autogen/flaml/automl/state.py
Li Jiang 50334f2c52
Support spark dataframe as input dataset and spark models as estimators (#934)
* add basic support to Spark dataframe

add support to SynapseML LightGBM model

update to pyspark>=3.2.0 to leverage pandas_on_Spark API

* clean code, add TODOs

* add sample_train_data for pyspark.pandas dataframe, fix bugs

* improve some functions, fix bugs

* fix dict change size during iteration

* update model predict

* update LightGBM model, update test

* update SynapseML LightGBM params

* update synapseML and tests

* update TODOs

* Added support to roc_auc for spark models

* Added support to score of spark estimator

* Added test for automl score of spark estimator

* Added cv support to pyspark.pandas dataframe

* Update test, fix bugs

* Added tests

* Updated docs, tests, added a notebook

* Fix bugs in non-spark env

* Fix bugs and improve tests

* Fix uninstall pyspark

* Fix tests error

* Fix java.lang.OutOfMemoryError: Java heap space

* Fix test_performance

* Update test_sparkml to test_0sparkml to use the expected spark conf

* Remove unnecessary widgets in notebook

* Fix iloc java.lang.StackOverflowError

* fix pre-commit

* Added params check for spark dataframes

* Refactor code for train_test_split to a function

* Update train_test_split_pyspark

* Refactor if-else, remove unnecessary code

* Remove y from predict, remove mem control from n_iter compute

* Update workflow

* Improve _split_pyspark

* Fix test failure of too short training time

* Fix typos, improve docstrings

* Fix index errors of pandas_on_spark, add spark loss metric

* Fix typo of ndcgAtK

* Update NDCG metrics and tests

* Remove unuseful logger

* Use cache and count to ensure consistent indexes

* refactor for merge maain

* fix errors of refactor

* Updated SparkLightGBMEstimator and cache

* Updated config2params

* Remove unused import

* Fix unknown parameters

* Update default_estimator_list

* Add unit tests for spark metrics
2023-03-25 19:59:46 +00:00

459 lines
17 KiB
Python

import inspect
import time
import os
from typing import Any, Optional
import numpy as np
import pandas as pd
from flaml import tune
from flaml.automl.logger import logger
from flaml.automl.ml import compute_estimator, train_estimator
from flaml.automl.task.task import TS_FORECAST
try:
from flaml.automl.spark.utils import (
train_test_split_pyspark,
unique_pandas_on_spark,
len_labels,
unique_value_first_index,
)
except ImportError:
train_test_split_pyspark = None
unique_pandas_on_spark = None
from flaml.automl.utils import (
len_labels,
unique_value_first_index,
)
try:
os.environ["PYARROW_IGNORE_TIMEZONE"] = "1"
import pyspark.pandas as ps
from pyspark.pandas import DataFrame as psDataFrame, Series as psSeries
from pyspark.pandas.config import set_option, reset_option
except ImportError:
ps = None
class psDataFrame:
pass
class psSeries:
pass
class SearchState:
@property
def search_space(self):
return self._search_space_domain
@property
def estimated_cost4improvement(self):
return max(
self.time_best_found - self.time_best_found_old,
self.total_time_used - self.time_best_found,
)
def valid_starting_point_one_dim(self, value_one_dim, domain_one_dim):
from flaml.tune.space import sample
"""
For each hp in the starting point, check the following 3 conditions:
(1) If the type of the starting point does not match the required type in search space, return false
(2) If the starting point is not in the required search space, return false
(3) If the search space is a value instead of domain, and the value is not equal to the starting point
Notice (2) include the case starting point not in user specified search space custom_hp
"""
if isinstance(domain_one_dim, sample.Domain):
