mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-11 09:16:12 +00:00

* Refactor into automl subpackage Moved some of the packages into an automl subpackage to tidy before the task-based refactor. This is in response to discussions with the group and a comment on the first task-based PR. Only changes here are moving subpackages and modules into the new automl, fixing imports to work with this structure and fixing some dependencies in setup.py. * Fix doc building post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Remove vw from test deps as this is breaking the build * Move default back to the top-level I'd moved this to automl as that's where it's used internally, but had missed that this is actually part of the public interface so makes sense to live where it was. * Re-add top level modules with deprecation warnings flaml.data, flaml.ml and flaml.model are re-added to the top level, being re-exported from flaml.automl for backwards compatability. Adding a deprecation warning so that we can have a planned removal later. * Fix model.py line-endings * Pin pytorch-lightning to less than 1.8.0 We're seeing strange lightning related bugs from pytorch-forecasting since the release of lightning 1.8.0. Going to try constraining this to see if we have a fix. * Fix the lightning version pin Was optimistic with setting it in the 1.7.x range, but that isn't compatible with python 3.6 * Remove lightning version pin * Revert dependency version changes * Minor change to retrigger the build * Fix line endings in ml.py and model.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
601 lines
20 KiB
Python
601 lines
20 KiB
Python
import numpy as np
|
|
from flaml import AutoML
|
|
|
|
|
|
def test_forecast_automl(budget=5):
|
|
# using dataframe
|
|
import statsmodels.api as sm
|
|
|
|
data = sm.datasets.co2.load_pandas().data["co2"].resample("MS").mean()
|
|
data = (
|
|
data.bfill()
|
|
.ffill()
|
|
.to_frame()
|
|
.reset_index()
|
|
.rename(columns={"index": "ds", "co2": "y"})
|
|
)
|
|
num_samples = data.shape[0]
|
|
time_horizon = 12
|
|
split_idx = num_samples - time_horizon
|
|
df = data[:split_idx]
|
|
X_test = data[split_idx:]["ds"]
|
|
y_test = data[split_idx:]["y"]
|
|
automl = AutoML()
|
|
settings = {
|
|
"time_budget": budget, # total running time in seconds
|
|
"metric": "mape", # primary metric
|
|
"task": "ts_forecast", # task type
|
|
"log_file_name": "test/CO2_forecast.log", # flaml log file
|
|
"eval_method": "holdout",
|
|
"label": "y",
|
|
}
|
|
"""The main flaml automl API"""
|
|
try:
|
|
import prophet
|
|
|
|
automl.fit(dataframe=df, **settings, period=time_horizon)
|
|
except ImportError:
|
|
print("not using prophet due to ImportError")
|
|
automl.fit(
|
|
dataframe=df,
|
|
**settings,
|
|
estimator_list=["arima", "sarimax"],
|
|
period=time_horizon,
|
|
)
|
|
""" retrieve best config and best learner"""
|
|
print("Best ML leaner:", automl.best_estimator)
|
|
print("Best hyperparmeter config:", automl.best_config)
|
|
print(f"Best mape on validation data: {automl.best_loss}")
|
|
print(f"Training duration of best run: {automl.best_config_train_time}s")
|
|
print(automl.model.estimator)
|
|
""" pickle and save the automl object """
|
|
import pickle
|
|
|
|
with open("automl.pkl", "wb") as f:
|
|
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
|
""" compute predictions of testing dataset """
|
|
y_pred = automl.predict(X_test)
|
|
print("Predicted labels", y_pred)
|
|
print("True labels", y_test)
|
|
""" compute different metric values on testing dataset"""
|
|
from flaml.automl.ml import sklearn_metric_loss_score
|
|
|
|
