autogen/python/packages/autogen-agentchat/tests/test_assistant_agent.py
ChrisBlaa 1eb7f93366
add tool_call_summary_msg_format_fct and test (#6460)
## Why are these changes needed?

This change introduces support for dynamic formatting of tool call
summary messages by allowing a user-defined
`tool_call_summary_format_fct`. Instead of relying solely on a static
string template, this function enables runtime generation of summary
messages based on the specific tool call and its result. This provides
greater flexibility and cleaner integration without introducing any
breaking changes.

### My Use Case / Problem

In my use case, I needed concise summaries for successful tool calls and
detailed messages for failures. The existing static summary string
didn't allow conditional formatting, which led to overly verbose success
messages or inconsistent failure outputs. This change allows customizing
summaries per result type, solving that limitation cleanly.

## Related issue number

Closes #6426

## Checks

- [x] I've included any doc changes needed for
<https://microsoft.github.io/autogen/>. See
<https://github.com/microsoft/autogen/blob/main/CONTRIBUTING.md> to
build and test documentation locally.
- [x] I've added tests (if relevant) corresponding to the changes
introduced in this PR.
- [x] I've made sure all auto checks have passed.

---------

Co-authored-by: Chris Wieczorek <Chris.Wieczorek@iav.de>
Co-authored-by: EeS <chiyoung.song@motov.co.kr>
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
Co-authored-by: Mehrsa Golestaneh <mehrsa.golestaneh@gmail.com>
Co-authored-by: Mehrsa Golestaneh <mgolestaneh@microsoft.com>
Co-authored-by: Zhenyu <81767213+Dormiveglia-elf@users.noreply.github.com>
2025-05-14 10:02:34 -07:00

1599 lines
58 KiB
Python

import json
import logging
from typing import Dict, List
import pytest
from autogen_agentchat import EVENT_LOGGER_NAME
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.base import Handoff, TaskResult
from autogen_agentchat.messages import (
BaseChatMessage,
HandoffMessage,
MemoryQueryEvent,
ModelClientStreamingChunkEvent,
MultiModalMessage,
StructuredMessage,
TextMessage,
ThoughtEvent,
ToolCallExecutionEvent,
ToolCallRequestEvent,
ToolCallSummaryMessage,
)
from autogen_core import ComponentModel, FunctionCall, Image
from autogen_core.memory import ListMemory, Memory, MemoryContent, MemoryMimeType, MemoryQueryResult
from autogen_core.model_context import BufferedChatCompletionContext
from autogen_core.models import (
AssistantMessage,
CreateResult,
FunctionExecutionResult,
FunctionExecutionResultMessage,
LLMMessage,
RequestUsage,
SystemMessage,
UserMessage,
)
from autogen_core.models._model_client import ModelFamily, ModelInfo
from autogen_core.tools import BaseTool, FunctionTool, StaticWorkbench
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_ext.models.replay import ReplayChatCompletionClient
from autogen_ext.tools.mcp import (
McpWorkbench,
SseServerParams,
)
from pydantic import BaseModel, ValidationError
from utils import FileLogHandler
logger = logging.getLogger(EVENT_LOGGER_NAME)
logger.setLevel(logging.DEBUG)
logger.addHandler(FileLogHandler("test_assistant_agent.log"))
def _pass_function(input: str) -> str:
return "pass"
async def _fail_function(input: str) -> str:
return "fail"
async def _throw_function(input: str) -> str:
raise ValueError("Helpful debugging information what went wrong.")
async def _echo_function(input: str) -> str:
return input
@pytest.fixture
def model_info_all_capabilities() -> ModelInfo:
return {
"function_calling": True,
"vision": True,
"json_output": True,
"family": ModelFamily.GPT_4O,
"structured_output": True,
}
@pytest.mark.asyncio
async def test_run_with_tool_call_summary_format_function(model_info_all_capabilities: ModelInfo) -> None:
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="function_calls",
content=[
FunctionCall(id="1", arguments=json.dumps({"input": "task"}), name="_pass_function"),
FunctionCall(id="2", arguments=json.dumps({"input": "task"}), name="_throw_function"),
],
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
thought="Calling pass and fail function",
cached=False,
),
],
model_info=model_info_all_capabilities,
)
def conditional_string_templates(function_call: FunctionCall, function_call_result: FunctionExecutionResult) -> str:
if not function_call_result.is_error:
return "SUCCESS: {tool_name} with {arguments}"
else:
return "FAILURE: {result}"
agent = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[_pass_function, _throw_function],
tool_call_summary_formatter=conditional_string_templates,
)
result = await agent.run(task="task")
first_tool_call_summary = next((x for x in result.messages if isinstance(x, ToolCallSummaryMessage)), None)
if first_tool_call_summary is None:
raise AssertionError("Expected a ToolCallSummaryMessage but found none")
assert (
first_tool_call_summary.content
== 'SUCCESS: _pass_function with {"input": "task"}\nFAILURE: Helpful debugging information what went wrong.'