renamed_type = list(
inspect.signature(domain_one_dim.is_valid).parameters.values()
)[0].annotation
type_match = (
renamed_type == Any
or isinstance(value_one_dim, renamed_type)
or isinstance(value_one_dim, int)
and renamed_type is float
)
if not (type_match and domain_one_dim.is_valid(value_one_dim)):
return False
elif value_one_dim != domain_one_dim:
return False
return True
def valid_starting_point(self, starting_point, search_space):
return all(
self.valid_starting_point_one_dim(value, search_space[name].get("domain"))
for name, value in starting_point.items()
if name != "FLAML_sample_size"
)
def __init__(
self,
learner_class,
data_size,
task,
starting_point=None,
period=None,
custom_hp=None,
max_iter=None,
budget=None,
):
self.init_eci = learner_class.cost_relative2lgbm() if budget >= 0 else 1
self._search_space_domain = {}
self.init_config = None
self.low_cost_partial_config = {}
self.cat_hp_cost = {}
self.data_size = data_size
self.ls_ever_converged = False
self.learner_class = learner_class
self._budget = budget
if task in TS_FORECAST:
search_space = learner_class.search_space(
data_size=data_size, task=task, pred_horizon=period
)
else:
search_space = learner_class.search_space(data_size=data_size, task=task)
if custom_hp is not None:
search_space.update(custom_hp)
if isinstance(starting_point, dict):
starting_point = AutoMLState.sanitize(starting_point)
if max_iter > 1 and not self.valid_starting_point(
starting_point, search_space
):
# If the number of iterations is larger than 1, remove invalid point
logger.warning(
"Starting point {} removed because it is outside of the search space".format(
starting_point
)
)
starting_point = None
elif isinstance(starting_point, list):
starting_point = [AutoMLState.sanitize(x) for x in starting_point]
if max_iter > len(starting_point):
# If the number of starting points is no smaller than max iter, avoid the checking
starting_point_len = len(starting_point)
starting_point = [
x
for x in starting_point
if self.valid_starting_point(x, search_space)
]
if starting_point_len > len(starting_point):
logger.warning(
"Starting points outside of the search space are removed. "
f"Remaining starting points for {learner_class}: {starting_point}"
)
starting_point = starting_point or None
for name, space in search_space.items():
assert (
"domain" in space
), f"{name}'s domain is missing in the search space spec {space}"
if space["domain"] is None:
# don't search this hp
continue
self._search_space_domain[name] = space["domain"]
if "low_cost_init_value" in space:
self.low_cost_partial_config[name] = space["low_cost_init_value"]
if "cat_hp_cost" in space:
self.cat_hp_cost[name] = space["cat_hp_cost"]
# if a starting point is provided, set the init config to be
# the starting point provided
if (
isinstance(starting_point, dict)
and starting_point.get(name) is not None
):
if self.init_config is None:
self.init_config = {}
self.init_config[name] = starting_point[name]
elif (
not isinstance(starting_point, list)
and "init_value" in space
and self.valid_starting_point_one_dim(
space["init_value"], space["domain"]
)
):
if self.init_config is None:
self.init_config = {}
self.init_config[name] = space["init_value"]
if isinstance(starting_point, list):
self.init_config = starting_point
else:
self.init_config = [] if self.init_config is None else [self.init_config]
self._hp_names = list(self._search_space_domain.keys())
self.search_alg = None
self.best_config = None
self.best_result = None
self.best_loss = self.best_loss_old = np.inf
self.total_time_used = 0
self.total_iter = 0
self.base_eci = None
self.time_best_found = self.time_best_found_old = 0
self.time2eval_best = 0
self.time2eval_best_old = 0
self.trained_estimator = None
