autogen/setup.py
Chi Wang c48babd02f
raise error when msg is invalid; fix docstr; improve ResponsiveAgent; update doc and packaging; capture ipython output; find code blocks with llm when regex fails. (#1154)
* autogen.agent -> autogen.agentchat

* bug fix in portfolio

* notebook

* timeout

* timeout

* infer lang; close #1150

* timeout

* message context

* context handling

* add sender to generate_reply

* clean up the receive function

* move mathchat to contrib

* contrib

* last_message

* Add OptiGuide: agent and notebook

* Optiguide notebook: add figures and URL
1. figures and code points to remote URL
2. simplify the prompt for the interpreter, because
all information is already in the chat history.

* Update name: Agent -> GenericAgent

* Update notebook

* Rename: GenericAgent -> ResponsiveAgent

* Rebase to autogen.agentchat

* OptiGuide: Comment, sytle, and notebook updates

* simplify optiguide

* raise error when msg is invalid; fix docstr

* allow return None for generate_reply()

* update_system_message

* test update_system_message

* simplify optiguide

* simplify optiguide

* simplify optiguide

* simplify optiguide

* move test

* add test and fix bug

* doc update

* doc update

* doc update

* color

* optiguide

* prompt

* test danger case

* packaging

* docker

* remove path in traceback

* capture ipython output

* simplify

* find code blocks with llm

* find code with llm

* order

* order

* fix bug in context handling

* print executing msg

* print executing msg

* test find code

* test find code

* disable find_code

* default_auto_reply

* default auto reply

* remove optiguide

* remove -e

---------

Co-authored-by: Beibin Li <beibin79@gmail.com>
2023-08-01 02:22:30 +00:00

159 lines
4.8 KiB
Python

import setuptools
import os
here = os.path.abspath(os.path.dirname(__file__))
with open("README.md", "r", encoding="UTF-8") as fh:
long_description = fh.read()
# Get the code version
version = {}
with open(os.path.join(here, "flaml/version.py")) as fp:
exec(fp.read(), version)
__version__ = version["__version__"]
install_requires = [
"NumPy>=1.17.0rc1",
]
setuptools.setup(
name="FLAML",
version=__version__,
author="Microsoft Corporation",
author_email="hpo@microsoft.com",
description="A fast library for automated machine learning and tuning",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/microsoft/FLAML",
packages=setuptools.find_packages(include=["flaml*"]),
package_data={
"flaml.default": ["*/*.json"],
},
include_package_data=True,
install_requires=install_requires,
extras_require={
"automl": [
"lightgbm>=2.3.1",
"xgboost>=0.90",
"scipy>=1.4.1",
"pandas>=1.1.4",
"scikit-learn>=0.24",
],
"notebook": [
"jupyter",
],
"spark": [
"pyspark>=3.2.0",
"joblibspark>=0.5.0",
"joblib<1.3.0", # temp solution for joblib 1.3.0 issue, no need once https://github.com/joblib/joblib-spark/pull/48 is merged
],
"test": [
"lightgbm>=2.3.1",
"xgboost>=0.90",
"scipy>=1.4.1",
"pandas>=1.1.4",
"scikit-learn>=0.24",
"thop",
"pytest>=6.1.1",
"coverage>=5.3",
"pre-commit",
"torch",
"torchvision",
"catboost>=0.26,<1.2",
"rgf-python",
"optuna==2.8.0",
"openml",
"statsmodels>=0.12.2",
"psutil==5.8.0",
"dataclasses",
"transformers[torch]==4.26",
"datasets",
"nltk",
"rouge_score",
"hcrystalball==0.1.10",
"seqeval",
"pytorch-forecasting>=0.9.0,<=0.10.1",
"mlflow",
"pyspark>=3.2.0",
"joblibspark>=0.5.0",
"nbconvert",
"nbformat",
"ipykernel",
"pytorch-lightning<1.9.1", # test_forecast_panel
"tensorboardX==2.6", # test_forecast_panel
"requests<2.29.0", # https://github.com/docker/docker-py/issues/3113
"packaging",
"pydantic==1.10.9",
"sympy",
"wolframalpha",
"joblib<1.3.0", # temp solution for joblib 1.3.0 issue, no need once https://github.com/joblib/joblib-spark/pull/48 is merged
],
"catboost": ["catboost>=0.26"],
"blendsearch": [
"optuna==2.8.0",
"packaging",
],
"ray": [
"ray[tune]~=1.13",
],
"azureml": [
"azureml-mlflow",
],
"nni": [
"nni",
],
"vw": [
"vowpalwabbit>=8.10.0, <9.0.0",
"scikit-learn",
],
"hf": [
"transformers[torch]==4.26",
"datasets",
"nltk",
"rouge_score",
"seqeval",
],
"nlp": [ # for backward compatibility; hf is the new option name
"transformers[torch]==4.26",
"datasets",
"nltk",
"rouge_score",
"seqeval",
],
"ts_forecast": [
"holidays<0.14", # to prevent installation error for prophet
"prophet>=1.0.1",
"statsmodels>=0.12.2",
"hcrystalball==0.1.10",
],
"forecast": [
"holidays<0.14", # to prevent installation error for prophet
"prophet>=1.0.1",
"statsmodels>=0.12.2",
"hcrystalball==0.1.10",
"pytorch-forecasting>=0.9.0",
"pytorch-lightning==1.9.0",
"tensorboardX==2.6",
],
"benchmark": ["catboost>=0.26", "psutil==5.8.0", "xgboost==1.3.3", "pandas==1.1.4"],
"openai": ["openai==0.27.8", "diskcache"],
"autogen": ["openai==0.27.8", "diskcache", "termcolor"],
"mathchat": ["openai==0.27.8", "diskcache", "termcolor", "sympy", "pydantic==1.10.9", "wolframalpha"],
"synapse": [
"joblibspark>=0.5.0",
"optuna==2.8.0",
"pyspark>=3.2.0",
"joblib<1.3.0", # temp solution for joblib 1.3.0 issue, no need once https://github.com/joblib/joblib-spark/pull/48 is merged
],
"autozero": ["scikit-learn", "pandas", "packaging"],
},
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires=">=3.6",
)