)
@pytest.mark.asyncio
async def test_run_with_tools(monkeypatch: pytest.MonkeyPatch) -> None:
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="function_calls",
content=[FunctionCall(id="1", arguments=json.dumps({"input": "task"}), name="_pass_function")],
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
thought="Calling pass function",
cached=False,
),
"pass",
"TERMINATE",
],
model_info={
"function_calling": True,
"vision": True,
"json_output": True,
"family": ModelFamily.GPT_4O,
"structured_output": True,
},
)
agent = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[
_pass_function,
_fail_function,
FunctionTool(_echo_function, description="Echo"),
],
)
result = await agent.run(task="task")
# Make sure the create call was made with the correct parameters.
assert len(model_client.create_calls) == 1
llm_messages = model_client.create_calls[0]["messages"]
assert len(llm_messages) == 2
assert isinstance(llm_messages[0], SystemMessage)
assert llm_messages[0].content == agent._system_messages[0].content # type: ignore
assert isinstance(llm_messages[1], UserMessage)
assert llm_messages[1].content == "task"
assert len(result.messages) == 5
assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].models_usage is None
assert isinstance(result.messages[1], ThoughtEvent)
assert result.messages[1].content == "Calling pass function"
assert isinstance(result.messages[2], ToolCallRequestEvent)
assert result.messages[2].models_usage is not None
assert result.messages[2].models_usage.completion_tokens == 5
assert result.messages[2].models_usage.prompt_tokens == 10
assert isinstance(result.messages[3], ToolCallExecutionEvent)
assert result.messages[3].models_usage is None
assert isinstance(result.messages[4], ToolCallSummaryMessage)
assert result.messages[4].content == "pass"
assert result.messages[4].models_usage is None
# Test streaming.
model_client.reset()
index = 0
async for message in agent.run_stream(task="task"):
if isinstance(message, TaskResult):
assert message == result
else:
assert message == result.messages[index]
index += 1
# Test state saving and loading.
state = await agent.save_state()
agent2 = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[_pass_function, _fail_function, FunctionTool(_echo_function, description="Echo")],
)
await agent2.load_state(state)
state2 = await agent2.save_state()
assert state == state2
@pytest.mark.asyncio
async def test_run_with_tools_and_reflection() -> None:
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="function_calls",
content=[FunctionCall(id="1", arguments=json.dumps({"input": "task"}), name="_pass_function")],
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
),
CreateResult(
finish_reason="stop",
content="Hello",
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
),
CreateResult(
finish_reason="stop",
content="TERMINATE",
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
),
],
model_info={
"function_calling": True,
"vision": True,
"json_output": True,
"family": ModelFamily.GPT_4O,
"structured_output": True,
},
)
agent = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[_pass_function, _fail_function, FunctionTool(_echo_function, description="Echo")],
reflect_on_tool_use=True,
)
result = await agent.run(task="task")
# Make sure the create call was made with the correct parameters.
assert len(model_client.create_calls) == 2
llm_messages = model_client.create_calls[0]["messages"]
assert len(llm_messages) == 2
assert isinstance(llm_messages[0], SystemMessage)
assert llm_messages[0].content == agent._system_messages[0].content # type: ignore
assert isinstance(llm_messages[1], UserMessage)
assert llm_messages[1].content == "task"
llm_messages = model_client.create_calls[1]["messages"]
assert len(llm_messages) == 4
assert isinstance(llm_messages[0], SystemMessage)
assert llm_messages[0].content == agent._system_messages[0].content # type: ignore
assert isinstance(llm_messages[1], UserMessage)
assert llm_messages[1].content == "task"
assert isinstance(llm_messages[2], AssistantMessage)
assert isinstance(llm_messages[3], FunctionExecutionResultMessage)
assert len(result.messages) == 4
assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].models_usage is None
assert isinstance(result.messages[1], ToolCallRequestEvent)
assert result.messages[1].models_usage is not None
assert result.messages[1].models_usage.completion_tokens == 5
assert result.messages[1].models_usage.prompt_tokens == 10
assert isinstance(result.messages[2], ToolCallExecutionEvent)
assert result.messages[2].models_usage is None
assert isinstance(result.messages[3], TextMessage)
assert result.messages[3].content == "Hello"
assert result.messages[3].models_usage is not None
assert result.messages[3].models_usage.completion_tokens == 5
assert result.messages[3].models_usage.prompt_tokens == 10
# Test streaming.
model_client.reset()
index = 0
async for message in agent.run_stream(task="task"):
if isinstance(message, TaskResult):
assert message == result
else:
assert message == result.messages[index]
index += 1
# Test state saving and loading.
state = await agent.save_state()
agent2 = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[
_pass_function,
_fail_function,
FunctionTool(_echo_function, description="Echo"),
],
)
await agent2.load_state(state)
state2 = await agent2.save_state()
assert state == state2
@pytest.mark.asyncio
async def test_run_with_parallel_tools() -> None:
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="function_calls",
content=[
FunctionCall(id="1", arguments=json.dumps({"input": "task1"}), name="_pass_function"),
FunctionCall(id="2", arguments=json.dumps({"input": "task2"}), name="_pass_function"),
FunctionCall(id="3", arguments=json.dumps({"input": "task3"}), name="_echo_function"),
],
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
thought="Calling pass and echo functions",
cached=False,
),
"pass",
"TERMINATE",
],
model_info={
"function_calling": True,
"vision": True,
"json_output": True,
"family": ModelFamily.GPT_4O,
"structured_output": True,
},
)
agent = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[
_pass_function,
_fail_function,
FunctionTool(_echo_function, description="Echo"),
],
)
result = await agent.run(task="task")
assert len(result.messages) == 5
assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].models_usage is None
assert isinstance(result.messages[1], ThoughtEvent)
assert result.messages[1].content == "Calling pass and echo functions"
assert isinstance(result.messages[2], ToolCallRequestEvent)
assert result.messages[2].content == [
FunctionCall(id="1", arguments=r'{"input": "task1"}', name="_pass_function"),
FunctionCall(id="2", arguments=r'{"input": "task2"}', name="_pass_function"),
FunctionCall(id="3", arguments=r'{"input": "task3"}', name="_echo_function"),
]
assert result.messages[2].models_usage is not None
assert result.messages[2].models_usage.completion_tokens == 5
assert result.messages[2].models_usage.prompt_tokens == 10
assert isinstance(result.messages[3], ToolCallExecutionEvent)
expected_content = [
FunctionExecutionResult(call_id="1", content="pass", is_error=False, name="_pass_function"),
FunctionExecutionResult(call_id="2", content="pass", is_error=False, name="_pass_function"),
FunctionExecutionResult(call_id="3", content="task3", is_error=False, name="_echo_function"),
]
for expected in expected_content:
assert expected in result.messages[3].content
assert result.messages[3].models_usage is None
assert isinstance(result.messages[4], ToolCallSummaryMessage)
assert result.messages[4].content == "pass\npass\ntask3"
