mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-29 03:40:35 +00:00

* limit time and memory * separate tests * lrl1 can't be limited by limit_resource * free memory when possible * passthrough=False when ensemble fails; retrain when trained_estimator is None * use callback to for resource limit * handle lower version of xgb with no callback * free mem ratio * reduce verbosity * retrain_final when max_iter==1 * remove trained_estimator from result * model_history * wheel * retrain time as best_config_train_time * ci: libomp version for xgboost on macos * limit_resource not working in windows * test pickle load * mute forecaster * notebook update * check hard * preventive callback * add use_ray
1289 lines
45 KiB
Python
1289 lines
45 KiB
Python
"""!
|
|
* Copyright (c) Microsoft Corporation. All rights reserved.
|
|
* Licensed under the MIT License.
|
|
"""
|
|
from contextlib import contextmanager
|
|
from functools import partial
|
|
import signal
|
|
import os
|
|
from typing import Callable, List
|
|
import numpy as np
|
|
import time
|
|
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
|
|
from sklearn.ensemble import ExtraTreesRegressor, ExtraTreesClassifier
|
|
from sklearn.linear_model import LogisticRegression
|
|
from sklearn.dummy import DummyClassifier, DummyRegressor
|
|
from scipy.sparse import issparse
|
|
import pandas as pd
|
|
import logging
|
|
from . import tune
|
|
from .data import (
|
|
group_counts,
|
|
CLASSIFICATION,
|
|
TS_FORECAST,
|
|
TS_TIMESTAMP_COL,
|
|
TS_VALUE_COL,
|
|
)
|
|
|
|
try:
|
|
import psutil
|
|
except ImportError:
|
|
psutil = None
|
|
try:
|
|
import resource
|
|
except ImportError:
|
|
resource = None
|
|
|
|
logger = logging.getLogger("flaml.automl")
|
|
FREE_MEM_RATIO = 0.2
|
|
|
|
|
|
def TimeoutHandler(sig, frame):
|
|
raise TimeoutError(sig, frame)
|
|
|
|
|
|
@contextmanager
|
|
def limit_resource(memory_limit, time_limit):
|
|
if memory_limit > 0:
|
|
soft, hard = resource.getrlimit(resource.RLIMIT_AS)
|
|
if soft < 0 and (hard < 0 or memory_limit <= hard) or memory_limit < soft:
|
|
resource.setrlimit(resource.RLIMIT_AS, (memory_limit, hard))
|
|
main_thread = False
|
|
if time_limit is not None:
|
|
try:
|
|
signal.signal(signal.SIGALRM, TimeoutHandler)
|
|
signal.alarm(int(time_limit) or 1)
|
|
main_thread = True
|
|
except ValueError:
|
|
pass
|
|
try:
|
|
yield
|
|
finally:
|
|
if main_thread:
|
|
signal.alarm(0)
|
|
if memory_limit > 0:
|
|
resource.setrlimit(resource.RLIMIT_AS, (soft, hard))
|
|
|
|
|
|
class BaseEstimator:
|
|
"""The abstract class for all learners
|
|
|
|
Typical example:
|
|
XGBoostEstimator: for regression
|
|
XGBoostSklearnEstimator: for classification
|
|
LGBMEstimator, RandomForestEstimator, LRL1Classifier, LRL2Classifier:
|
|
for both regression and classification
|
|
"""
|
|
|
|
def __init__(self, task="binary", **config):
|
|
"""Constructor
|
|
|
|
Args:
|
|
task: A string of the task type, one of
|
|
'binary', 'multi', 'regression', 'rank', 'forecast'
|
|
config: A dictionary containing the hyperparameter names
|
|
and 'n_jobs' as keys. n_jobs is the number of parallel threads.
|
|
"""
|
|
self.params = self.config2params(config)
|
|
self.estimator_class = self._model = None
|
|
self._task = task
|
|
if "_estimator_type" in config:
|
|
self._estimator_type = self.params.pop("_estimator_type")
|
|
else:
|
|
self._estimator_type = (
|
|
"classifier" if task in CLASSIFICATION else "regressor"
|
|
)
|
|
|
|
def get_params(self, deep=False):
|
|
params = self.params.copy()
|
|
params["task"] = self._task
|
|
if hasattr(self, "_estimator_type"):
|
|
params["_estimator_type"] = self._estimator_type
|
|
return params
|
|
|
|
@property
|
|
def classes_(self):
|
|
return self._model.classes_
|
|
|
|
@property
|
|
def n_features_in_(self):
|
|
return self.model.n_features_in_
|
|
|
|
@property
|
|
def model(self):
|
|
"""Trained model after fit() is called, or None before fit() is called"""
|
|
return self._model
|
|
|
|
@property
|
|
def estimator(self):
|
|
"""Trained model after fit() is called, or None before fit() is called"""
|
|
return self._model
|
|
|
|
def _preprocess(self, X):
|
|
return X
|
|
|
|
def _fit(self, X_train, y_train, **kwargs):
|
|
|
|
current_time = time.time()
|
|
if "groups" in kwargs:
|
|
kwargs = kwargs.copy()
|
|
groups = kwargs.pop("groups")
|
|
if self._task == "rank":
|
|
kwargs["group"] = group_counts(groups)
|
|
# groups_val = kwargs.get('groups_val')
|
|
# if groups_val is not None:
|
|
# kwargs['eval_group'] = [group_counts(groups_val)]
|
|
# kwargs['eval_set'] = [
|
|
# (kwargs['X_val'], kwargs['y_val'])]
|
|
# kwargs['verbose'] = False
|
|
# del kwargs['groups_val'], kwargs['X_val'], kwargs['y_val']
|
|
X_train = self._preprocess(X_train)
|
|
model = self.estimator_class(**self.params)
|
|
if logger.level == logging.DEBUG:
|
|
logger.debug(f"flaml.model - {model} fit started")
|
|
model.fit(X_train, y_train, **kwargs)
|
|
if logger.level == logging.DEBUG:
|
|
logger.debug(f"flaml.model - {model} fit finished")
|
|
train_time = time.time() - current_time
|
|
self._model = model
|
|
return train_time
|
|
|
|
def fit(self, X_train, y_train, budget=None, **kwargs):
|
|
"""Train the model from given training data
|
|
|
|
Args:
|
|
X_train: A numpy array of training data in shape n*m
|
|
y_train: A numpy array of labels in shape n*1
|
|
budget: A float of the time budget in seconds
|
|
|
|
Returns:
|
|
train_time: A float of the training time in seconds
|
|
"""
|
|
if (
|
|
getattr(self, "limit_resource", None)
|
|
and resource is not None
|
|
and (budget is not None or psutil is not None)
|
|
):
|
|
start_time = time.time()
|
|
mem = psutil.virtual_memory() if psutil is not None else None
|
|
try:
|
|
with limit_resource(
|
|
mem.available * (1 - FREE_MEM_RATIO)
|
|
+ psutil.Process(os.getpid()).memory_info().rss
|
|
if mem is not None
|
|
else -1,
|
|
budget,
|
|
):
|
|
train_time = self._fit(X_train, y_train, **kwargs)
|
|
except (MemoryError, TimeoutError) as e:
|
|
logger.warning(f"{e.__class__} {e}")
|
|
if self._task in CLASSIFICATION:
|
|
model = DummyClassifier()
|
|
else:
|
|
model = DummyRegressor()
|
|
X_train = self._preprocess(X_train)
|
|
model.fit(X_train, y_train)
|
|
self._model = model
|
|
train_time = time.time() - start_time
|
|
else:
|
|
train_time = self._fit(X_train, y_train, **kwargs)
|
|
return train_time
|
|
|
|
def predict(self, X_test):
|
|
"""Predict label from features
|
|
|
|
Args:
|
|
X_test: A numpy array of featurized instances, shape n*m
|
|
|
|
Returns:
|
|
A numpy array of shape n*1.