mape = sklearn_metric_loss_score("mape", y_pred, y_test)
|
|
print("mape", "=", mape)
|
|
assert mape <= 0.005, "the mape of flaml should be less than 0.005"
|
|
from flaml.automl.data import get_output_from_log
|
|
|
|
(
|
|
time_history,
|
|
best_valid_loss_history,
|
|
valid_loss_history,
|
|
config_history,
|
|
metric_history,
|
|
) = get_output_from_log(filename=settings["log_file_name"], time_budget=budget)
|
|
for config in config_history:
|
|
print(config)
|
|
print(automl.resource_attr)
|
|
print(automl.max_resource)
|
|
print(automl.min_resource)
|
|
|
|
X_train = df[["ds"]]
|
|
y_train = df["y"]
|
|
automl = AutoML()
|
|
try:
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings, period=time_horizon)
|
|
except ImportError:
|
|
print("not using prophet due to ImportError")
|
|
automl.fit(
|
|
X_train=X_train,
|
|
y_train=y_train,
|
|
**settings,
|
|
estimator_list=["arima", "sarimax"],
|
|
period=time_horizon,
|
|
)
|
|
|
|
|
|
def test_numpy():
|
|
X_train = np.arange("2014-01", "2021-01", dtype="datetime64[M]")
|
|
y_train = np.random.random(size=len(X_train))
|
|
automl = AutoML()
|
|
automl.fit(
|
|
X_train=X_train[:72], # a single column of timestamp
|
|
y_train=y_train[:72], # value for each timestamp
|
|
period=12, # time horizon to forecast, e.g., 12 months
|
|
task="ts_forecast",
|
|
time_budget=3, # time budget in seconds
|
|
log_file_name="test/ts_forecast.log",
|
|
n_splits=3, # number of splits
|
|
)
|
|
print(automl.predict(X_train[72:]))
|
|
|
|
automl = AutoML()
|
|
automl.fit(
|
|
X_train=X_train[:72], # a single column of timestamp
|
|
y_train=y_train[:72], # value for each timestamp
|
|
period=12, # time horizon to forecast, e.g., 12 months
|
|
task="ts_forecast",
|
|
time_budget=1, # time budget in seconds
|
|
estimator_list=["arima", "sarimax"],
|
|
log_file_name="test/ts_forecast.log",
|
|
)
|
|
print(automl.predict(X_train[72:]))
|
|
# an alternative way to specify predict steps for arima/sarimax
|
|
print(automl.predict(12))
|
|
|
|
|
|
def test_numpy_large():
|
|
import numpy as np
|
|
import pandas as pd
|
|
from flaml import AutoML
|
|
|
|
X_train = pd.date_range("2017-01-01", periods=70000, freq="T")
|
|
y_train = pd.DataFrame(np.random.randint(6500, 7500, 70000))
|
|
automl = AutoML()
|
|
automl.fit(
|
|
X_train=X_train[:-10].values, # a single column of timestamp
|
|
y_train=y_train[:-10].values, # value for each timestamp
|
|
period=10, # time horizon to forecast, e.g., 12 months
|
|
task="ts_forecast",
|
|
time_budget=10, # time budget in seconds
|
|
)
|
|
|
|
|
|
def load_multi_dataset():
|
|
"""multivariate time series forecasting dataset"""
|
|
import pandas as pd
|
|
|
|
# pd.set_option("display.max_rows", None, "display.max_columns", None)
|
|
df = pd.read_csv(
|
|
"https://raw.githubusercontent.com/srivatsan88/YouTubeLI/master/dataset/nyc_energy_consumption.csv"
|
|
)
|
|
# preprocessing data
|
|
df["timeStamp"] = pd.to_datetime(df["timeStamp"])
|
|
df = df.set_index("timeStamp")
|
|
df = df.resample("D").mean()
|
|
df["temp"] = df["temp"].fillna(method="ffill")
|
|
df["precip"] = df["precip"].fillna(method="ffill")
|
|
df = df[:-2] # last two rows are NaN for 'demand' column so remove them
|
|
df = df.reset_index()
|
|
|
|
return df
|
|
|
|
|
|
def test_multivariate_forecast_num(budget=5):
|
|
df = load_multi_dataset()
|
|
# split data into train and test
|
|
time_horizon = 180
|
|
num_samples = df.shape[0]
|
|
split_idx = num_samples - time_horizon
|
|
train_df = df[:split_idx]
|
|
test_df = df[split_idx:]
|
|
# test dataframe must contain values for the regressors / multivariate variables
|
|
X_test = test_df[["timeStamp", "temp", "precip"]]