assert result.messages[4].models_usage is None
# Test streaming.
model_client.reset()
index = 0
async for message in agent.run_stream(task="task"):
if isinstance(message, TaskResult):
assert message == result
else:
assert message == result.messages[index]
index += 1
# Test state saving and loading.
state = await agent.save_state()
agent2 = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[_pass_function, _fail_function, FunctionTool(_echo_function, description="Echo")],
)
await agent2.load_state(state)
state2 = await agent2.save_state()
assert state == state2
@pytest.mark.asyncio
async def test_run_with_parallel_tools_with_empty_call_ids() -> None:
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="function_calls",
content=[
FunctionCall(id="", arguments=json.dumps({"input": "task1"}), name="_pass_function"),
FunctionCall(id="", arguments=json.dumps({"input": "task2"}), name="_pass_function"),
FunctionCall(id="", arguments=json.dumps({"input": "task3"}), name="_echo_function"),
],
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
),
"pass",
"TERMINATE",
],
model_info={
"function_calling": True,
"vision": True,
"json_output": True,
"family": ModelFamily.GPT_4O,
"structured_output": True,
},
)
agent = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[
_pass_function,
_fail_function,
FunctionTool(_echo_function, description="Echo"),
],
)
result = await agent.run(task="task")
assert len(result.messages) == 4
assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].models_usage is None
assert isinstance(result.messages[1], ToolCallRequestEvent)
assert result.messages[1].content == [
FunctionCall(id="", arguments=r'{"input": "task1"}', name="_pass_function"),
FunctionCall(id="", arguments=r'{"input": "task2"}', name="_pass_function"),
FunctionCall(id="", arguments=r'{"input": "task3"}', name="_echo_function"),
]
assert result.messages[1].models_usage is not None
assert result.messages[1].models_usage.completion_tokens == 5
assert result.messages[1].models_usage.prompt_tokens == 10
assert isinstance(result.messages[2], ToolCallExecutionEvent)
expected_content = [
FunctionExecutionResult(call_id="", content="pass", is_error=False, name="_pass_function"),
FunctionExecutionResult(call_id="", content="pass", is_error=False, name="_pass_function"),
FunctionExecutionResult(call_id="", content="task3", is_error=False, name="_echo_function"),
]
for expected in expected_content:
assert expected in result.messages[2].content
assert result.messages[2].models_usage is None
assert isinstance(result.messages[3], ToolCallSummaryMessage)
assert result.messages[3].content == "pass\npass\ntask3"
assert result.messages[3].models_usage is None
# Test streaming.
model_client.reset()
index = 0
async for message in agent.run_stream(task="task"):
if isinstance(message, TaskResult):
assert message == result
else:
assert message == result.messages[index]
index += 1
# Test state saving and loading.
state = await agent.save_state()
agent2 = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[_pass_function, _fail_function, FunctionTool(_echo_function, description="Echo")],
)
await agent2.load_state(state)
state2 = await agent2.save_state()
assert state == state2
@pytest.mark.asyncio
async def test_run_with_workbench() -> None:
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="function_calls",
content=[FunctionCall(id="1", arguments=json.dumps({"input": "task"}), name="_pass_function")],
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
),
CreateResult(
finish_reason="stop",
content="Hello",
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
),
CreateResult(
finish_reason="stop",
content="TERMINATE",
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
),
],
model_info={
"function_calling": True,
"vision": True,
"json_output": True,
"family": ModelFamily.GPT_4O,
"structured_output": True,
},
)
workbench = StaticWorkbench(
[
FunctionTool(_pass_function, description="Pass"),
FunctionTool(_fail_function, description="Fail"),
FunctionTool(_echo_function, description="Echo"),
]
)
# Test raise error when both workbench and tools are provided.
with pytest.raises(ValueError):
AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[
_pass_function,
_fail_function,
FunctionTool(_echo_function, description="Echo"),
],
workbench=workbench,
)
agent = AssistantAgent(
"tool_use_agent",
model_client=model_client,
workbench=workbench,
reflect_on_tool_use=True,
)
result = await agent.run(task="task")
