autogen/flaml/automl/utils.py
Li Jiang 50334f2c52
Support spark dataframe as input dataset and spark models as estimators (#934)
* add basic support to Spark dataframe

add support to SynapseML LightGBM model

update to pyspark>=3.2.0 to leverage pandas_on_Spark API

* clean code, add TODOs

* add sample_train_data for pyspark.pandas dataframe, fix bugs

* improve some functions, fix bugs

* fix dict change size during iteration

* update model predict

* update LightGBM model, update test

* update SynapseML LightGBM params

* update synapseML and tests

* update TODOs

* Added support to roc_auc for spark models

* Added support to score of spark estimator

* Added test for automl score of spark estimator

* Added cv support to pyspark.pandas dataframe

* Update test, fix bugs

* Added tests

* Updated docs, tests, added a notebook

* Fix bugs in non-spark env

* Fix bugs and improve tests

* Fix uninstall pyspark

* Fix tests error

* Fix java.lang.OutOfMemoryError: Java heap space

* Fix test_performance

* Update test_sparkml to test_0sparkml to use the expected spark conf

* Remove unnecessary widgets in notebook

* Fix iloc java.lang.StackOverflowError

* fix pre-commit

* Added params check for spark dataframes

* Refactor code for train_test_split to a function

* Update train_test_split_pyspark

* Refactor if-else, remove unnecessary code

* Remove y from predict, remove mem control from n_iter compute

* Update workflow

* Improve _split_pyspark

* Fix test failure of too short training time

* Fix typos, improve docstrings

* Fix index errors of pandas_on_spark, add spark loss metric

* Fix typo of ndcgAtK

* Update NDCG metrics and tests

* Remove unuseful logger

* Use cache and count to ensure consistent indexes

* refactor for merge maain

* fix errors of refactor

* Updated SparkLightGBMEstimator and cache

* Updated config2params

* Remove unused import

* Fix unknown parameters

* Update default_estimator_list

* Add unit tests for spark metrics
2023-03-25 19:59:46 +00:00

19 lines
703 B
Python

from typing import Optional, Union, Tuple
import numpy as np
def len_labels(y: np.ndarray, return_labels=False) -> Union[int, Optional[np.ndarray]]:
"""Get the number of unique labels in y. The non-spark version of
flaml.automl.spark.utils.len_labels"""
labels = np.unique(y)
if return_labels:
return len(labels), labels
return len(labels)
def unique_value_first_index(y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Get the unique values and indices of a pandas series or numpy array.
The non-spark version of flaml.automl.spark.utils.unique_value_first_index"""
label_set, first_index = np.unique(y, return_index=True)
return label_set, first_index