast_cat(5)
test_numpy()
test_forecast_classification(5)
test_forecast_panel(5)