# Make sure the create call was made with the correct parameters.
assert len(model_client.create_calls) == 2
llm_messages = model_client.create_calls[0]["messages"]
assert len(llm_messages) == 2
assert isinstance(llm_messages[0], SystemMessage)
assert llm_messages[0].content == agent._system_messages[0].content # type: ignore
assert isinstance(llm_messages[1], UserMessage)
assert llm_messages[1].content == "task"
llm_messages = model_client.create_calls[1]["messages"]
assert len(llm_messages) == 4
assert isinstance(llm_messages[0], SystemMessage)
assert llm_messages[0].content == agent._system_messages[0].content # type: ignore
assert isinstance(llm_messages[1], UserMessage)
assert llm_messages[1].content == "task"
assert isinstance(llm_messages[2], AssistantMessage)
assert isinstance(llm_messages[3], FunctionExecutionResultMessage)
assert len(result.messages) == 4
assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].models_usage is None
assert isinstance(result.messages[1], ToolCallRequestEvent)
assert result.messages[1].models_usage is not None
assert result.messages[1].models_usage.completion_tokens == 5
assert result.messages[1].models_usage.prompt_tokens == 10
assert isinstance(result.messages[2], ToolCallExecutionEvent)
assert result.messages[2].models_usage is None
assert isinstance(result.messages[3], TextMessage)
assert result.messages[3].content == "Hello"
assert result.messages[3].models_usage is not None
assert result.messages[3].models_usage.completion_tokens == 5
assert result.messages[3].models_usage.prompt_tokens == 10
# Test streaming.
model_client.reset()
index = 0
async for message in agent.run_stream(task="task"):
if isinstance(message, TaskResult):
assert message == result
else:
assert message == result.messages[index]
index += 1
# Test state saving and loading.
state = await agent.save_state()
agent2 = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[
_pass_function,
_fail_function,
FunctionTool(_echo_function, description="Echo"),
],
)
await agent2.load_state(state)
state2 = await agent2.save_state()
assert state == state2
@pytest.mark.asyncio
async def test_output_format() -> None:
class AgentResponse(BaseModel):
response: str
status: str
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="stop",
content=AgentResponse(response="Hello", status="success").model_dump_json(),
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
),
]
)
agent = AssistantAgent(
"test_agent",
model_client=model_client,
output_content_type=AgentResponse,
)
assert StructuredMessage[AgentResponse] in agent.produced_message_types
assert TextMessage not in agent.produced_message_types
result = await agent.run()
assert len(result.messages) == 1
assert isinstance(result.messages[0], StructuredMessage)
assert isinstance(result.messages[0].content, AgentResponse) # type: ignore[reportUnknownMemberType]
assert result.messages[0].content.response == "Hello"
assert result.messages[0].content.status == "success"
# Test streaming.
agent = AssistantAgent(
"test_agent",
model_client=model_client,
model_client_stream=True,
output_content_type=AgentResponse,
)
model_client.reset()
stream = agent.run_stream()
stream_result: TaskResult | None = None
async for message in stream:
if isinstance(message, TaskResult):
stream_result = message
assert stream_result is not None
assert len(stream_result.messages) == 1
assert isinstance(stream_result.messages[0], StructuredMessage)
assert isinstance(stream_result.messages[0].content, AgentResponse) # type: ignore[reportUnknownMemberType]
assert stream_result.messages[0].content.response == "Hello"
assert stream_result.messages[0].content.status == "success"
@pytest.mark.asyncio
async def test_reflection_output_format() -> None:
class AgentResponse(BaseModel):
response: str
status: str
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="function_calls",
content=[FunctionCall(id="1", arguments=json.dumps({"input": "task"}), name="_pass_function")],
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
),
AgentResponse(response="Hello", status="success").model_dump_json(),
],
model_info={
"function_calling": True,
"vision": True,
"json_output": True,
"family": ModelFamily.GPT_4O,
"structured_output": True,
},
)
agent = AssistantAgent(
"test_agent",
model_client=model_client,
output_content_type=AgentResponse,
# reflect_on_tool_use=True,
tools=[
_pass_function,
_fail_function,
],
)
result = await agent.run()
assert len(result.messages) == 3
assert isinstance(result.messages[0], ToolCallRequestEvent)
assert isinstance(result.messages[1], ToolCallExecutionEvent)
assert isinstance(result.messages[2], StructuredMessage)
assert isinstance(result.messages[2].content, AgentResponse) # type: ignore[reportUnknownMemberType]
assert result.messages[2].content.response == "Hello"
assert result.messages[2].content.status == "success"
