autogen/test/nlp/test_autohf.py
Susan Xueqing Liu 2ebddd67ae
Remove NLP classification head (#756)
* rm classification head in nlp

* rm classification head in nlp

* rm classification head in nlp

* adding test cases for switch classification head

* adding test cases for switch classification head

* Update test/nlp/test_autohf_classificationhead.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* adding test cases for switch classification head

* run each test separately

* skip classification head test on windows

* disabling wandb reporting

* fix test nlp custom metric

* fix test nlp custom metric

* fix test nlp custom metric

* fix test nlp custom metric

* fix test nlp custom metric

* fix test nlp custom metric

* fix test nlp custom metric

* fix test nlp custom metric

* fix test nlp custom metric

* fix test nlp custom metric

* fix test nlp custom metric

* Update website/docs/Examples/AutoML-NLP.md

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* Update website/docs/Examples/AutoML-NLP.md

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* fix test nlp custom metric

Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2022-10-12 17:04:42 -07:00

82 lines
2.1 KiB
Python

import sys
import pytest
import requests
from utils import get_toy_data_seqclassification, get_automl_settings
import os
import shutil
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
def test_hf_data():
from flaml import AutoML
X_train, y_train, X_val, y_val, X_test = get_toy_data_seqclassification()
automl = AutoML()
automl_settings = get_automl_settings()
automl_settings["preserve_checkpoint"] = False
try:
automl.fit(
X_train=X_train,
y_train=y_train,
X_val=X_val,
y_val=y_val,
**automl_settings
)
automl.score(X_val, y_val, **{"metric": "accuracy"})
automl.pickle("automl.pkl")
except requests.exceptions.HTTPError:
return
import json
with open("seqclass.log", "r") as fin:
for line in fin:
each_log = json.loads(line.strip("\n"))
if "validation_loss" in each_log:
val_loss = each_log["validation_loss"]
min_inter_result = min(
each_dict.get("eval_automl_metric", sys.maxsize)
for each_dict in each_log["logged_metric"]["intermediate_results"]
)
if min_inter_result != sys.maxsize:
assert val_loss == min_inter_result
automl = AutoML()
automl_settings.pop("max_iter", None)
automl_settings.pop("use_ray", None)
automl_settings.pop("estimator_list", None)
automl.retrain_from_log(
X_train=X_train,
y_train=y_train,
train_full=True,
record_id=0,
**automl_settings
)
automl.predict(X_test, **{"per_device_eval_batch_size": 2})
automl.predict(["test test", "test test"])
automl.predict(
[
["test test", "test test"],
["test test", "test test"],
["test test", "test test"],
]
)
automl.predict_proba(X_test)
print(automl.classes_)
del automl
if os.path.exists("test/data/output/"):
shutil.rmtree("test/data/output/")
if __name__ == "__main__":
test_hf_data()