mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-27 10:50:06 +00:00

if save_best_model_per_estimator is False and retrain_final is True, unfit the model after evaluation in HPO. retrain if using ray. update ITER_HP in config after a trial is finished. change prophet logging level. example and notebook update. allow settings to be passed to AutoML constructor. Are you planning to add multi-output-regression capability to FLAML #192 Is multi-tasking allowed? #277 can pass the auotml setting to the constructor instead of requiring a derived class. remove model_history. checkpoint bug fix. * model_history meaning save_best_model_per_estimator * ITER_HP * example update * prophet logging level * comment update in forecast notebook * print format improvement * allow settings to be passed to AutoML constructor * checkpoint bug fix * time limit for autohf regression test * skip slow test on macos * cleanup before del
129 lines
3.4 KiB
Python
129 lines
3.4 KiB
Python
import unittest
|
|
|
|
from sklearn.datasets import fetch_openml
|
|
from flaml.automl import AutoML
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.metrics import accuracy_score
|
|
|
|
|
|
dataset = "credit-g"
|
|
|
|
|
|
def _test(split_type):
|
|
from sklearn.externals._arff import ArffException
|
|
|
|
automl = AutoML()
|
|
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
# "metric": 'accuracy',
|
|
"task": "classification",
|
|
"log_file_name": "test/{}.log".format(dataset),
|
|
"model_history": True,
|
|
"log_training_metric": True,
|
|
"split_type": split_type,
|
|
}
|
|
|
|
try:
|
|
X, y = fetch_openml(name=dataset, return_X_y=True)
|
|
except (ArffException, ValueError):
|
|
from sklearn.datasets import load_wine
|
|
|
|
X, y = load_wine(return_X_y=True)
|
|
if split_type != "time":
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X, y, test_size=0.33, random_state=42
|
|
)
|
|
else:
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X, y, test_size=0.33, shuffle=False
|
|
)
|
|
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
|
|
|
pred = automl.predict(X_test)
|
|
acc = accuracy_score(y_test, pred)
|
|
|
|
print(acc)
|
|
|
|
|
|
def _test_uniform():
|
|
_test(split_type="uniform")
|
|
|
|
|
|
def test_time():
|
|
_test(split_type="time")
|
|
|
|
|
|
def test_groups():
|
|
from sklearn.externals._arff import ArffException
|
|
|
|
try:
|
|
X, y = fetch_openml(name=dataset, return_X_y=True)
|
|
except (ArffException, ValueError):
|
|
from sklearn.datasets import load_wine
|
|
|
|
X, y = load_wine(return_X_y=True)
|
|
|
|
import numpy as np
|
|
|
|
automl = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
"task": "classification",
|
|
"log_file_name": "test/{}.log".format(dataset),
|
|
"model_history": True,
|
|
"eval_method": "cv",
|
|
"groups": np.random.randint(low=0, high=10, size=len(y)),
|
|
"estimator_list": ["lgbm", "rf", "xgboost", "kneighbor"],
|
|
"learner_selector": "roundrobin",
|
|
}
|
|
automl.fit(X, y, **automl_settings)
|
|
|
|
automl_settings["eval_method"] = "holdout"
|
|
automl.fit(X, y, **automl_settings)
|
|
|
|
|
|
def test_rank():
|
|
from sklearn.externals._arff import ArffException
|
|
|
|
try:
|
|
X, y = fetch_openml(name=dataset, return_X_y=True)
|
|
except (ArffException, ValueError):
|
|
from sklearn.datasets import load_wine
|
|
|
|
X, y = load_wine(return_X_y=True)
|
|
y = y.cat.codes
|
|
import numpy as np
|
|
|
|
automl = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
"task": "rank",
|
|
"log_file_name": "test/{}.log".format(dataset),
|
|
"model_history": True,
|
|
"eval_method": "cv",
|
|
"groups": np.array( # group labels
|
|
[0] * 200 + [1] * 200 + [2] * 200 + [3] * 200 + [4] * 100 + [5] * 100
|
|
),
|
|
"learner_selector": "roundrobin",
|
|
}
|
|
automl.fit(X, y, **automl_settings)
|
|
|
|
automl = AutoML()
|
|
automl_settings = {
|
|
"time_budget": 2,
|
|
"task": "rank",
|
|
"metric": "ndcg@5", # 5 can be replaced by any number
|
|
"log_file_name": "test/{}.log".format(dataset),
|
|
"model_history": True,
|
|
"groups": [200] * 4 + [100] * 2, # alternative way: group counts
|
|
# "estimator_list": ['lgbm', 'xgboost'], # list of ML learners
|
|
"learner_selector": "roundrobin",
|
|
}
|
|
automl.fit(X, y, **automl_settings)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# unittest.main()
|
|
test_groups()
|