|
|
y_test = test_df["demand"]
|
|
# return
|
|
automl = AutoML()
|
|
settings = {
|
|
"time_budget": budget, # total running time in seconds
|
|
"metric": "mape", # primary metric
|
|
"task": "ts_forecast", # task type
|
|
"log_file_name": "test/energy_forecast_numerical.log", # flaml log file
|
|
"eval_method": "holdout",
|
|
"log_type": "all",
|
|
"label": "demand",
|
|
}
|
|
"""The main flaml automl API"""
|
|
try:
|
|
import prophet
|
|
|
|
automl.fit(dataframe=train_df, **settings, period=time_horizon)
|
|
except ImportError:
|
|
print("not using prophet due to ImportError")
|
|
automl.fit(
|
|
dataframe=train_df,
|
|
**settings,
|
|
estimator_list=["arima", "sarimax"],
|
|
period=time_horizon,
|
|
)
|
|
""" retrieve best config and best learner"""
|
|
print("Best ML leaner:", automl.best_estimator)
|
|
print("Best hyperparmeter config:", automl.best_config)
|
|
print(f"Best mape on validation data: {automl.best_loss}")
|
|
print(f"Training duration of best run: {automl.best_config_train_time}s")
|
|
print(automl.model.estimator)
|
|
""" pickle and save the automl object """
|
|
import pickle
|
|
|
|
with open("automl.pkl", "wb") as f:
|
|
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
|
""" compute predictions of testing dataset """
|
|
y_pred = automl.predict(X_test)
|
|
print("Predicted labels", y_pred)
|
|
print("True labels", y_test)
|
|
""" compute different metric values on testing dataset"""
|
|
from flaml.automl.ml import sklearn_metric_loss_score
|
|
|
|
print("mape", "=", sklearn_metric_loss_score("mape", y_pred, y_test))
|
|
from flaml.automl.data import get_output_from_log
|
|
|
|
(
|
|
time_history,
|
|
best_valid_loss_history,
|
|
valid_loss_history,
|
|
config_history,
|
|
metric_history,
|
|
) = get_output_from_log(filename=settings["log_file_name"], time_budget=budget)
|
|
for config in config_history:
|
|
print(config)
|
|
print(automl.resource_attr)
|
|
print(automl.max_resource)
|
|
print(automl.min_resource)
|
|
|
|
# import matplotlib.pyplot as plt
|
|
#
|
|
# plt.figure()
|
|
# plt.plot(X_test["timeStamp"], y_test, label="Actual Demand")
|
|
# plt.plot(X_test["timeStamp"], y_pred, label="FLAML Forecast")
|
|
# plt.xlabel("Date")
|
|
# plt.ylabel("Energy Demand")
|
|
# plt.legend()
|
|
# plt.show()
|
|
|
|
|
|
def load_multi_dataset_cat(time_horizon):
|
|
df = load_multi_dataset()
|
|
|
|
df = df[["timeStamp", "demand", "temp"]]
|
|
|
|
# feature engineering - use discrete values to denote different categories
|
|
def season(date):
|
|
date = (date.month, date.day)
|
|
spring = (3, 20)
|
|
summer = (6, 21)
|
|
fall = (9, 22)
|
|
winter = (12, 21)
|
|
if date < spring or date >= winter:
|
|
return "winter" # winter 0
|
|
elif spring <= date < summer:
|
|
return "spring" # spring 1
|
|
elif summer <= date < fall:
|
|
return "summer" # summer 2
|
|
elif fall <= date < winter:
|
|
return "fall" # fall 3
|
|
|
|
def get_monthly_avg(data):
|
|
data["month"] = data["timeStamp"].dt.month
|
|
data = data[["month", "temp"]].groupby("month")
|
|
data = data.agg({"temp": "mean"})
|
|
return data
|
|
|
|
monthly_avg = get_monthly_avg(df).to_dict().get("temp")
|
|
|
|
def above_monthly_avg(date, temp):
|
|
month = date.month
|
|
if temp > monthly_avg.get(month):
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
df["season"] = df["timeStamp"].apply(season)
|
|
df["above_monthly_avg"] = df.apply(
|
|
lambda x: above_monthly_avg(x["timeStamp"], x["temp"]), axis=1
|
|
)
|
|
|
|
# split data into train and test
|
|
num_samples = df.shape[0]
|
|
split_idx = num_samples - time_horizon
|
|
train_df = df[:split_idx]
|
|
test_df = df[split_idx:]