# Test streaming.
agent = AssistantAgent(
"test_agent",
model_client=model_client,
model_client_stream=True,
output_content_type=AgentResponse,
# reflect_on_tool_use=True,
tools=[
_pass_function,
_fail_function,
],
)
model_client.reset()
stream = agent.run_stream()
stream_result: TaskResult | None = None
async for message in stream:
if isinstance(message, TaskResult):
stream_result = message
assert stream_result is not None
assert len(stream_result.messages) == 3
assert isinstance(stream_result.messages[0], ToolCallRequestEvent)
assert isinstance(stream_result.messages[1], ToolCallExecutionEvent)
assert isinstance(stream_result.messages[2], StructuredMessage)
assert isinstance(stream_result.messages[2].content, AgentResponse) # type: ignore[reportUnknownMemberType]
assert stream_result.messages[2].content.response == "Hello"
assert stream_result.messages[2].content.status == "success"
# Test when reflect_on_tool_use is False
model_client.reset()
agent = AssistantAgent(
"test_agent",
model_client=model_client,
output_content_type=AgentResponse,
reflect_on_tool_use=False,
tools=[
_pass_function,
_fail_function,
],
)
result = await agent.run()
assert len(result.messages) == 3
assert isinstance(result.messages[0], ToolCallRequestEvent)
assert isinstance(result.messages[1], ToolCallExecutionEvent)
assert isinstance(result.messages[2], ToolCallSummaryMessage)
@pytest.mark.asyncio
async def test_handoffs() -> None:
handoff = Handoff(target="agent2")
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="function_calls",
content=[
FunctionCall(id="1", arguments=json.dumps({}), name=handoff.name),
],
usage=RequestUsage(prompt_tokens=42, completion_tokens=43),
cached=False,
thought="Calling handoff function",
)
],
model_info={
"function_calling": True,
"vision": True,
"json_output": True,
"family": ModelFamily.GPT_4O,
"structured_output": True,
},
)
tool_use_agent = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[
_pass_function,
_fail_function,
FunctionTool(_echo_function, description="Echo"),
],
handoffs=[handoff],
)
assert HandoffMessage in tool_use_agent.produced_message_types
result = await tool_use_agent.run(task="task")
assert len(result.messages) == 5
assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].models_usage is None
assert isinstance(result.messages[1], ThoughtEvent)
assert result.messages[1].content == "Calling handoff function"
assert isinstance(result.messages[2], ToolCallRequestEvent)
assert result.messages[2].models_usage is not None
assert result.messages[2].models_usage.completion_tokens == 43
assert result.messages[2].models_usage.prompt_tokens == 42
assert isinstance(result.messages[3], ToolCallExecutionEvent)
assert result.messages[3].models_usage is None
assert isinstance(result.messages[4], HandoffMessage)
assert result.messages[4].content == handoff.message
assert result.messages[4].target == handoff.target
assert result.messages[4].models_usage is None
assert result.messages[4].context == [AssistantMessage(content="Calling handoff function", source="tool_use_agent")]
# Test streaming.
model_client.reset()
index = 0
async for message in tool_use_agent.run_stream(task="task"):
if isinstance(message, TaskResult):
assert message == result
else:
assert message == result.messages[index]
index += 1
@pytest.mark.asyncio
async def test_handoff_with_tool_call_context() -> None:
handoff = Handoff(target="agent2")
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="function_calls",
content=[
FunctionCall(id="1", arguments=json.dumps({}), name=handoff.name),
FunctionCall(id="2", arguments=json.dumps({"input": "task"}), name="_pass_function"),
],
usage=RequestUsage(prompt_tokens=42, completion_tokens=43),
cached=False,
thought="Calling handoff function",
)
],
model_info={
"function_calling": True,
"vision": True,
"json_output": True,
"family": ModelFamily.GPT_4O,
"structured_output": True,
},
)
tool_use_agent = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[
_pass_function,
_fail_function,
FunctionTool(_echo_function, description="Echo"),
],
handoffs=[handoff],
)
assert HandoffMessage in tool_use_agent.produced_message_types
result = await tool_use_agent.run(task="task")
assert len(result.messages) == 5
assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].models_usage is None
assert isinstance(result.messages[1], ThoughtEvent)
assert result.messages[1].content == "Calling handoff function"
assert isinstance(result.messages[2], ToolCallRequestEvent)
assert result.messages[2].models_usage is not None
assert result.messages[2].models_usage.completion_tokens == 43
assert result.messages[2].models_usage.prompt_tokens == 42
assert isinstance(result.messages[3], ToolCallExecutionEvent)
assert result.messages[3].models_usage is None
assert isinstance(result.messages[4], HandoffMessage)
assert result.messages[4].content == handoff.message
assert result.messages[4].target == handoff.target
assert result.messages[4].models_usage is None
assert result.messages[4].context == [
AssistantMessage(
content=[FunctionCall(id="2", arguments=r'{"input": "task"}', name="_pass_function")],
source="tool_use_agent",
thought="Calling handoff function",
),
FunctionExecutionResultMessage(
content=[FunctionExecutionResult(call_id="2", content="pass", is_error=False, name="_pass_function")]
),
]
# Test streaming.
model_client.reset()
index = 0
async for message in tool_use_agent.run_stream(task="task"):
if isinstance(message, TaskResult):
assert message == result
else:
assert message == result.messages[index]
index += 1
@pytest.mark.asyncio
async def test_custom_handoffs() -> None:
name = "transfer_to_agent2"
description = "Handoff to agent2."
next_action = "next_action"
class TextCommandHandOff(Handoff):
@property
def handoff_tool(self) -> BaseTool[BaseModel, BaseModel]:
"""Create a handoff tool from this handoff configuration."""