|
|
Each element is the label for a instance
|
|
"""
|
|
if self._model is not None:
|
|
X_test = self._preprocess(X_test)
|
|
return self._model.predict(X_test)
|
|
else:
|
|
return np.ones(X_test.shape[0])
|
|
|
|
def predict_proba(self, X_test):
|
|
"""Predict the probability of each class from features
|
|
|
|
Only works for classification problems
|
|
|
|
Args:
|
|
model: An object of trained model with method predict_proba()
|
|
X_test: A numpy array of featurized instances, shape n*m
|
|
|
|
Returns:
|
|
A numpy array of shape n*c. c is the # classes
|
|
Each element at (i,j) is the probability for instance i to be in
|
|
class j
|
|
"""
|
|
assert (
|
|
self._task in CLASSIFICATION
|
|
), "predict_prob() only for classification task."
|
|
X_test = self._preprocess(X_test)
|
|
return self._model.predict_proba(X_test)
|
|
|
|
def cleanup(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def search_space(cls, **params):
|
|
"""[required method] search space
|
|
|
|
Returns:
|
|
A dictionary of the search space.
|
|
Each key is the name of a hyperparameter, and value is a dict with
|
|
its domain (required) and low_cost_init_value, init_value,
|
|
cat_hp_cost (if applicable).
|
|
e.g.,
|
|
{'domain': tune.randint(lower=1, upper=10), 'init_value': 1}.
|
|
"""
|
|
return {}
|
|
|
|
@classmethod
|
|
def size(cls, config: dict) -> float:
|
|
"""[optional method] memory size of the estimator in bytes
|
|
|
|
Args:
|
|
config - A dict of the hyperparameter config.
|
|
|
|
Returns:
|
|
A float of the memory size required by the estimator to train the
|
|
given config.
|
|
"""
|
|
return 1.0
|
|
|
|
@classmethod
|
|
def cost_relative2lgbm(cls) -> float:
|
|
"""[optional method] relative cost compared to lightgbm"""
|
|
return 1.0
|
|
|
|
@classmethod
|
|
def init(cls):
|
|
"""[optional method] initialize the class"""
|
|
pass
|
|
|
|
def config2params(self, config: dict) -> dict:
|
|
"""[optional method] config dict to params dict
|
|
|
|
Args:
|
|
config - A dict of the hyperparameter config.
|
|
|
|
Returns:
|
|
A dict that will be passed to self.estimator_class's constructor.
|
|
"""
|
|
return config.copy()
|
|
|
|
|
|
class SKLearnEstimator(BaseEstimator):
|
|
def __init__(self, task="binary", **config):
|
|
super().__init__(task, **config)
|
|
|
|
def _preprocess(self, X):
|
|
if isinstance(X, pd.DataFrame):
|
|
cat_columns = X.select_dtypes(include=["category"]).columns
|
|
if not cat_columns.empty:
|
|
X = X.copy()
|
|
X[cat_columns] = X[cat_columns].apply(lambda x: x.cat.codes)
|
|
elif isinstance(X, np.ndarray) and X.dtype.kind not in "buif":
|
|
# numpy array is not of numeric dtype
|
|
X = pd.DataFrame(X)
|
|
for col in X.columns:
|
|
if isinstance(X[col][0], str):
|
|
X[col] = X[col].astype("category").cat.codes
|
|
X = X.to_numpy()
|
|
return X
|
|
|
|
|
|
class LGBMEstimator(BaseEstimator):
|
|
ITER_HP = "n_estimators"
|
|
HAS_CALLBACK = True
|
|
|
|
@classmethod
|
|
def search_space(cls, data_size, **params):
|
|
upper = min(32768, int(data_size))
|
|
return {
|
|
"n_estimators": {
|
|
"domain": tune.lograndint(lower=4, upper=upper),
|
|
"init_value": 4,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
"num_leaves": {
|
|
"domain": tune.lograndint(lower=4, upper=upper),
|
|
"init_value": 4,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
"min_child_samples": {
|
|
"domain": tune.lograndint(lower=2, upper=2 ** 7 + 1),
|
|
"init_value": 20,
|
|
},
|
|
"learning_rate": {
|
|
"domain": tune.loguniform(lower=1 / 1024, upper=1.0),
|
|
"init_value": 0.1,
|
|
},
|
|
# 'subsample': {
|
|
# 'domain': tune.uniform(lower=0.1, upper=1.0),
|
|
# 'init_value': 1.0,
|
|
# },
|
|
"log_max_bin": { # log transformed with base 2
|
|
"domain": tune.lograndint(lower=3, upper=11),
|
|
"init_value": 8,
|
|
},
|
|
"colsample_bytree": {
|
|
"domain": tune.uniform(lower=0.01, upper=1.0),
|
|
"init_value": 1.0,
|
|
},
|
|
"reg_alpha": {
|
|
"domain": tune.loguniform(lower=1 / 1024, upper=1024),
|
|
"init_value": 1 / 1024,
|
|
},
|
|
"reg_lambda": {
|
|
"domain": tune.loguniform(lower=1 / 1024, upper=1024),
|
|
"init_value": 1.0,
|
|
},
|
|
}
|
|
|
|
def config2params(cls, config: dict) -> dict:
|
|
params = config.copy()
|
|
if "log_max_bin" in params:
|
|
params["max_bin"] = (1 << params.pop("log_max_bin")) - 1
|
|
