autogen/setup.py
Chi Wang 549a0dfb53
limit time and memory consumption (#264)
* limit time and memory

* separate tests

* lrl1 can't be limited by limit_resource

* free memory when possible

* passthrough=False when ensemble fails;
retrain when trained_estimator is None

* use callback to for resource limit

* handle lower version of xgb with no callback

* free mem ratio

* reduce verbosity

* retrain_final when max_iter==1

* remove trained_estimator from result

* model_history

* wheel

* retrain time as best_config_train_time

* ci: libomp version for xgboost on macos

* limit_resource not working in windows

* test pickle load

* mute forecaster

* notebook update

* check hard

* preventive callback

* add use_ray
2021-11-03 19:08:23 -07:00

96 lines
2.4 KiB
Python

import setuptools
import os
here = os.path.abspath(os.path.dirname(__file__))
with open("README.md", "r") as fh:
long_description = fh.read()
# Get the code version
version = {}
with open(os.path.join(here, "flaml/version.py")) as fp:
exec(fp.read(), version)
__version__ = version["__version__"]
install_requires = [
"NumPy>=1.16.2",
"lightgbm>=2.3.1",
"xgboost>=0.90,<=1.3.3",
"scipy>=1.4.1",
"pandas>=1.1.4",
"scikit-learn>=0.24",
]
setuptools.setup(
name="FLAML",
version=__version__,
author="Microsoft Corporation",
author_email="hpo@microsoft.com",
description="A fast and lightweight autoML system",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/microsoft/FLAML",
packages=setuptools.find_packages(include=["flaml*"]),
install_requires=install_requires,
extras_require={
"notebook": [
"openml==0.10.2",
"jupyter",
"matplotlib",
"rgf-python",
"catboost>=0.26",
],
"test": [
"flake8>=3.8.4",
"pytest>=6.1.1",
"coverage>=5.3",
"pre-commit",
"catboost>=0.26",
"rgf-python",
"optuna==2.8.0",
"vowpalwabbit",
"openml",
"transformers==4.4.1",
"wandb==0.10.26",
"torch==1.8.1",
"datasets==1.4.1",
"azure-storage-blob",
"statsmodels>=0.12.2",
"psutil==5.8.0",
],
"catboost": ["catboost>=0.26"],
"blendsearch": ["optuna==2.8.0"],
"ray": [
"ray[tune]==1.6.0",
"pyyaml<5.3.1",
],
"azureml": [
"azureml-mlflow",
],
"nni": [
"nni",
],
"vw": [
"vowpalwabbit",
],
"nlp": [
"ray[tune]>=1.6.0",
"transformers",
"datasets==1.4.1",
"tensorboardX<=2.2",
"torch",
],
"ts_forecast": ["prophet>=1.0.1", "statsmodels>=0.12.2"],
"forecast": ["prophet>=1.0.1", "statsmodels>=0.12.2"],
"benchmark": ["catboost>=0.26", "psutil==5.8.0", "xgboost==1.3.3"],
},
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires=">=3.6",
)