def _next_action(action: str) -> str:
"""Returns the action you want the user to perform"""
return action
return FunctionTool(_next_action, name=self.name, description=self.description, strict=True)
handoff = TextCommandHandOff(name=name, description=description, target="agent2")
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="function_calls",
content=[
FunctionCall(id="1", arguments=json.dumps({"action": next_action}), name=handoff.name),
],
usage=RequestUsage(prompt_tokens=42, completion_tokens=43),
cached=False,
)
],
model_info={
"function_calling": True,
"vision": True,
"json_output": True,
"family": ModelFamily.GPT_4O,
"structured_output": True,
},
)
tool_use_agent = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[
_pass_function,
_fail_function,
FunctionTool(_echo_function, description="Echo"),
],
handoffs=[handoff],
)
assert HandoffMessage in tool_use_agent.produced_message_types
result = await tool_use_agent.run(task="task")
assert len(result.messages) == 4
assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].models_usage is None
assert isinstance(result.messages[1], ToolCallRequestEvent)
assert result.messages[1].models_usage is not None
assert result.messages[1].models_usage.completion_tokens == 43
assert result.messages[1].models_usage.prompt_tokens == 42
assert isinstance(result.messages[2], ToolCallExecutionEvent)
assert result.messages[2].models_usage is None
assert isinstance(result.messages[3], HandoffMessage)
assert result.messages[3].content == next_action
assert result.messages[3].target == handoff.target
assert result.messages[3].models_usage is None
# Test streaming.
model_client.reset()
index = 0
async for message in tool_use_agent.run_stream(task="task"):
if isinstance(message, TaskResult):
assert message == result
else:
assert message == result.messages[index]
index += 1
@pytest.mark.asyncio
async def test_custom_object_handoffs() -> None:
"""test handoff tool return a object"""
name = "transfer_to_agent2"
description = "Handoff to agent2."
next_action = {"action": "next_action"} # using a map, not a str
class DictCommandHandOff(Handoff):
@property
def handoff_tool(self) -> BaseTool[BaseModel, BaseModel]:
"""Create a handoff tool from this handoff configuration."""
def _next_action(action: str) -> Dict[str, str]:
"""Returns the action you want the user to perform"""
return {"action": action}
return FunctionTool(_next_action, name=self.name, description=self.description, strict=True)
handoff = DictCommandHandOff(name=name, description=description, target="agent2")
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="function_calls",
content=[
FunctionCall(id="1", arguments=json.dumps({"action": "next_action"}), name=handoff.name),
],
usage=RequestUsage(prompt_tokens=42, completion_tokens=43),
cached=False,
)
],
model_info={
"function_calling": True,
"vision": True,
"json_output": True,
"family": ModelFamily.GPT_4O,
"structured_output": True,
},
)
tool_use_agent = AssistantAgent(
"tool_use_agent",
model_client=model_client,
tools=[
_pass_function,
_fail_function,
FunctionTool(_echo_function, description="Echo"),
],
handoffs=[handoff],
)
assert HandoffMessage in tool_use_agent.produced_message_types
result = await tool_use_agent.run(task="task")
assert len(result.messages) == 4
assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].models_usage is None
assert isinstance(result.messages[1], ToolCallRequestEvent)
assert result.messages[1].models_usage is not None
assert result.messages[1].models_usage.completion_tokens == 43
assert result.messages[1].models_usage.prompt_tokens == 42
assert isinstance(result.messages[2], ToolCallExecutionEvent)
assert result.messages[2].models_usage is None
assert isinstance(result.messages[3], HandoffMessage)
# the content will return as a string, because the function call will convert to string
assert result.messages[3].content == str(next_action)
assert result.messages[3].target == handoff.target
assert result.messages[3].models_usage is None
# Test streaming.
model_client.reset()
index = 0
async for message in tool_use_agent.run_stream(task="task"):
if isinstance(message, TaskResult):
assert message == result
else:
assert message == result.messages[index]
index += 1
@pytest.mark.asyncio
async def test_multi_modal_task(monkeypatch: pytest.MonkeyPatch) -> None:
model_client = ReplayChatCompletionClient(["Hello"])
agent = AssistantAgent(
name="assistant",
model_client=model_client,
)
# Generate a random base64 image.
img_base64 = "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAIAAACQd1PeAAAADElEQVR4nGP4//8/AAX+Av4N70a4AAAAAElFTkSuQmCC"
result = await agent.run(task=MultiModalMessage(source="user", content=["Test", Image.from_base64(img_base64)]))
assert len(result.messages) == 2
@pytest.mark.asyncio
async def test_run_with_structured_task() -> None:
class InputTask(BaseModel):
input: str
data: List[str]
model_client = ReplayChatCompletionClient(["Hello"])
agent = AssistantAgent(
name="assistant",
model_client=model_client,
)
task = StructuredMessage[InputTask](content=InputTask(input="Test", data=["Test1", "Test2"]), source="user")
result = await agent.run(task=task)
assert len(result.messages) == 2
@pytest.mark.asyncio
async def test_invalid_model_capabilities() -> None:
model = "random-model"
model_client = OpenAIChatCompletionClient(
model=model,
api_key="",
model_info={
"vision": False,
"function_calling": False,
"json_output": False,
"family": ModelFamily.UNKNOWN,
"structured_output": False,
},
)
with pytest.raises(ValueError):
agent = AssistantAgent(
name="assistant",
model_client=model_client,
tools=[
_pass_function,
_fail_function,
FunctionTool(_echo_function, description="Echo"),
],
)
await agent.run(task=TextMessage(source="user", content="Test"))