return params
|
|
|
|
@classmethod
|
|
def size(cls, config):
|
|
num_leaves = int(round(config.get("num_leaves") or config["max_leaves"]))
|
|
n_estimators = int(round(config["n_estimators"]))
|
|
return (num_leaves * 3 + (num_leaves - 1) * 4 + 1.0) * n_estimators * 8
|
|
|
|
def __init__(self, task="binary", **config):
|
|
super().__init__(task, **config)
|
|
if "verbose" not in self.params:
|
|
self.params["verbose"] = -1
|
|
if "regression" == task:
|
|
from lightgbm import LGBMRegressor
|
|
|
|
self.estimator_class = LGBMRegressor
|
|
elif "rank" == task:
|
|
from lightgbm import LGBMRanker
|
|
|
|
self.estimator_class = LGBMRanker
|
|
else:
|
|
from lightgbm import LGBMClassifier
|
|
|
|
self.estimator_class = LGBMClassifier
|
|
self._time_per_iter = None
|
|
self._train_size = 0
|
|
self._mem_per_iter = 1
|
|
self.HAS_CALLBACK = self.HAS_CALLBACK and self._callbacks(0, 0) is not None
|
|
|
|
def _preprocess(self, X):
|
|
if (
|
|
not isinstance(X, pd.DataFrame)
|
|
and issparse(X)
|
|
and np.issubdtype(X.dtype, np.integer)
|
|
):
|
|
X = X.astype(float)
|
|
elif isinstance(X, np.ndarray) and X.dtype.kind not in "buif":
|
|
# numpy array is not of numeric dtype
|
|
X = pd.DataFrame(X)
|
|
for col in X.columns:
|
|
if isinstance(X[col][0], str):
|
|
X[col] = X[col].astype("category").cat.codes
|
|
X = X.to_numpy()
|
|
return X
|
|
|
|
def fit(self, X_train, y_train, budget=None, **kwargs):
|
|
start_time = time.time()
|
|
deadline = start_time + budget if budget else np.inf
|
|
n_iter = self.params[self.ITER_HP]
|
|
trained = False
|
|
if not self.HAS_CALLBACK:
|
|
mem0 = psutil.virtual_memory().available if psutil is not None else 1
|
|
if (
|
|
(
|
|
not self._time_per_iter
|
|
or abs(self._train_size - X_train.shape[0]) > 4
|
|
)
|
|
and budget is not None
|
|
or self._mem_per_iter <= 1
|
|
and psutil is not None
|
|
) and n_iter > 1:
|
|
self.params[self.ITER_HP] = 1
|
|
self._t1 = self._fit(X_train, y_train, **kwargs)
|
|
if budget is not None and self._t1 >= budget or n_iter == 1:
|
|
# self.params[self.ITER_HP] = n_iter
|
|
return self._t1
|
|
mem1 = psutil.virtual_memory().available if psutil is not None else 1
|
|
self._mem1 = mem0 - mem1
|
|
self.params[self.ITER_HP] = min(n_iter, 4)
|
|
self._t2 = self._fit(X_train, y_train, **kwargs)
|
|
mem2 = psutil.virtual_memory().available if psutil is not None else 1
|
|
self._mem2 = max(mem0 - mem2, self._mem1)
|
|
# if self._mem1 <= 0:
|
|
# self._mem_per_iter = self._mem2 / (self.params[self.ITER_HP] + 1)
|
|
# elif self._mem2 <= 0:
|
|
# self._mem_per_iter = self._mem1
|
|
# else:
|
|
self._mem_per_iter = min(
|
|
self._mem1, self._mem2 / self.params[self.ITER_HP]
|
|
)
|
|
if self._mem_per_iter <= 1 and psutil is not None:
|
|
n_iter = self.params[self.ITER_HP]
|
|
self._time_per_iter = (
|
|
(self._t2 - self._t1) / (self.params[self.ITER_HP] - 1)
|
|
if self._t2 > self._t1
|
|
else self._t1
|
|
if self._t1
|
|
else 0.001
|
|
)
|
|
self._train_size = X_train.shape[0]
|
|
if (
|
|
budget is not None
|
|
and self._t1 + self._t2 >= budget
|
|
or n_iter == self.params[self.ITER_HP]
|
|
):
|
|
# self.params[self.ITER_HP] = n_iter
|
|
return time.time() - start_time
|
|
trained = True
|
|
# logger.debug(mem0)
|
|
# logger.debug(self._mem_per_iter)
|
|
if n_iter > 1:
|
|
max_iter = min(
|
|
n_iter,
|
|
int(
|
|
(budget - time.time() + start_time - self._t1)
|
|
/ self._time_per_iter
|
|
+ 1
|
|
)
|
|
if budget is not None
|
|
else n_iter,
|
|
int((1 - FREE_MEM_RATIO) * mem0 / self._mem_per_iter)
|
|
if psutil is not None
|
|
else n_iter,
|
|
)
|
|
if trained and max_iter <= self.params[self.ITER_HP]:
|
|
return time.time() - start_time
|
|
self.params[self.ITER_HP] = max_iter
|
|
if self.params[self.ITER_HP] > 0:
|
|
if self.HAS_CALLBACK:
|
|
self._fit(
|
|
X_train, y_train, callbacks=self._callbacks(start_time, deadline), **kwargs
|
|
)
|
|
best_iteration = (
|
|
self._model.get_booster().best_iteration
|
|
if isinstance(self, XGBoostSklearnEstimator)
|
|
else self._model.best_iteration_
|
|
)
|
|
if best_iteration is not None:
|
|
self._model.set_params(n_estimators=best_iteration + 1)
|
|
else:
|
|
self._fit(X_train, y_train, **kwargs)
|
|
else:
|
|
self.params[self.ITER_HP] = self._model.n_estimators
|
|
train_time = time.time() - start_time
|
|
return train_time