|
|
|
|
del train_df["temp"], train_df["month"]
|
|
|
|
return train_df, test_df
|
|
|
|
|
|
def test_multivariate_forecast_cat(budget=5):
|
|
time_horizon = 180
|
|
train_df, test_df = load_multi_dataset_cat(time_horizon)
|
|
X_test = test_df[
|
|
["timeStamp", "season", "above_monthly_avg"]
|
|
] # test dataframe must contain values for the regressors / multivariate variables
|
|
y_test = test_df["demand"]
|
|
automl = AutoML()
|
|
settings = {
|
|
"time_budget": budget, # total running time in seconds
|
|
"metric": "mape", # primary metric
|
|
"task": "ts_forecast", # task type
|
|
"log_file_name": "test/energy_forecast_categorical.log", # flaml log file
|
|
"eval_method": "holdout",
|
|
"log_type": "all",
|
|
"label": "demand",
|
|
}
|
|
"""The main flaml automl API"""
|
|
try:
|
|
import prophet
|
|
|
|
automl.fit(dataframe=train_df, **settings, period=time_horizon)
|
|
except ImportError:
|
|
print("not using prophet due to ImportError")
|
|
automl.fit(
|
|
dataframe=train_df,
|
|
**settings,
|
|
estimator_list=["arima", "sarimax"],
|
|
period=time_horizon,
|
|
)
|
|
""" retrieve best config and best learner"""
|
|
print("Best ML leaner:", automl.best_estimator)
|
|
print("Best hyperparmeter config:", automl.best_config)
|
|
print(f"Best mape on validation data: {automl.best_loss}")
|
|
print(f"Training duration of best run: {automl.best_config_train_time}s")
|
|
print(automl.model.estimator)
|
|
""" pickle and save the automl object """
|
|
import pickle
|
|
|
|
with open("automl.pkl", "wb") as f:
|
|
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
|
""" compute predictions of testing dataset """
|
|
y_pred = automl.predict(X_test)
|
|
print("Predicted labels", y_pred)
|
|
print("True labels", y_test)
|
|
""" compute different metric values on testing dataset"""
|
|
from flaml.automl.ml import sklearn_metric_loss_score
|
|
|
|
print("mape", "=", sklearn_metric_loss_score("mape", y_pred, y_test))
|
|
print("rmse", "=", sklearn_metric_loss_score("rmse", y_pred, y_test))
|
|
print("mse", "=", sklearn_metric_loss_score("mse", y_pred, y_test))
|
|
print("mae", "=", sklearn_metric_loss_score("mae", y_pred, y_test))
|
|
from flaml.automl.data import get_output_from_log
|
|
|
|
(
|
|
time_history,
|
|
best_valid_loss_history,
|
|
valid_loss_history,
|
|
config_history,
|
|
metric_history,
|
|
) = get_output_from_log(filename=settings["log_file_name"], time_budget=budget)
|
|
for config in config_history:
|
|
print(config)
|
|
print(automl.resource_attr)
|
|
print(automl.max_resource)
|
|
print(automl.min_resource)
|
|
|
|
# import matplotlib.pyplot as plt
|
|
#
|
|
# plt.figure()
|
|
# plt.plot(X_test["timeStamp"], y_test, label="Actual Demand")
|
|
# plt.plot(X_test["timeStamp"], y_pred, label="FLAML Forecast")
|
|
# plt.xlabel("Date")
|
|
# plt.ylabel("Energy Demand")
|
|
# plt.legend()
|
|
# plt.show()
|
|
|
|
|
|
def test_forecast_classification(budget=5):
|
|
from hcrystalball.utils import get_sales_data
|
|
|
|
time_horizon = 30
|
|
df = get_sales_data(n_dates=180, n_assortments=1, n_states=1, n_stores=1)
|
|
df = df[["Sales", "Open", "Promo", "Promo2"]]
|
|
# feature engineering
|
|
import numpy as np
|
|
|
|
df["above_mean_sales"] = np.where(df["Sales"] > df["Sales"].mean(), 1, 0)
|
|
df.reset_index(inplace=True)
|
|
train_df = df[:-time_horizon]
|
|
test_df = df[-time_horizon:]
|
|
X_train, X_test = (
|
|
train_df[["Date", "Open", "Promo", "Promo2"]],
|
|
test_df[["Date", "Open", "Promo", "Promo2"]],
|
|
)
|
|
y_train, y_test = train_df["above_mean_sales"], test_df["above_mean_sales"]
|
|
automl = AutoML()
|
|
settings = {
|
|