self.sample_size = None
self.trial_time = 0
def update(self, result, time_used):
if result:
config = result["config"]
if config and "FLAML_sample_size" in config:
self.sample_size = config["FLAML_sample_size"]
else:
self.sample_size = self.data_size[0]
obj = result["val_loss"]
metric_for_logging = result["metric_for_logging"]
time2eval = result["time_total_s"]
trained_estimator = result["trained_estimator"]
del result["trained_estimator"] # free up RAM
n_iter = (
trained_estimator
and hasattr(trained_estimator, "ITER_HP")
and trained_estimator.params.get(trained_estimator.ITER_HP)
)
if n_iter:
if "ml" in config:
config["ml"][trained_estimator.ITER_HP] = n_iter
else:
config[trained_estimator.ITER_HP] = n_iter
else:
obj, time2eval, trained_estimator = np.inf, 0.0, None
metric_for_logging = config = None
self.trial_time = time2eval
self.total_time_used += time_used if self._budget >= 0 else 1
self.total_iter += 1
if self.base_eci is None:
self.base_eci = time_used
if (obj is not None) and (obj < self.best_loss):
self.best_loss_old = self.best_loss if self.best_loss < np.inf else 2 * obj
self.best_loss = obj
self.best_result = result
self.time_best_found_old = self.time_best_found
self.time_best_found = self.total_time_used
self.iter_best_found = self.total_iter
self.best_config = config
self.best_config_sample_size = self.sample_size
self.best_config_train_time = time_used
if time2eval:
self.time2eval_best_old = self.time2eval_best
self.time2eval_best = time2eval
if (
self.trained_estimator
and trained_estimator
and self.trained_estimator != trained_estimator
):
self.trained_estimator.cleanup()
if trained_estimator:
self.trained_estimator = trained_estimator
elif trained_estimator:
trained_estimator.cleanup()
self.metric_for_logging = metric_for_logging
self.val_loss, self.config = obj, config
def get_hist_config_sig(self, sample_size, config):
config_values = tuple([config[k] for k in self._hp_names if k in config])
config_sig = str(sample_size) + "_" + str(config_values)
return config_sig
def est_retrain_time(self, retrain_sample_size):
assert (
self.best_config_sample_size is not None
), "need to first get best_config_sample_size"
return self.time2eval_best * retrain_sample_size / self.best_config_sample_size
class AutoMLState:
def _prepare_sample_train_data(self, sample_size: int):
sampled_weight = groups = None
if sample_size <= self.data_size[0]:
if isinstance(self.X_train, (pd.DataFrame, psDataFrame)):
sampled_X_train = self.X_train.iloc[:sample_size]
else:
sampled_X_train = self.X_train[:sample_size]
if isinstance(self.y_train, (pd.Series, psSeries)):
sampled_y_train = self.y_train.iloc[:sample_size]
else:
sampled_y_train = self.y_train[:sample_size]
weight = self.fit_kwargs.get(
"sample_weight"
) # NOTE: _prepare_sample_train_data is before kwargs is updated to fit_kwargs_by_estimator
if weight is not None:
sampled_weight = (
weight.iloc[:sample_size]
if isinstance(weight, (pd.Series, psSeries))
else weight[:sample_size]
)
if self.groups is not None:
groups = (
self.groups.iloc[:sample_size]
if isinstance(self.groups, (pd.Series, psSeries))
else self.groups[:sample_size]
)
else:
sampled_X_train = self.X_train_all
sampled_y_train = self.y_train_all
if (
"sample_weight" in self.fit_kwargs
): # NOTE: _prepare_sample_train_data is before kwargs is updated to fit_kwargs_by_estimator
sampled_weight = self.sample_weight_all
if self.groups is not None:
groups = self.groups_all
return sampled_X_train, sampled_y_train, sampled_weight, groups
@staticmethod
def _compute_with_config_base(
config_w_resource: dict,
state: "AutoMLState",
estimator: str,
is_report: bool = True,
) -> dict:
if "FLAML_sample_size" in config_w_resource:
sample_size = int(config_w_resource["FLAML_sample_size"])