|
|
|
|
def _callbacks(self, start_time, deadline) -> List[Callable]:
|
|
return [partial(self._callback, start_time, deadline)]
|
|
|
|
def _callback(self, start_time, deadline, env) -> None:
|
|
from lightgbm.callback import EarlyStopException
|
|
|
|
now = time.time()
|
|
if env.iteration == 0:
|
|
self._time_per_iter = now - start_time
|
|
if now + self._time_per_iter > deadline:
|
|
raise EarlyStopException(env.iteration, env.evaluation_result_list)
|
|
if psutil is not None:
|
|
mem = psutil.virtual_memory()
|
|
if mem.available / mem.total < FREE_MEM_RATIO:
|
|
raise EarlyStopException(env.iteration, env.evaluation_result_list)
|
|
|
|
|
|
class XGBoostEstimator(SKLearnEstimator):
|
|
"""not using sklearn API, used for regression"""
|
|
|
|
@classmethod
|
|
def search_space(cls, data_size, **params):
|
|
upper = min(32768, int(data_size))
|
|
return {
|
|
"n_estimators": {
|
|
"domain": tune.lograndint(lower=4, upper=upper),
|
|
"init_value": 4,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
"max_leaves": {
|
|
"domain": tune.lograndint(lower=4, upper=upper),
|
|
"init_value": 4,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
"min_child_weight": {
|
|
"domain": tune.loguniform(lower=0.001, upper=128),
|
|
"init_value": 1,
|
|
},
|
|
"learning_rate": {
|
|
"domain": tune.loguniform(lower=1 / 1024, upper=1.0),
|
|
"init_value": 0.1,
|
|
},
|
|
"subsample": {
|
|
"domain": tune.uniform(lower=0.1, upper=1.0),
|
|
"init_value": 1.0,
|
|
},
|
|
"colsample_bylevel": {
|
|
"domain": tune.uniform(lower=0.01, upper=1.0),
|
|
"init_value": 1.0,
|
|
},
|
|
"colsample_bytree": {
|
|
"domain": tune.uniform(lower=0.01, upper=1.0),
|
|
"init_value": 1.0,
|
|
},
|
|
"reg_alpha": {
|
|
"domain": tune.loguniform(lower=1 / 1024, upper=1024),
|
|
"init_value": 1 / 1024,
|
|
},
|
|
"reg_lambda": {
|
|
"domain": tune.loguniform(lower=1 / 1024, upper=1024),
|
|
"init_value": 1.0,
|
|
},
|
|
}
|
|
|
|
@classmethod
|
|
def size(cls, config):
|
|
return LGBMEstimator.size(config)
|
|
|
|
@classmethod
|
|
def cost_relative2lgbm(cls):
|
|
return 1.6
|
|
|
|
def config2params(cls, config: dict) -> dict:
|
|
params = config.copy()
|
|
params["max_depth"] = params.get("max_depth", 0)
|
|
params["grow_policy"] = params.get("grow_policy", "lossguide")
|
|
params["booster"] = params.get("booster", "gbtree")
|
|
params["use_label_encoder"] = params.get("use_label_encoder", False)
|
|
params["tree_method"] = params.get("tree_method", "hist")
|
|
if "n_jobs" in config:
|
|
params["nthread"] = params.pop("n_jobs")
|
|
return params
|
|
|
|
def __init__(
|
|
self,
|
|
task="regression",
|
|
**config,
|
|
):
|
|
super().__init__(task, **config)
|
|
self.params["verbosity"] = 0
|
|
|
|
def fit(self, X_train, y_train, budget=None, **kwargs):
|
|
import xgboost as xgb
|
|
|
|
start_time = time.time()
|
|
deadline = start_time + budget if budget else np.inf
|
|
if issparse(X_train):
|
|
self.params["tree_method"] = "auto"
|
|
else:
|
|
X_train = self._preprocess(X_train)
|
|
if "sample_weight" in kwargs:
|
|
dtrain = xgb.DMatrix(X_train, label=y_train, weight=kwargs["sample_weight"])
|
|
else:
|
|
dtrain = xgb.DMatrix(X_train, label=y_train)
|
|
|
|
objective = self.params.get("objective")
|
|
if isinstance(objective, str):
|
|
obj = None
|
|
else:
|
|
obj = objective
|
|
if "objective" in self.params:
|
|
del self.params["objective"]
|
|
_n_estimators = self.params.pop("n_estimators")
|
|
callbacks = XGBoostEstimator._callbacks(start_time, deadline)
|
|
if callbacks:
|
|
self._model = xgb.train(
|
|
self.params,
|
|
dtrain,
|
|
_n_estimators,
|
|
obj=obj,
|
|
callbacks=callbacks,
|
|
)
|
|
self.params["n_estimators"] = self._model.best_iteration + 1
|
|
else:
|
|
self._model = xgb.train(self.params, dtrain, _n_estimators, obj=obj)
|
|
self.params["n_estimators"] = _n_estimators
|
|
self.params["objective"] = objective
|
|
del dtrain
|
|
train_time = time.time() - start_time
|
|
return train_time
|
|
|
|
def predict(self, X_test):
|
|
import xgboost as xgb
|
|
|
|
if not issparse(X_test):
|
|
X_test = self._preprocess(X_test)
|
|
dtest = xgb.DMatrix(X_test)
|
|
return super().predict(dtest)
|
|
|
|
@classmethod
|
|
def _callbacks(cls, start_time, deadline):
|
|
try:
|
|
from xgboost.callback import TrainingCallback
|
|
