mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-19 15:01:52 +00:00

Issue I encountered: #542 run test_restore.py and got _pickle.UnpicklingError: state is not a dictionary I observed: 1. numpy version i. When numpy==1.16*, np.random.RandomState.__getstate__() returns a tuple, not a dict. _pickle.UnpicklingError occurs ii. When numpy>1.17.0rc1, it returns a dict; _pickle.UnpicklingError does not occur iii. When numpy>1.17.0rc1, flaml uses np_random_generator = np.random.Generator, _pickle.UnpicklingError does not occur 2. class _BackwardsCompatibleNumpyRng When I remove func _BackwardsCompatibleNumpyRng.__getattr__() , _pickle.UnpicklingError doesn't occur (regardless of numpy version == 1.16* or 1.17*) To sum up, I think making modifications to class _BackwardsCompatibleNumpyRng is not a good choice (_BackwardsCompatibleNumpyRng came from ray)and we still need to learn more about the operation mechanism of pickle. So I upgraded the numpy version that flaml requires: setup.py:"NumPy>=1.17.0rc1"
103 lines
2.6 KiB
Python
103 lines
2.6 KiB
Python
import setuptools
|
|
import os
|
|
|
|
here = os.path.abspath(os.path.dirname(__file__))
|
|
|
|
with open("README.md", "r", encoding="UTF-8") as fh:
|
|
long_description = fh.read()
|
|
|
|
|
|
# Get the code version
|
|
version = {}
|
|
with open(os.path.join(here, "flaml/version.py")) as fp:
|
|
exec(fp.read(), version)
|
|
__version__ = version["__version__"]
|
|
|
|
install_requires = [
|
|
"NumPy>=1.17.0rc1",
|
|
"lightgbm>=2.3.1",
|
|
"xgboost>=0.90,<=1.3.3",
|
|
"scipy>=1.4.1",
|
|
"pandas>=1.1.4",
|
|
"scikit-learn>=0.24",
|
|
]
|
|
|
|
|
|
setuptools.setup(
|
|
name="FLAML",
|
|
version=__version__,
|
|
author="Microsoft Corporation",
|
|
author_email="hpo@microsoft.com",
|
|
description="A fast library for automated machine learning and tuning",
|
|
long_description=long_description,
|
|
long_description_content_type="text/markdown",
|
|
url="https://github.com/microsoft/FLAML",
|
|
packages=setuptools.find_packages(include=["flaml*"]),
|
|
install_requires=install_requires,
|
|
extras_require={
|
|
"notebook": [
|
|
"openml==0.10.2",
|
|
"jupyter",
|
|
"matplotlib",
|
|
"rgf-python",
|
|
"catboost>=0.26",
|
|
],
|
|
"test": [
|
|
"flake8>=3.8.4",
|
|
"pytest>=6.1.1",
|
|
"coverage>=5.3",
|
|
"pre-commit",
|
|
"catboost>=0.26",
|
|
"rgf-python",
|
|
"optuna==2.8.0",
|
|
"vowpalwabbit",
|
|
"openml",
|
|
"statsmodels>=0.12.2",
|
|
"psutil==5.8.0",
|
|
"dataclasses",
|
|
"transformers>=4.14",
|
|
"datasets",
|
|
"torch",
|
|
"nltk",
|
|
"rouge_score",
|
|
"hcrystalball==0.1.10",
|
|
"seqeval",
|
|
],
|
|
"catboost": ["catboost>=0.26"],
|
|
"blendsearch": ["optuna==2.8.0"],
|
|
"ray": [
|
|
"ray[tune]~=1.10",
|
|
],
|
|
"azureml": [
|
|
"azureml-mlflow",
|
|
],
|
|
"nni": [
|
|
"nni",
|
|
],
|
|
"vw": [
|
|
"vowpalwabbit",
|
|
],
|
|
"nlp": [
|
|
"transformers>=4.14",
|
|
"datasets",
|
|
"torch",
|
|
"seqeval",
|
|
"nltk",
|
|
"rouge_score",
|
|
],
|
|
"ts_forecast": [
|
|
"prophet>=1.0.1",
|
|
"statsmodels>=0.12.2",
|
|
"hcrystalball==0.1.10",
|
|
],
|
|
"forecast": ["prophet>=1.0.1", "statsmodels>=0.12.2", "hcrystalball==0.1.10"],
|
|
"benchmark": ["catboost>=0.26", "psutil==5.8.0", "xgboost==1.3.3"],
|
|
},
|
|
classifiers=[
|
|
"Programming Language :: Python :: 3",
|
|
"License :: OSI Approved :: MIT License",
|
|
"Operating System :: OS Independent",
|
|
],
|
|
python_requires=">=3.6",
|
|
)
|