else:
sample_size = state.data_size[0]
this_estimator_kwargs = state.fit_kwargs_by_estimator.get(
estimator
).copy() # NOTE: _compute_with_config_base is after kwargs is updated to fit_kwargs_by_estimator
(
sampled_X_train,
sampled_y_train,
sampled_weight,
groups,
) = state._prepare_sample_train_data(sample_size)
if sampled_weight is not None:
weight = this_estimator_kwargs["sample_weight"]
this_estimator_kwargs["sample_weight"] = sampled_weight
if groups is not None:
this_estimator_kwargs["groups"] = groups
config = config_w_resource.copy()
if "FLAML_sample_size" in config:
del config["FLAML_sample_size"]
budget = (
None
if state.time_budget < 0
else state.time_budget - state.time_from_start
if sample_size == state.data_size[0]
else (state.time_budget - state.time_from_start)
/ 2
* sample_size
/ state.data_size[0]
)
(
trained_estimator,
val_loss,
metric_for_logging,
_,
pred_time,
) = compute_estimator(
sampled_X_train,
sampled_y_train,
state.X_val,
state.y_val,
state.weight_val,
state.groups_val,
state.train_time_limit
if budget is None
else min(budget, state.train_time_limit or np.inf),
state.kf,
config,
state.task,
estimator,
state.eval_method,
state.metric,
state.best_loss,
state.n_jobs,
state.learner_classes.get(estimator),
state.cv_score_agg_func,
state.log_training_metric,
this_estimator_kwargs,
state.free_mem_ratio,
)
if state.retrain_final and not state.model_history:
trained_estimator.cleanup()
result = {
"pred_time": pred_time,
"wall_clock_time": time.time() - state._start_time_flag,
"metric_for_logging": metric_for_logging,
"val_loss": val_loss,
"trained_estimator": trained_estimator,
}
if sampled_weight is not None:
this_estimator_kwargs["sample_weight"] = weight
if is_report is True:
tune.report(**result)
return result
@classmethod
def sanitize(cls, config: dict) -> dict:
"""Make a config ready for passing to estimator."""
config = config.get("ml", config).copy()
config.pop("FLAML_sample_size", None)
config.pop("learner", None)
config.pop("_choice_", None)
return config
def _train_with_config(
self,
estimator: str,
config_w_resource: dict,
sample_size: Optional[int] = None,
):
if not sample_size:
sample_size = config_w_resource.get(
"FLAML_sample_size", len(self.y_train_all)
)
config = AutoMLState.sanitize(config_w_resource)
this_estimator_kwargs = self.fit_kwargs_by_estimator.get(
estimator
).copy() # NOTE: _train_with_config is after kwargs is updated to fit_kwargs_by_estimator
(
sampled_X_train,
sampled_y_train,
sampled_weight,
groups,
) = self._prepare_sample_train_data(sample_size)
if sampled_weight is not None:
weight = this_estimator_kwargs[
"sample_weight"
] # NOTE: _train_with_config is after kwargs is updated to fit_kwargs_by_estimator
this_estimator_kwargs[
"sample_weight"
] = sampled_weight # NOTE: _train_with_config is after kwargs is updated to fit_kwargs_by_estimator
if groups is not None:
this_estimator_kwargs[
"groups"
] = groups # NOTE: _train_with_config is after kwargs is updated to fit_kwargs_by_estimator
budget = (
None if self.time_budget < 0 else self.time_budget - self.time_from_start
)
estimator, train_time = train_estimator(
X_train=sampled_X_train,
y_train=sampled_y_train,
config_dic=config,
task=self.task,
estimator_name=estimator,
n_jobs=self.n_jobs,
estimator_class=self.learner_classes.get(estimator),
budget=budget,
fit_kwargs=this_estimator_kwargs, # NOTE: _train_with_config is after kwargs is updated to fit_kwargs_by_estimator
eval_metric=self.metric if hasattr(self, "metric") else "train_time",
free_mem_ratio=self.free_mem_ratio,
)
if sampled_weight is not None:
this_estimator_kwargs[
"sample_weight"
] = weight # NOTE: _train_with_config is after kwargs is updated to fit_kwargs_by_estimator
return estimator, train_time