except ImportError: # for xgboost<1.3
|
|
return None
|
|
|
|
class ResourceLimit(TrainingCallback):
|
|
def after_iteration(self, model, epoch, evals_log) -> bool:
|
|
now = time.time()
|
|
if epoch == 0:
|
|
self._time_per_iter = now - start_time
|
|
if now + self._time_per_iter > deadline:
|
|
return True
|
|
if psutil is not None:
|
|
mem = psutil.virtual_memory()
|
|
if mem.available / mem.total < FREE_MEM_RATIO:
|
|
return True
|
|
return False
|
|
|
|
return [ResourceLimit()]
|
|
|
|
|
|
class XGBoostSklearnEstimator(SKLearnEstimator, LGBMEstimator):
|
|
"""using sklearn API, used for classification"""
|
|
|
|
@classmethod
|
|
def search_space(cls, data_size, **params):
|
|
return XGBoostEstimator.search_space(data_size)
|
|
|
|
@classmethod
|
|
def cost_relative2lgbm(cls):
|
|
return XGBoostEstimator.cost_relative2lgbm()
|
|
|
|
def config2params(cls, config: dict) -> dict:
|
|
params = config.copy()
|
|
params["max_depth"] = 0
|
|
params["grow_policy"] = params.get("grow_policy", "lossguide")
|
|
params["booster"] = params.get("booster", "gbtree")
|
|
params["use_label_encoder"] = params.get("use_label_encoder", False)
|
|
params["tree_method"] = params.get("tree_method", "hist")
|
|
return params
|
|
|
|
def __init__(
|
|
self,
|
|
task="binary",
|
|
**config,
|
|
):
|
|
super().__init__(task, **config)
|
|
del self.params["verbose"]
|
|
self.params["verbosity"] = 0
|
|
import xgboost as xgb
|
|
|
|
self.estimator_class = xgb.XGBRegressor
|
|
if "rank" == task:
|
|
self.estimator_class = xgb.XGBRanker
|
|
elif task in CLASSIFICATION:
|
|
self.estimator_class = xgb.XGBClassifier
|
|
|
|
def fit(self, X_train, y_train, budget=None, **kwargs):
|
|
if issparse(X_train):
|
|
self.params["tree_method"] = "auto"
|
|
return super().fit(X_train, y_train, budget, **kwargs)
|
|
|
|
def _callbacks(self, start_time, deadline) -> List[Callable]:
|
|
return XGBoostEstimator._callbacks(start_time, deadline)
|
|
|
|
|
|
class RandomForestEstimator(SKLearnEstimator, LGBMEstimator):
|
|
HAS_CALLBACK = False
|
|
|
|
@classmethod
|
|
def search_space(cls, data_size, task, **params):
|
|
data_size = int(data_size)
|
|
upper = min(2048, data_size)
|
|
space = {
|
|
"n_estimators": {
|
|
"domain": tune.lograndint(lower=4, upper=upper),
|
|
"init_value": 4,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
"max_features": {
|
|
"domain": tune.loguniform(lower=0.1, upper=1.0),
|
|
"init_value": 1.0,
|
|
},
|
|
"max_leaves": {
|
|
"domain": tune.lograndint(lower=4, upper=min(32768, data_size)),
|
|
"init_value": 4,
|
|
"low_cost_init_value": 4,
|
|
},
|
|
}
|
|
if task in CLASSIFICATION:
|
|
space["criterion"] = {
|
|
"domain": tune.choice(["gini", "entropy"]),
|
|
# 'init_value': 'gini',
|
|
}
|
|
return space
|
|
|
|
@classmethod
|
|
def cost_relative2lgbm(cls):
|
|
return 2.0
|
|
|
|
def config2params(cls, config: dict) -> dict:
|
|
params = config.copy()
|
|
if "max_leaves" in params:
|
|
params["max_leaf_nodes"] = params.get(
|
|
"max_leaf_nodes", params.pop("max_leaves")
|
|
)
|
|
return params
|
|
|
|
def __init__(
|
|
self,
|
|
task="binary",
|
|
**params,
|
|
):
|
|
super().__init__(task, **params)
|
|
self.params["verbose"] = 0
|
|
self.estimator_class = RandomForestRegressor
|
|
if task in CLASSIFICATION:
|
|
self.estimator_class = RandomForestClassifier
|
|
|
|
|
|
class ExtraTreeEstimator(RandomForestEstimator):
|
|
@classmethod
|
|
def cost_relative2lgbm(cls):
|
|
return 1.9
|
|
|
|
def __init__(self, task="binary", **params):
|
|
super().__init__(task, **params)
|
|
if "regression" in task:
|
|
self.estimator_class = ExtraTreesRegressor
|
|
else:
|
|
self.estimator_class = ExtraTreesClassifier
|
|
|
|
|
|
class LRL1Classifier(SKLearnEstimator):
|
|
@classmethod
|
|
def search_space(cls, **params):
|
|
return {
|
|
"C": {
|
|
"domain": tune.loguniform(lower=0.03125, upper=32768.0),
|
|
"init_value": 1.0,
|
|
},
|
|
}
|
|
|
|
@classmethod
|
|
def cost_relative2lgbm(cls):
|
|
return 160
|
|
|
|
def config2params(cls, config: dict) -> dict:
|
|
params = config.copy()
|
|
params["tol"] = params.get("tol", 0.0001)
|
|
params["solver"] = params.get("solver", "saga")
|
|
params["penalty"] = params.get("penalty", "l1")
|
|
return params
|
|
|
|
def __init__(self, task="binary", **config):
|
|
super().__init__(task, **config)
|
|