"time_budget": budget, # total running time in seconds
|
|
"metric": "accuracy", # primary metric
|
|
"task": "ts_forecast_classification", # task type
|
|
"log_file_name": "test/sales_classification_forecast.log", # flaml log file
|
|
"eval_method": "holdout",
|
|
}
|
|
"""The main flaml automl API"""
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings, period=time_horizon)
|
|
""" retrieve best config and best learner"""
|
|
print("Best ML leaner:", automl.best_estimator)
|
|
print("Best hyperparmeter config:", automl.best_config)
|
|
print(f"Best mape on validation data: {automl.best_loss}")
|
|
print(f"Training duration of best run: {automl.best_config_train_time}s")
|
|
print(automl.model.estimator)
|
|
""" pickle and save the automl object """
|
|
import pickle
|
|
|
|
with open("automl.pkl", "wb") as f:
|
|
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
|
""" compute predictions of testing dataset """
|
|
y_pred = automl.predict(X_test)
|
|
""" compute different metric values on testing dataset"""
|
|
from flaml.automl.ml import sklearn_metric_loss_score
|
|
|
|
print(y_test)
|
|
print(y_pred)
|
|
print("accuracy", "=", 1 - sklearn_metric_loss_score("accuracy", y_pred, y_test))
|
|
from flaml.automl.data import get_output_from_log
|
|
|
|
(
|
|
time_history,
|
|
best_valid_loss_history,
|
|
valid_loss_history,
|
|
config_history,
|
|
metric_history,
|
|
) = get_output_from_log(filename=settings["log_file_name"], time_budget=budget)
|
|
for config in config_history:
|
|
print(config)
|
|
print(automl.resource_attr)
|
|
print(automl.max_resource)
|
|
print(automl.min_resource)
|
|
# import matplotlib.pyplot as plt
|
|
#
|
|
# plt.title("Learning Curve")
|
|
# plt.xlabel("Wall Clock Time (s)")
|
|
# plt.ylabel("Validation Accuracy")
|
|
# plt.scatter(time_history, 1 - np.array(valid_loss_history))
|
|
# plt.step(time_history, 1 - np.array(best_valid_loss_history), where="post")
|
|
# plt.show()
|
|
|
|
|
|
def get_stalliion_data():
|
|
from pytorch_forecasting.data.examples import get_stallion_data
|
|
|
|
data = get_stallion_data()
|
|
# add time index - For datasets with no missing values, FLAML will automate this process
|
|
data["time_idx"] = data["date"].dt.year * 12 + data["date"].dt.month
|
|
data["time_idx"] -= data["time_idx"].min()
|
|
# add additional features
|
|
data["month"] = data.date.dt.month.astype(str).astype(
|
|
"category"
|
|
) # categories have be strings
|
|
data["log_volume"] = np.log(data.volume + 1e-8)
|
|
data["avg_volume_by_sku"] = data.groupby(
|
|
["time_idx", "sku"], observed=True
|
|
).volume.transform("mean")
|
|
data["avg_volume_by_agency"] = data.groupby(
|
|
["time_idx", "agency"], observed=True
|
|
).volume.transform("mean")
|
|
# we want to encode special days as one variable and thus need to first reverse one-hot encoding
|
|
special_days = [
|
|
"easter_day",
|
|
"good_friday",
|
|
"new_year",
|
|
"christmas",
|
|
"labor_day",
|
|
"independence_day",
|
|
"revolution_day_memorial",
|
|
"regional_games",
|
|
"beer_capital",
|
|
"music_fest",
|
|
]
|
|
data[special_days] = (
|
|
data[special_days]
|
|
.apply(lambda x: x.map({0: "-", 1: x.name}))
|
|
.astype("category")
|
|
)
|
|
return data, special_days
|
|
|
|
|
|
def test_forecast_panel(budget=5):
|
|
data, special_days = get_stalliion_data()
|
|
time_horizon = 6 # predict six months
|
|
training_cutoff = data["time_idx"].max() - time_horizon
|
|
data["time_idx"] = data["time_idx"].astype("int")
|
|
ts_col = data.pop("date")
|
|
data.insert(0, "date", ts_col)
|
|
# FLAML assumes input is not sorted, but we sort here for comparison purposes with y_test
|
|
