mirror of
				https://github.com/microsoft/autogen.git
				synced 2025-10-31 01:40:58 +00:00 
			
		
		
		
	 9e88f22167
			
		
	
	
		9e88f22167
		
			
		
	
	
	
	
		
			
			* fix a bug when using ray & update ray on aml When using with_parameters(), the config argument must be the first argument in the trainable function. * make training function runnable standalone
		
			
				
	
	
		
			50 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			50 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from ray_on_aml.core import Ray_On_AML
 | |
| import lightgbm as lgb
 | |
| import numpy as np
 | |
| from sklearn.datasets import load_breast_cancer
 | |
| from sklearn.metrics import accuracy_score
 | |
| from sklearn.model_selection import train_test_split
 | |
| from flaml import tune
 | |
| from flaml.model import LGBMEstimator
 | |
| 
 | |
| 
 | |
| def train_breast_cancer(config):
 | |
|     params = LGBMEstimator(**config).params
 | |
|     X_train = ray.get(X_train_ref)
 | |
|     train_set = lgb.Dataset(X_train, label=y_train)
 | |
|     gbm = lgb.train(params, train_set)
 | |
|     preds = gbm.predict(X_test)
 | |
|     pred_labels = np.rint(preds)
 | |
|     tune.report(mean_accuracy=accuracy_score(y_test, pred_labels), done=True)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     ray_on_aml = Ray_On_AML()
 | |
|     ray = ray_on_aml.getRay()
 | |
|     if ray:
 | |
|         X, y = load_breast_cancer(return_X_y=True)
 | |
|         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
 | |
|         X_train_ref = ray.put(X_train)
 | |
|         flaml_lgbm_search_space = LGBMEstimator.search_space(X_train.shape)
 | |
|         config_search_space = {
 | |
|             hp: space["domain"] for hp, space in flaml_lgbm_search_space.items()
 | |
|         }
 | |
|         low_cost_partial_config = {
 | |
|             hp: space["low_cost_init_value"]
 | |
|             for hp, space in flaml_lgbm_search_space.items()
 | |
|             if "low_cost_init_value" in space
 | |
|         }
 | |
| 
 | |
|         analysis = tune.run(
 | |
|             train_breast_cancer,
 | |
|             metric="mean_accuracy",
 | |
|             mode="max",
 | |
|             config=config_search_space,
 | |
|             num_samples=-1,
 | |
|             time_budget_s=60,
 | |
|             use_ray=True,
 | |
|         )
 | |
| 
 | |
|         # print("Best hyperparameters found were: ", analysis.best_config)
 | |
|         print("The best trial's result: ", analysis.best_trial.last_result)
 |