assert task in CLASSIFICATION, "LogisticRegression for classification task only"
|
|
self.estimator_class = LogisticRegression
|
|
|
|
|
|
class LRL2Classifier(SKLearnEstimator):
|
|
limit_resource = True
|
|
|
|
@classmethod
|
|
def search_space(cls, **params):
|
|
return LRL1Classifier.search_space(**params)
|
|
|
|
@classmethod
|
|
def cost_relative2lgbm(cls):
|
|
return 25
|
|
|
|
def config2params(cls, config: dict) -> dict:
|
|
params = config.copy()
|
|
params["tol"] = params.get("tol", 0.0001)
|
|
params["solver"] = params.get("solver", "lbfgs")
|
|
params["penalty"] = params.get("penalty", "l2")
|
|
return params
|
|
|
|
def __init__(self, task="binary", **config):
|
|
super().__init__(task, **config)
|
|
assert task in CLASSIFICATION, "LogisticRegression for classification task only"
|
|
self.estimator_class = LogisticRegression
|
|
|
|
|
|
class CatBoostEstimator(BaseEstimator):
|
|
ITER_HP = "n_estimators"
|
|
|
|
@classmethod
|
|
def search_space(cls, data_size, **params):
|
|
upper = max(min(round(1500000 / data_size), 150), 12)
|
|
return {
|
|
"early_stopping_rounds": {
|
|
"domain": tune.lograndint(lower=10, upper=upper),
|
|
"init_value": 10,
|
|
"low_cost_init_value": 10,
|
|
},
|
|
"learning_rate": {
|
|
"domain": tune.loguniform(lower=0.005, upper=0.2),
|
|
"init_value": 0.1,
|
|
},
|
|
"n_estimators": {
|
|
"domain": 8192,
|
|
"init_value": 8192,
|
|
},
|
|
}
|
|
|
|
@classmethod
|
|
def size(cls, config):
|
|
n_estimators = config.get("n_estimators", 8192)
|
|
max_leaves = 64
|
|
return (max_leaves * 3 + (max_leaves - 1) * 4 + 1.0) * n_estimators * 8
|
|
|
|
@classmethod
|
|
def cost_relative2lgbm(cls):
|
|
return 15
|
|
|
|
def _preprocess(self, X):
|
|
if isinstance(X, pd.DataFrame):
|
|
cat_columns = X.select_dtypes(include=["category"]).columns
|
|
if not cat_columns.empty:
|
|
X = X.copy()
|
|
X[cat_columns] = X[cat_columns].apply(
|
|
lambda x: x.cat.rename_categories(
|
|
[
|
|
str(c) if isinstance(c, float) else c
|
|
for c in x.cat.categories
|
|
]
|
|
)
|
|
)
|
|
elif isinstance(X, np.ndarray) and X.dtype.kind not in "buif":
|
|
# numpy array is not of numeric dtype
|
|
X = pd.DataFrame(X)
|
|
for col in X.columns:
|
|
if isinstance(X[col][0], str):
|
|
X[col] = X[col].astype("category").cat.codes
|
|
X = X.to_numpy()
|
|
return X
|
|
|
|
def config2params(cls, config: dict) -> dict:
|
|
params = config.copy()
|
|
params["n_estimators"] = params.get("n_estimators", 8192)
|
|
if "n_jobs" in params:
|
|
params["thread_count"] = params.pop("n_jobs")
|
|
return params
|
|
|
|
def __init__(
|
|
self,
|
|
task="binary",
|
|
**config,
|
|
):
|
|
super().__init__(task, **config)
|
|
self.params.update(
|
|
{
|
|
"verbose": config.get("verbose", False),
|
|
"random_seed": config.get("random_seed", 10242048),
|
|
}
|
|
)
|
|
from catboost import CatBoostRegressor
|
|
|
|
self.estimator_class = CatBoostRegressor
|
|
if task in CLASSIFICATION:
|
|
from catboost import CatBoostClassifier
|
|
|
|
self.estimator_class = CatBoostClassifier
|
|
|
|
def fit(self, X_train, y_train, budget=None, **kwargs):
|
|
import shutil
|
|
|
|
start_time = time.time()
|
|
deadline = start_time + budget if budget else np.inf
|
|
train_dir = f"catboost_{str(start_time)}"
|
|
X_train = self._preprocess(X_train)
|
|
if isinstance(X_train, pd.DataFrame):
|
|
cat_features = list(X_train.select_dtypes(include="category").columns)
|
|
else:
|
|
cat_features = []
|
|
n = max(int(len(y_train) * 0.9), len(y_train) - 1000)
|
|
X_tr, y_tr = X_train[:n], y_train[:n]
|
|
if "sample_weight" in kwargs:
|
|
weight = kwargs["sample_weight"]
|
|
if weight is not None:
|
|
kwargs["sample_weight"] = weight[:n]
|
|
else:
|
|
weight = None
|
|
from catboost import Pool, __version__
|
|
|
|
model = self.estimator_class(train_dir=train_dir, **self.params)
|
|
if __version__ >= "0.26":
|
|
model.fit(
|
|
X_tr,
|
|
y_tr,
|
|
cat_features=cat_features,
|
|
eval_set=Pool(
|
|
data=X_train[n:], label=y_train[n:], cat_features=cat_features
|
|
),
|
|
callbacks=CatBoostEstimator._callbacks(start_time, deadline),
|
|
**kwargs,
|
|
)
|
|
else:
|
|
model.fit(
|
|
X_tr,
|
|
y_tr,
|
|
cat_features=cat_features,
|
|
eval_set=Pool(
|
|
data=X_train[n:], label=y_train[n:], cat_features=cat_features
|
|
),
|
|
**kwargs,
|
|
)
|
|
shutil.rmtree(train_dir, ignore_errors=True)
