autogen/flaml/tune/spark/utils.py
Chi Wang 75e3454120
notebook test; spark warning message; reproducibility bug; sequential tuning stop condition (#869)
* notebook test

* add ipykernel, remove except

* only create dir if not empty

* Stop sequential tuning when result is None

* fix reproducibility of global search

* save gs seed

* use get to avoid KeyError

* test
2023-01-07 18:39:29 -08:00

190 lines
5.9 KiB
Python

import os
import logging
from functools import partial, lru_cache
import textwrap
logger = logging.getLogger(__name__)
logger_formatter = logging.Formatter(
"[%(name)s: %(asctime)s] {%(lineno)d} %(levelname)s - %(message)s", "%m-%d %H:%M:%S"
)
try:
from pyspark.sql import SparkSession
from pyspark.util import VersionUtils
import pyspark
_have_spark = True
_spark_major_minor_version = VersionUtils.majorMinorVersion(pyspark.__version__)
except ImportError as e:
logger.debug("Could not import pyspark: %s", e)
_have_spark = False
_spark_major_minor_version = (0, 0)
@lru_cache(maxsize=2)
def check_spark():
"""Check if Spark is installed and running.
Result of the function will be cached since test once is enough. As lru_cache will not
cache exceptions, we don't raise exceptions here but only log a warning message.
Returns:
Return (True, None) if the check passes, otherwise log the exception message and
return (False, Exception(msg)). The exception can be raised by the caller.
"""
logger.debug("\ncheck Spark installation...This line should appear only once.\n")
if not _have_spark:
msg = """use_spark=True requires installation of PySpark. Please run pip install flaml[spark]
and check [here](https://spark.apache.org/docs/latest/api/python/getting_started/install.html)
for more details about installing Spark."""
return False, ImportError(msg)
if _spark_major_minor_version[0] < 3:
msg = "Spark version must be >= 3.0 to use flaml[spark]"
return False, ImportError(msg)
try:
SparkSession.builder.getOrCreate()
except RuntimeError as e:
# logger.warning(f"\nSparkSession is not available: {e}\n")
return False, RuntimeError(e)
return True, None
def get_n_cpus(node="driver"):
"""Get the number of CPU cores of the given type of node.
Args:
node: string | The type of node to get the number of cores. Can be 'driver' or 'executor'.
Default is 'driver'.
Returns:
An int of the number of CPU cores.
"""
assert node in ["driver", "executor"]
try:
n_cpus = int(
SparkSession.builder.getOrCreate()
.sparkContext.getConf()
.get(f"spark.{node}.cores")
)
except (TypeError, RuntimeError):
n_cpus = os.cpu_count()
return n_cpus
def with_parameters(trainable, **kwargs):
"""Wrapper for trainables to pass arbitrary large data objects.
This wrapper function will store all passed parameters in the Spark
Broadcast variable.
Args:
trainable: Trainable to wrap.
**kwargs: parameters to store in object store.
Returns:
A new function with partial application of the given arguments
and keywords. The given arguments and keywords will be broadcasted
to all the executors.
```python
import pyspark
import flaml
from sklearn.datasets import load_iris
def train(config, data=None):
if isinstance(data, pyspark.broadcast.Broadcast):
data = data.value
print(config, data)
data = load_iris()
with_parameters_train = flaml.tune.spark.utils.with_parameters(train, data=data)
with_parameters_train(config=1)
train(config={"metric": "accuracy"})
```
"""
if not callable(trainable):
raise ValueError(
f"`with_parameters() only works with function trainables`. "
f"Got type: "
f"{type(trainable)}."
)
spark_available, spark_error_msg = check_spark()
if not spark_available:
raise spark_error_msg
spark = SparkSession.builder.getOrCreate()
bc_kwargs = dict()
for k, v in kwargs.items():
bc_kwargs[k] = spark.sparkContext.broadcast(v)
return partial(trainable, **bc_kwargs)
def broadcast_code(custom_code="", file_name="mylearner"):
"""Write customized learner/metric code contents to a file for importing.
It is necessary for using the customized learner/metric in spark backend.
The path of the learner/metric file will be returned.
Args:
custom_code: str, default="" | code contents of the custom learner/metric.
file_name: str, default="mylearner" | file name of the custom learner/metric.
Returns:
The path of the custom code file.
```python
from flaml.tune.spark.utils import broadcast_code
from flaml.automl.model import LGBMEstimator
custom_code = '''
from flaml.automl.model import LGBMEstimator
from flaml import tune
class MyLargeLGBM(LGBMEstimator):
@classmethod
def search_space(cls, **params):
return {
"n_estimators": {
"domain": tune.lograndint(lower=4, upper=32768),
"init_value": 32768,
"low_cost_init_value": 4,
},
"num_leaves": {
"domain": tune.lograndint(lower=4, upper=32768),
"init_value": 32768,
"low_cost_init_value": 4,
},
}
'''
broadcast_code(custom_code=custom_code)
from flaml.tune.spark.mylearner import MyLargeLGBM
assert isinstance(MyLargeLGBM(), LGBMEstimator)
```
"""
flaml_path = os.path.dirname(os.path.abspath(__file__))
custom_code = textwrap.dedent(custom_code)
custom_path = os.path.join(flaml_path, file_name + ".py")
with open(custom_path, "w") as f:
f.write(custom_code)
return custom_path
def get_broadcast_data(broadcast_data):
"""Get the broadcast data from the broadcast variable.
Args:
broadcast_data: pyspark.broadcast.Broadcast | the broadcast variable.
Returns:
The broadcast data.
"""
if _have_spark and isinstance(broadcast_data, pyspark.broadcast.Broadcast):
broadcast_data = broadcast_data.value
return broadcast_data