mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-19 05:04:20 +00:00

* add basic support to Spark dataframe add support to SynapseML LightGBM model update to pyspark>=3.2.0 to leverage pandas_on_Spark API * clean code, add TODOs * add sample_train_data for pyspark.pandas dataframe, fix bugs * improve some functions, fix bugs * fix dict change size during iteration * update model predict * update LightGBM model, update test * update SynapseML LightGBM params * update synapseML and tests * update TODOs * Added support to roc_auc for spark models * Added support to score of spark estimator * Added test for automl score of spark estimator * Added cv support to pyspark.pandas dataframe * Update test, fix bugs * Added tests * Updated docs, tests, added a notebook * Fix bugs in non-spark env * Fix bugs and improve tests * Fix uninstall pyspark * Fix tests error * Fix java.lang.OutOfMemoryError: Java heap space * Fix test_performance * Update test_sparkml to test_0sparkml to use the expected spark conf * Remove unnecessary widgets in notebook * Fix iloc java.lang.StackOverflowError * fix pre-commit * Added params check for spark dataframes * Refactor code for train_test_split to a function * Update train_test_split_pyspark * Refactor if-else, remove unnecessary code * Remove y from predict, remove mem control from n_iter compute * Update workflow * Improve _split_pyspark * Fix test failure of too short training time * Fix typos, improve docstrings * Fix index errors of pandas_on_spark, add spark loss metric * Fix typo of ndcgAtK * Update NDCG metrics and tests * Remove unuseful logger * Use cache and count to ensure consistent indexes * refactor for merge maain * fix errors of refactor * Updated SparkLightGBMEstimator and cache * Updated config2params * Remove unused import * Fix unknown parameters * Update default_estimator_list * Add unit tests for spark metrics
60 lines
1.6 KiB
Python
60 lines
1.6 KiB
Python
import lightgbm as lgb
|
|
import numpy as np
|
|
from sklearn.datasets import load_breast_cancer
|
|
from sklearn.metrics import accuracy_score
|
|
from sklearn.model_selection import train_test_split
|
|
from flaml import tune
|
|
from flaml.automl.model import LGBMEstimator
|
|
from flaml.tune.spark.utils import check_spark
|
|
import os
|
|
import pytest
|
|
|
|
spark_available, _ = check_spark()
|
|
skip_spark = not spark_available
|
|
|
|
pytestmark = pytest.mark.skipif(
|
|
skip_spark, reason="Spark is not installed. Skip all spark tests."
|
|
)
|
|
|
|
os.environ["FLAML_MAX_CONCURRENT"] = "2"
|
|
X, y = load_breast_cancer(return_X_y=True)
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
|
|
|
|
|
|
def train_breast_cancer(config):
|
|
params = LGBMEstimator(**config).params
|
|
train_set = lgb.Dataset(X_train, label=y_train)
|
|
gbm = lgb.train(params, train_set)
|
|
preds = gbm.predict(X_test)
|
|
pred_labels = np.rint(preds)
|
|
result = {
|
|
"mean_accuracy": accuracy_score(y_test, pred_labels),
|
|
}
|
|
return result
|
|
|
|
|
|
def test_tune_spark():
|
|
flaml_lgbm_search_space = LGBMEstimator.search_space(X_train.shape)
|
|
config_search_space = {
|
|
hp: space["domain"] for hp, space in flaml_lgbm_search_space.items()
|
|
}
|
|
|
|
analysis = tune.run(
|
|
train_breast_cancer,
|
|
metric="mean_accuracy",
|
|
mode="max",
|
|
config=config_search_space,
|
|
num_samples=-1,
|
|
time_budget_s=5,
|
|
use_spark=True,
|
|
verbose=3,
|
|
n_concurrent_trials=4,
|
|
)
|
|
|
|
# print("Best hyperparameters found were: ", analysis.best_config)
|
|
print("The best trial's result: ", analysis.best_trial.last_result)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_tune_spark()
|