data = data.sort_values(["agency", "sku", "date"])
|
|
X_train = data[lambda x: x.time_idx <= training_cutoff]
|
|
X_test = data[lambda x: x.time_idx > training_cutoff]
|
|
y_train = X_train.pop("volume")
|
|
y_test = X_test.pop("volume")
|
|
automl = AutoML()
|
|
settings = {
|
|
"time_budget": budget, # total running time in seconds
|
|
"metric": "mape", # primary metric
|
|
"task": "ts_forecast_panel", # task type
|
|
"log_file_name": "test/stallion_forecast.log", # flaml log file
|
|
"eval_method": "holdout",
|
|
}
|
|
fit_kwargs_by_estimator = {
|
|
"tft": {
|
|
"max_encoder_length": 24,
|
|
"static_categoricals": ["agency", "sku"],
|
|
"static_reals": ["avg_population_2017", "avg_yearly_household_income_2017"],
|
|
"time_varying_known_categoricals": ["special_days", "month"],
|
|
"variable_groups": {
|
|
"special_days": special_days
|
|
}, # group of categorical variables can be treated as one variable
|
|
"time_varying_known_reals": [
|
|
"time_idx",
|
|
"price_regular",
|
|
"discount_in_percent",
|
|
],
|
|
"time_varying_unknown_categoricals": [],
|
|
"time_varying_unknown_reals": [
|
|
"y", # always need a 'y' column for the target column
|
|
"log_volume",
|
|
"industry_volume",
|
|
"soda_volume",
|
|
"avg_max_temp",
|
|
"avg_volume_by_agency",
|
|
"avg_volume_by_sku",
|
|
],
|
|
"batch_size": 256,
|
|
"max_epochs": 1,
|
|
"gpu_per_trial": -1,
|
|
}
|
|
}
|
|
"""The main flaml automl API"""
|
|
automl.fit(
|
|
X_train=X_train,
|
|
y_train=y_train,
|
|
**settings,
|
|
period=time_horizon,
|
|
group_ids=["agency", "sku"],
|
|
fit_kwargs_by_estimator=fit_kwargs_by_estimator,
|
|
)
|
|
""" retrieve best config and best learner"""
|
|
print("Best ML leaner:", automl.best_estimator)
|
|
print("Best hyperparmeter config:", automl.best_config)
|
|
print(f"Best mape on validation data: {automl.best_loss}")
|
|
print(f"Training duration of best run: {automl.best_config_train_time}s")
|
|
print(automl.model.estimator)
|
|
""" pickle and save the automl object """
|
|
import pickle
|
|
|
|
with open("automl.pkl", "wb") as f:
|
|
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
|
""" compute predictions of testing dataset """
|
|
y_pred = automl.predict(X_test)
|
|
""" compute different metric values on testing dataset"""
|
|
from flaml.automl.ml import sklearn_metric_loss_score
|
|
|
|
print(y_test)
|
|
print(y_pred)
|
|
print("mape", "=", sklearn_metric_loss_score("mape", y_pred, y_test))
|
|
|
|
def smape(y_pred, y_test):
|
|
import numpy as np
|
|
|
|
y_test, y_pred = np.array(y_test), np.array(y_pred)
|
|
return round(
|
|
np.mean(np.abs(y_pred - y_test) / ((np.abs(y_pred) + np.abs(y_test)) / 2))
|
|
* 100,
|
|
2,
|
|
)
|
|
|
|
print("smape", "=", smape(y_pred, y_test))
|
|
# TODO: compute prediction for a specific time series
|
|
# """compute prediction for a specific time series"""
|
|
# a01_sku01_preds = automl.predict(X_test[(X_test["agency"] == "Agency_01") & (X_test["sku"] == "SKU_01")])
|
|
# print("Agency01 SKU_01 predictions: ", a01_sku01_preds)
|
|
from flaml.automl.data import get_output_from_log
|
|
|
|
(
|
|
time_history,
|
|
best_valid_loss_history,
|
|
valid_loss_history,
|
|
config_history,
|
|
metric_history,
|
|
) = get_output_from_log(filename=settings["log_file_name"], time_budget=budget)
|
|
for config in config_history:
|
|
print(config)
|
|
print(automl.resource_attr)
|
|
print(automl.max_resource)
|
|
print(automl.min_resource)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_forecast_automl(60)
|
|
test_multivariate_forecast_num(5)
|
|
test_multivariate_forecast_cat(5)
|
|
test_numpy()
|
|
test_forecast_classification(5)
|
|
test_forecast_panel(5)
|