Victor Dibia 78ef148c88
Add ChromaDBVectorMemory in Extensions (#5308)
<!-- Thank you for your contribution! Please review
https://microsoft.github.io/autogen/docs/Contribute before opening a
pull request. -->

<!-- Please add a reviewer to the assignee section when you create a PR.
If you don't have the access to it, we will shortly find a reviewer and
assign them to your PR. -->

## Why are these changes needed?

<!-- Please give a short summary of the change and the problem this
solves. -->
Shows an example of how to use the `Memory` interface to implement a
just-in-time vector memory based on chromadb.

```python
import os
from pathlib import Path

from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.ui import Console
from autogen_core.memory import MemoryContent, MemoryMimeType
from autogen_ext.memory.chromadb import ChromaDBVectorMemory, PersistentChromaDBVectorMemoryConfig
from autogen_ext.models.openai import OpenAIChatCompletionClient

# Initialize ChromaDB memory with custom config
chroma_user_memory = ChromaDBVectorMemory(
    config=PersistentChromaDBVectorMemoryConfig(
        collection_name="preferences",
        persistence_path=os.path.join(str(Path.home()), ".chromadb_autogen"),
        k=2,  # Return top  k results
        score_threshold=0.4,  # Minimum similarity score
    )
)
# a HttpChromaDBVectorMemoryConfig is also supported for connecting to a remote ChromaDB server

# Add user preferences to memory
await chroma_user_memory.add(
    MemoryContent(
        content="The weather should be in metric units",
        mime_type=MemoryMimeType.TEXT,
        metadata={"category": "preferences", "type": "units"},
    )
)

await chroma_user_memory.add(
    MemoryContent(
        content="Meal recipe must be vegan",
        mime_type=MemoryMimeType.TEXT,
        metadata={"category": "preferences", "type": "dietary"},
    )
)


# Create assistant agent with ChromaDB memory
assistant_agent = AssistantAgent(
    name="assistant_agent",
    model_client=OpenAIChatCompletionClient(
        model="gpt-4o",
    ),
    tools=[get_weather],
    memory=[user_memory],
)

stream = assistant_agent.run_stream(task="What is the weather in New York?")
await Console(stream)

await user_memory.close()
```

```txt
 ---------- user ----------
What is the weather in New York?
---------- assistant_agent ----------
[MemoryContent(content='The weather should be in metric units', mime_type='MemoryMimeType.TEXT', metadata={'category': 'preferences', 'mime_type': 'MemoryMimeType.TEXT', 'type': 'units', 'score': 0.4342913043162201, 'id': '8a8d683c-5866-41e1-ac17-08c4fda6da86'}), MemoryContent(content='The weather should be in metric units', mime_type='MemoryMimeType.TEXT', metadata={'category': 'preferences', 'mime_type': 'MemoryMimeType.TEXT', 'type': 'units', 'score': 0.4342913043162201, 'id': 'f27af42c-cb63-46f0-b26b-ffcc09955ca1'})]
---------- assistant_agent ----------
[FunctionCall(id='call_a8U3YEj2dxA065vyzdfXDtNf', arguments='{"city":"New York","units":"metric"}', name='get_weather')]
---------- assistant_agent ----------
[FunctionExecutionResult(content='The weather in New York is 23 °C and Sunny.', call_id='call_a8U3YEj2dxA065vyzdfXDtNf', is_error=False)]
---------- assistant_agent ----------
The weather in New York is 23 °C and Sunny.
```

Note that MemoryContent object in the MemoryQuery events have useful
metadata like the score and id retrieved memories.

## Related issue number

<!-- For example: "Closes #1234" -->


## Checks

- [ ] I've included any doc changes needed for
https://microsoft.github.io/autogen/. See
https://microsoft.github.io/autogen/docs/Contribute#documentation to
build and test documentation locally.
- [ ] I've added tests (if relevant) corresponding to the changes
introduced in this PR.
- [ ] I've made sure all auto checks have passed.
2025-03-01 07:41:01 -08:00
..

AutoGen Python packages

0.4 Docs PyPi autogen-core PyPi autogen-agentchat PyPi autogen-ext

This directory works as a single uv workspace containing all project packages. See packages to discover all project packages.

Migrating from 0.2.x?

Please refer to the migration guide for how to migrate your code from 0.2.x to 0.4.x.

Development

TL;DR, run all checks with:

uv sync --all-extras
source .venv/bin/activate
poe check

Setup

uv is a package manager that assists in creating the necessary environment and installing packages to run AutoGen.

Note: To prevent incompatibilities between versions the same UV version as is running in CI should be used. Check the version in CI by looking the setup-uv action, here for example.

For example, to change your version to 0.5.18, run:

uv self update 0.5.18

Virtual Environment

During development, you may need to test changes made to any of the packages.
To do so, create a virtual environment where the AutoGen packages are installed based on the current state of the directory.
Run the following commands at the root level of the Python directory:

uv sync --all-extras
source .venv/bin/activate
  • uv sync --all-extras will create a .venv directory at the current level and install packages from the current directory along with any other dependencies. The all-extras flag adds optional dependencies.
  • source .venv/bin/activate activates the virtual environment.

Common Tasks

To create a pull request (PR), ensure the following checks are met. You can run each check individually:

  • Format: poe format
  • Lint: poe lint
  • Test: poe test
  • Mypy: poe mypy
  • Pyright: poe pyright
  • Build docs: poe --directory ./packages/autogen-core/ docs-build
  • Auto rebuild+serve docs: poe --directory ./packages/autogen-core/ docs-serve
  • Check samples in python/samples: poe samples-code-check Alternatively, you can run all the checks with:
  • poe check

Note

These need to be run in the virtual environment.

Syncing Dependencies

When you pull new changes, you may need to update the dependencies. To do so, first make sure you are in the virtual environment, and then in the python directory, run:

uv sync --all-extras

This will update the dependencies in the virtual environment.

Creating a New Package

To create a new package, similar to autogen-core or autogen-chat, use the following:

uv sync --python 3.12
source .venv/bin/activate
cookiecutter ./templates/new-package/