Tejas Dharani 67ebeeda0e
Feature/chromadb embedding functions #6267 (#6648)
## Why are these changes needed?

This PR adds support for configurable embedding functions in
ChromaDBVectorMemory, addressing the need for users to customize how
embeddings are generated for vector similarity search. Currently,
ChromaDB memory is limited to default embedding functions, which
restricts flexibility for different use cases that may require specific
embedding models or custom embedding logic.

The implementation allows users to:
- Use different SentenceTransformer models for domain-specific
embeddings
- Integrate with OpenAI's embedding API for consistent embedding
generation
- Define custom embedding functions for specialized requirements
- Maintain backward compatibility with existing default behavior

## Related issue number

Closes #6267

## Checks

- [x] I've included any doc changes needed for
<https://microsoft.github.io/autogen/>. See
<https://github.com/microsoft/autogen/blob/main/CONTRIBUTING.md> to
build and test documentation locally.
- [x] I've added tests corresponding to the changes introduced in this
PR.
- [x] I've made sure all auto checks have passed.

---------

Co-authored-by: Victor Dibia <victordibia@microsoft.com>
Co-authored-by: Victor Dibia <victor.dibia@gmail.com>
2025-06-13 09:06:15 -07:00
..

AutoGen Core

AutoGen core offers an easy way to quickly build event-driven, distributed, scalable, resilient AI agent systems. Agents are developed by using the Actor model. You can build and run your agent system locally and easily move to a distributed system in the cloud when you are ready.