mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-13 10:16:06 +00:00

* rm classification head in nlp * rm classification head in nlp * rm classification head in nlp * adding test cases for switch classification head * adding test cases for switch classification head * Update test/nlp/test_autohf_classificationhead.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * adding test cases for switch classification head * run each test separately * skip classification head test on windows * disabling wandb reporting * fix test nlp custom metric * fix test nlp custom metric * fix test nlp custom metric * fix test nlp custom metric * fix test nlp custom metric * fix test nlp custom metric * fix test nlp custom metric * fix test nlp custom metric * fix test nlp custom metric * fix test nlp custom metric * fix test nlp custom metric * Update website/docs/Examples/AutoML-NLP.md Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update website/docs/Examples/AutoML-NLP.md Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix test nlp custom metric Co-authored-by: Chi Wang <wang.chi@microsoft.com>
57 lines
1.3 KiB
Python
57 lines
1.3 KiB
Python
import sys
|
|
import pytest
|
|
from utils import get_toy_data_multiplechoiceclassification, get_automl_settings
|
|
import os
|
|
import shutil
|
|
|
|
|
|
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
|
def test_mcc():
|
|
from flaml import AutoML
|
|
import requests
|
|
|
|
(
|
|
X_train,
|
|
y_train,
|
|
X_val,
|
|
y_val,
|
|
X_test,
|
|
y_test,
|
|
) = get_toy_data_multiplechoiceclassification()
|
|
automl = AutoML()
|
|
|
|
automl_settings = get_automl_settings()
|
|
automl_settings["task"] = "multichoice-classification"
|
|
automl_settings["metric"] = "accuracy"
|
|
|
|
try:
|
|
automl.fit(
|
|
X_train=X_train,
|
|
y_train=y_train,
|
|
X_val=X_val,
|
|
y_val=y_val,
|
|
**automl_settings
|
|
)
|
|
except requests.exceptions.HTTPError:
|
|
return
|
|
|
|
y_pred = automl.predict(X_test)
|
|
proba = automl.predict_proba(X_test)
|
|
print(str(len(automl.classes_)) + " classes")
|
|
print(y_pred)
|
|
print(y_test)
|
|
print(proba)
|
|
true_count = 0
|
|
for i, v in y_test.items():
|
|
if y_pred[i] == v:
|
|
true_count += 1
|
|
accuracy = round(true_count / len(y_pred), 5)
|
|
print("Accuracy: " + str(accuracy))
|
|
|
|
if os.path.exists("test/data/output/"):
|
|
shutil.rmtree("test/data/output/")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_mcc()
|