with pytest.raises(ValueError):
agent = AssistantAgent(name="assistant", model_client=model_client, handoffs=["agent2"])
await agent.run(task=TextMessage(source="user", content="Test"))
@pytest.mark.asyncio
async def test_remove_images() -> None:
model = "random-model"
model_client_1 = OpenAIChatCompletionClient(
model=model,
api_key="",
model_info={
"vision": False,
"function_calling": False,
"json_output": False,
"family": ModelFamily.UNKNOWN,
"structured_output": False,
},
)
model_client_2 = OpenAIChatCompletionClient(
model=model,
api_key="",
model_info={
"vision": True,
"function_calling": False,
"json_output": False,
"family": ModelFamily.UNKNOWN,
"structured_output": False,
},
)
img_base64 = "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAIAAACQd1PeAAAADElEQVR4nGP4//8/AAX+Av4N70a4AAAAAElFTkSuQmCC"
messages: List[LLMMessage] = [
SystemMessage(content="System.1"),
UserMessage(content=["User.1", Image.from_base64(img_base64)], source="user.1"),
AssistantMessage(content="Assistant.1", source="assistant.1"),
UserMessage(content="User.2", source="assistant.2"),
]
agent_1 = AssistantAgent(name="assistant_1", model_client=model_client_1)
result = agent_1._get_compatible_context(model_client_1, messages) # type: ignore
assert len(result) == 4
assert isinstance(result[1].content, str)
agent_2 = AssistantAgent(name="assistant_2", model_client=model_client_2)
result = agent_2._get_compatible_context(model_client_2, messages) # type: ignore
assert len(result) == 4
assert isinstance(result[1].content, list)
@pytest.mark.asyncio
async def test_list_chat_messages(monkeypatch: pytest.MonkeyPatch) -> None:
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="stop",
content="Response to message 1",
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
)
]
)
agent = AssistantAgent(
"test_agent",
model_client=model_client,
)
# Create a list of chat messages
messages: List[BaseChatMessage] = [
TextMessage(content="Message 1", source="user"),
TextMessage(content="Message 2", source="user"),
]
# Test run method with list of messages
result = await agent.run(task=messages)
assert len(result.messages) == 3 # 2 input messages + 1 response message
assert isinstance(result.messages[0], TextMessage)
assert result.messages[0].content == "Message 1"
assert result.messages[0].source == "user"
assert isinstance(result.messages[1], TextMessage)
assert result.messages[1].content == "Message 2"
assert result.messages[1].source == "user"
assert isinstance(result.messages[2], TextMessage)
assert result.messages[2].content == "Response to message 1"
assert result.messages[2].source == "test_agent"
assert result.messages[2].models_usage is not None
assert result.messages[2].models_usage.completion_tokens == 5
assert result.messages[2].models_usage.prompt_tokens == 10
# Test run_stream method with list of messages
model_client.reset() # Reset the mock client
index = 0
async for message in agent.run_stream(task=messages):
if isinstance(message, TaskResult):
assert message == result
else:
assert message == result.messages[index]
index += 1
@pytest.mark.asyncio
async def test_model_context(monkeypatch: pytest.MonkeyPatch) -> None:
model_client = ReplayChatCompletionClient(["Response to message 3"])
model_context = BufferedChatCompletionContext(buffer_size=2)
agent = AssistantAgent(
"test_agent",
model_client=model_client,
model_context=model_context,
)
messages = [
TextMessage(content="Message 1", source="user"),
TextMessage(content="Message 2", source="user"),
TextMessage(content="Message 3", source="user"),
]
await agent.run(task=messages)
# Check that the model_context property returns the correct internal context
assert agent.model_context == model_context
# Check if the mock client is called with only the last two messages.
assert len(model_client.create_calls) == 1
# 2 message from the context + 1 system message
assert len(model_client.create_calls[0]["messages"]) == 3
@pytest.mark.asyncio
async def test_run_with_memory(monkeypatch: pytest.MonkeyPatch) -> None:
model_client = ReplayChatCompletionClient(["Hello"])
b64_image_str = "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAIAAACQd1PeAAAADElEQVR4nGP4//8/AAX+Av4N70a4AAAAAElFTkSuQmCC"
# Test basic memory properties and empty context
memory = ListMemory(name="test_memory")
assert memory.name == "test_memory"
empty_context = BufferedChatCompletionContext(buffer_size=2)
empty_results = await memory.update_context(empty_context)
assert len(empty_results.memories.results) == 0
# Test various content types
memory = ListMemory()
await memory.add(MemoryContent(content="text content", mime_type=MemoryMimeType.TEXT))
await memory.add(MemoryContent(content={"key": "value"}, mime_type=MemoryMimeType.JSON))
await memory.add(MemoryContent(content=Image.from_base64(b64_image_str), mime_type=MemoryMimeType.IMAGE))
# Test query functionality
query_result = await memory.query(MemoryContent(content="", mime_type=MemoryMimeType.TEXT))
assert isinstance(query_result, MemoryQueryResult)
# Should have all three memories we added
assert len(query_result.results) == 3
# Test clear and cleanup
await memory.clear()
empty_query = await memory.query(MemoryContent(content="", mime_type=MemoryMimeType.TEXT))
assert len(empty_query.results) == 0
await memory.close() # Should not raise
# Test invalid memory type
with pytest.raises(TypeError):
AssistantAgent(
"test_agent",
model_client=model_client,
memory="invalid", # type: ignore
)
# Test with agent
memory2 = ListMemory()
await memory2.add(MemoryContent(content="test instruction", mime_type=MemoryMimeType.TEXT))
agent = AssistantAgent("test_agent", model_client=model_client, memory=[memory2])
# Test dump and load component with memory
agent_config: ComponentModel = agent.dump_component()