|
|
if weight is not None:
|
|
kwargs["sample_weight"] = weight
|
|
self._model = model
|
|
self.params[self.ITER_HP] = self._model.tree_count_
|
|
train_time = time.time() - start_time
|
|
return train_time
|
|
|
|
@classmethod
|
|
def _callbacks(cls, start_time, deadline):
|
|
class ResourceLimit:
|
|
def after_iteration(self, info) -> bool:
|
|
now = time.time()
|
|
if info.iteration == 1:
|
|
self._time_per_iter = now - start_time
|
|
if now + self._time_per_iter > deadline:
|
|
return False
|
|
if psutil is not None:
|
|
mem = psutil.virtual_memory()
|
|
if mem.available / mem.total < FREE_MEM_RATIO:
|
|
return False
|
|
return True # can continue
|
|
|
|
return [ResourceLimit()]
|
|
|
|
|
|
class KNeighborsEstimator(BaseEstimator):
|
|
@classmethod
|
|
def search_space(cls, data_size, **params):
|
|
upper = min(512, int(data_size / 2))
|
|
return {
|
|
"n_neighbors": {
|
|
"domain": tune.lograndint(lower=1, upper=upper),
|
|
"init_value": 5,
|
|
"low_cost_init_value": 1,
|
|
},
|
|
}
|
|
|
|
@classmethod
|
|
def cost_relative2lgbm(cls):
|
|
return 30
|
|
|
|
def config2params(cls, config: dict) -> dict:
|
|
params = config.copy()
|
|
params["weights"] = params.get("weights", "distance")
|
|
return params
|
|
|
|
def __init__(self, task="binary", **config):
|
|
super().__init__(task, **config)
|
|
if task in CLASSIFICATION:
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
|
|
self.estimator_class = KNeighborsClassifier
|
|
else:
|
|
from sklearn.neighbors import KNeighborsRegressor
|
|
|
|
self.estimator_class = KNeighborsRegressor
|
|
|
|
def _preprocess(self, X):
|
|
if isinstance(X, pd.DataFrame):
|
|
cat_columns = X.select_dtypes(["category"]).columns
|
|
if X.shape[1] == len(cat_columns):
|
|
raise ValueError("kneighbor requires at least one numeric feature")
|
|
X = X.drop(cat_columns, axis=1)
|
|
elif isinstance(X, np.ndarray) and X.dtype.kind not in "buif":
|
|
# drop categocial columns if any
|
|
X = pd.DataFrame(X)
|
|
cat_columns = []
|
|
for col in X.columns:
|
|
if isinstance(X[col][0], str):
|
|
cat_columns.append(col)
|
|
X = X.drop(cat_columns, axis=1)
|
|
X = X.to_numpy()
|
|
return X
|
|
|
|
|
|
class Prophet(SKLearnEstimator):
|
|
@classmethod
|
|
def search_space(cls, **params):
|
|
space = {
|
|
"changepoint_prior_scale": {
|
|
"domain": tune.loguniform(lower=0.001, upper=0.05),
|
|
"init_value": 0.05,
|
|
"low_cost_init_value": 0.001,
|
|
},
|
|
"seasonality_prior_scale": {
|
|
"domain": tune.loguniform(lower=0.01, upper=10),
|
|
"init_value": 10,
|
|
},
|
|
"holidays_prior_scale": {
|
|
"domain": tune.loguniform(lower=0.01, upper=10),
|
|
"init_value": 10,
|
|
},
|
|
"seasonality_mode": {
|
|
"domain": tune.choice(["additive", "multiplicative"]),
|
|
"init_value": "multiplicative",
|
|
},
|
|
}
|
|
return space
|
|
|
|
def __init__(self, task=TS_FORECAST, n_jobs=1, **params):
|
|
super().__init__(task, **params)
|
|
|
|
def _join(self, X_train, y_train):
|
|
assert TS_TIMESTAMP_COL in X_train, (
|
|
"Dataframe for training ts_forecast model must have column"
|
|
f' "{TS_TIMESTAMP_COL}" with the dates in X_train.'
|
|
)
|
|
y_train = pd.DataFrame(y_train, columns=[TS_VALUE_COL])
|
|
train_df = X_train.join(y_train)
|
|
return train_df
|
|
|
|
def fit(self, X_train, y_train, budget=None, **kwargs):
|
|
from prophet import Prophet
|
|
|
|
current_time = time.time()
|
|
train_df = self._join(X_train, y_train)
|
|
train_df = self._preprocess(train_df)
|
|
cols = list(train_df)
|
|
cols.remove(TS_TIMESTAMP_COL)
|
|
cols.remove(TS_VALUE_COL)
|
|
model = Prophet(**self.params)
|
|
for regressor in cols:
|
|
model.add_regressor(regressor)
|
|
with suppress_stdout_stderr():
|
|
model.fit(train_df)
|
|
train_time = time.time() - current_time
|
|
self._model = model
|
|
return train_time
|
|
|
|
def predict(self, X_test):
|
|
if isinstance(X_test, int):
|
|
raise ValueError(
|
|
"predict() with steps is only supported for arima/sarimax."
|
|
" For Prophet, pass a dataframe with the first column containing"
|
|
" the timestamp values."
|
|
)
|
|
if self._model is not None:
|
|
X_test = self._preprocess(X_test)
|
|
forecast = self._model.predict(X_test)
|
|
return forecast["yhat"]
|
|
else:
|
|
logger.warning(
|
|
"Estimator is not fit yet. Please run fit() before predict()."
|
|
)
|
|
return np.ones(X_test.shape[0])
|
|
|
|
|
|
class ARIMA(Prophet):
|
|
@classmethod
|
|
def search_space(cls, **params):
|
|
space = {
|
|
"p": {
|
|
"domain": tune.quniform(lower=0, upper=10, q=1),
|
|
"init_value": 2,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"d": {
|
|
"domain": tune.quniform(lower=0, upper=10, q=1),
|
|
"init_value": 2,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"q": {
|
|
"domain": tune.quniform(lower=0, upper=10, q=1),
|
|
"init_value": 1,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
}
|
|
return space
|
|
|
|
def _join(self, X_train, y_train):
|
|
train_df = super()._join(X_train, y_train)
|
|
train_df.index = pd.to_datetime(train_df[TS_TIMESTAMP_COL])
|
|
train_df = train_df.drop(TS_TIMESTAMP_COL, axis=1)
|
|
return train_df
|
|
|
|
def fit(self, X_train, y_train, budget=None, **kwargs):
|
|
import warnings
|
|
|
|
warnings.filterwarnings("ignore")
|
|
from statsmodels.tsa.arima.model import ARIMA as ARIMA_estimator
|
|
|
|
current_time = time.time()
|
|
train_df = self._join(X_train, y_train)
|
|
train_df = self._preprocess(train_df)
|
|
cols = list(train_df)
|
|
cols.remove(TS_VALUE_COL)
|
|
regressors = cols
|
|
if regressors:
|
|
model = ARIMA_estimator(
|
|
train_df[[TS_VALUE_COL]],
|
|
exog=train_df[regressors],
|
|
order=(self.params["p"], self.params["d"], self.params["q"]),
|
|
enforce_stationarity=False,
|
|
enforce_invertibility=False,
|
|
)
|
|
else:
|
|
model = ARIMA_estimator(
|
|
train_df,
|
|
order=(self.params["p"], self.params["d"], self.params["q"]),
|
|
enforce_stationarity=False,
|
|
enforce_invertibility=False,
|
|
)
|
|
with suppress_stdout_stderr():
|
|
model = model.fit()
|
|
train_time = time.time() - current_time
|
|
self._model = model
|
|
return train_time
|
|
|
|
def predict(self, X_test):
|
|
if self._model is not None:
|
|
if isinstance(X_test, int):
|
|
forecast = self._model.forecast(steps=X_test)
|
|
elif isinstance(X_test, pd.DataFrame):
|
|
first_col = X_test.pop(TS_TIMESTAMP_COL)
|
|
X_test.insert(0, TS_TIMESTAMP_COL, first_col)
|
|
start = X_test.iloc[0, 0]
|
|
end = X_test.iloc[-1, 0]
|
|
if len(X_test.columns) > 1:
|
|
regressors = list(X_test)
|
|
regressors.remove(TS_TIMESTAMP_COL)
|
|
X_test = self._preprocess(X_test)
|
|
forecast = self._model.predict(
|
|
start=start, end=end, exog=X_test[regressors]
|
|
)
|
|
else:
|
|
forecast = self._model.predict(start=start, end=end)
|
|
else:
|
|
raise ValueError(
|
|
"X_test needs to be either a pd.Dataframe with dates as the first column"
|
|
" or an int number of periods for predict()."
|
|
)
|
|
return forecast
|
|
else:
|
|
return np.ones(X_test if isinstance(X_test, int) else X_test.shape[0])
|
|
|
|
|
|
class SARIMAX(ARIMA):
|
|
@classmethod
|
|
def search_space(cls, **params):
|
|
space = {
|
|
"p": {
|
|
"domain": tune.quniform(lower=0, upper=10, q=1),
|
|
"init_value": 2,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"d": {
|
|
"domain": tune.quniform(lower=0, upper=10, q=1),
|
|
"init_value": 2,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"q": {
|
|
"domain": tune.quniform(lower=0, upper=10, q=1),
|
|
"init_value": 1,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"P": {
|
|
"domain": tune.quniform(lower=0, upper=10, q=1),
|
|
"init_value": 1,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"D": {
|
|
"domain": tune.quniform(lower=0, upper=10, q=1),
|
|
"init_value": 1,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"Q": {
|
|
"domain": tune.quniform(lower=0, upper=10, q=1),
|
|
"init_value": 1,
|
|
"low_cost_init_value": 0,
|
|
},
|
|
"s": {
|
|
"domain": tune.choice([1, 4, 6, 12]),
|
|
"init_value": 12,
|
|
},
|
|
}
|
|
return space
|
|
|
|
def fit(self, X_train, y_train, budget=None, **kwargs):
|
|
import warnings
|
|
|
|
warnings.filterwarnings("ignore")
|
|
from statsmodels.tsa.statespace.sarimax import SARIMAX as SARIMAX_estimator
|
|
|
|
current_time = time.time()
|
|
train_df = self._join(X_train, y_train)
|
|
train_df = self._preprocess(train_df)
|
|
regressors = list(train_df)
|
|
regressors.remove(TS_VALUE_COL)
|
|
if regressors:
|
|
model = SARIMAX_estimator(
|
|
train_df[[TS_VALUE_COL]],
|
|
exog=train_df[regressors],
|
|
order=(self.params["p"], self.params["d"], self.params["q"]),
|
|
seasonality_order=(
|
|
self.params["P"],
|
|
self.params["D"],
|
|
self.params["Q"],
|
|
self.params["s"],
|
|
),
|
|
enforce_stationarity=False,
|
|
enforce_invertibility=False,
|
|
)
|
|
else:
|
|
model = SARIMAX_estimator(
|
|
train_df,
|
|
order=(self.params["p"], self.params["d"], self.params["q"]),
|
|
seasonality_order=(
|
|
self.params["P"],
|
|
self.params["D"],
|
|
self.params["Q"],
|
|
self.params["s"],
|
|
),
|
|
enforce_stationarity=False,
|
|
enforce_invertibility=False,
|
|
)
|
|
with suppress_stdout_stderr():
|
|
model = model.fit()
|
|
train_time = time.time() - current_time
|
|
self._model = model
|
|
return train_time
|
|
|
|
|
|
class suppress_stdout_stderr(object):
|
|
"""
|
|
A context manager for doing a "deep suppression" of stdout and stderr in
|
|
Python, i.e. will suppress all print, even if the print originates in a
|
|
compiled C/Fortran sub-function.
|
|
This will not suppress raised exceptions, since exceptions are printed
|
|
to stderr just before a script exits, and after the context manager has
|
|
exited.
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
# Open a pair of null files
|
|
self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)]
|
|
# Save the actual stdout (1) and stderr (2) file descriptors.
|
|
self.save_fds = (os.dup(1), os.dup(2))
|
|
|
|
def __enter__(self):
|
|
# Assign the null pointers to stdout and stderr.
|
|
os.dup2(self.null_fds[0], 1)
|
|
os.dup2(self.null_fds[1], 2)
|
|
|
|
def __exit__(self, *_):
|
|
# Re-assign the real stdout/stderr back to (1) and (2)
|
|
os.dup2(self.save_fds[0], 1)
|
|
os.dup2(self.save_fds[1], 2)
|
|
# Close the null files
|
|
os.close(self.null_fds[0])
|
|
os.close(self.null_fds[1])
|