assert agent_config.provider == "autogen_agentchat.agents.AssistantAgent"
agent2 = AssistantAgent.load_component(agent_config)
result = await agent2.run(task="test task")
assert len(result.messages) > 0
memory_event = next((msg for msg in result.messages if isinstance(msg, MemoryQueryEvent)), None)
assert memory_event is not None
assert len(memory_event.content) > 0
assert isinstance(memory_event.content[0], MemoryContent)
# Test memory protocol
class BadMemory:
pass
assert not isinstance(BadMemory(), Memory)
assert isinstance(ListMemory(), Memory)
@pytest.mark.asyncio
async def test_assistant_agent_declarative() -> None:
model_client = ReplayChatCompletionClient(
["Response to message 3"],
model_info={
"function_calling": True,
"vision": True,
"json_output": True,
"family": ModelFamily.GPT_4O,
"structured_output": True,
},
)
model_context = BufferedChatCompletionContext(buffer_size=2)
agent = AssistantAgent(
"test_agent",
model_client=model_client,
model_context=model_context,
memory=[ListMemory(name="test_memory")],
)
agent_config: ComponentModel = agent.dump_component()
assert agent_config.provider == "autogen_agentchat.agents.AssistantAgent"
agent2 = AssistantAgent.load_component(agent_config)
assert agent2.name == agent.name
agent3 = AssistantAgent(
"test_agent",
model_client=model_client,
model_context=model_context,
tools=[
_pass_function,
_fail_function,
FunctionTool(_echo_function, description="Echo"),
],
)
agent3_config = agent3.dump_component()
assert agent3_config.provider == "autogen_agentchat.agents.AssistantAgent"
@pytest.mark.asyncio
async def test_model_client_stream() -> None:
mock_client = ReplayChatCompletionClient(
[
"Response to message 3",
]
)
agent = AssistantAgent(
"test_agent",
model_client=mock_client,
model_client_stream=True,
)
chunks: List[str] = []
async for message in agent.run_stream(task="task"):
if isinstance(message, TaskResult):
assert isinstance(message.messages[-1], TextMessage)
assert message.messages[-1].content == "Response to message 3"
elif isinstance(message, ModelClientStreamingChunkEvent):
chunks.append(message.content)
assert "".join(chunks) == "Response to message 3"
@pytest.mark.asyncio
async def test_model_client_stream_with_tool_calls() -> None:
mock_client = ReplayChatCompletionClient(
[
CreateResult(
content=[
FunctionCall(id="1", name="_pass_function", arguments=r'{"input": "task"}'),
FunctionCall(id="3", name="_echo_function", arguments=r'{"input": "task"}'),
],
finish_reason="function_calls",
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
),
"Example response 2 to task",
]
)
mock_client._model_info["function_calling"] = True # pyright: ignore
agent = AssistantAgent(
"test_agent",
model_client=mock_client,
model_client_stream=True,
reflect_on_tool_use=True,
tools=[_pass_function, _echo_function],
)
chunks: List[str] = []
async for message in agent.run_stream(task="task"):
if isinstance(message, TaskResult):
assert isinstance(message.messages[-1], TextMessage)
assert isinstance(message.messages[1], ToolCallRequestEvent)
assert message.messages[-1].content == "Example response 2 to task"
assert message.messages[1].content == [
FunctionCall(id="1", name="_pass_function", arguments=r'{"input": "task"}'),
FunctionCall(id="3", name="_echo_function", arguments=r'{"input": "task"}'),
]
assert isinstance(message.messages[2], ToolCallExecutionEvent)
assert message.messages[2].content == [
FunctionExecutionResult(call_id="1", content="pass", is_error=False, name="_pass_function"),
FunctionExecutionResult(call_id="3", content="task", is_error=False, name="_echo_function"),
]
elif isinstance(message, ModelClientStreamingChunkEvent):
chunks.append(message.content)
assert "".join(chunks) == "Example response 2 to task"
@pytest.mark.asyncio
async def test_invalid_structured_output_format() -> None:
class AgentResponse(BaseModel):
response: str
status: str
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="stop",
content='{"response": "Hello"}',
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
),
]
)
agent = AssistantAgent(
name="assistant",
model_client=model_client,
output_content_type=AgentResponse,
)
with pytest.raises(ValidationError):
await agent.run()
@pytest.mark.asyncio
async def test_structured_message_factory_serialization() -> None:
class AgentResponse(BaseModel):
result: str
status: str
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="stop",
content=AgentResponse(result="All good", status="ok").model_dump_json(),
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
)
]
)
agent = AssistantAgent(
name="structured_agent",
model_client=model_client,
output_content_type=AgentResponse,
output_content_type_format="{result} - {status}",
)
dumped = agent.dump_component()
restored_agent = AssistantAgent.load_component(dumped)
result = await restored_agent.run()
assert isinstance(result.messages[0], StructuredMessage)
assert result.messages[0].content.result == "All good" # type: ignore[reportUnknownMemberType]
assert result.messages[0].content.status == "ok" # type: ignore[reportUnknownMemberType]
@pytest.mark.asyncio
async def test_structured_message_format_string() -> None:
class AgentResponse(BaseModel):
field1: str
field2: str
expected = AgentResponse(field1="foo", field2="bar")
model_client = ReplayChatCompletionClient(
[
CreateResult(
finish_reason="stop",
content=expected.model_dump_json(),
usage=RequestUsage(prompt_tokens=10, completion_tokens=5),
cached=False,
)
]
)
agent = AssistantAgent(
name="formatted_agent",
model_client=model_client,
output_content_type=AgentResponse,
output_content_type_format="{field1} - {field2}",
)
result = await agent.run()
assert len(result.messages) == 1
message = result.messages[0]
# Check that it's a StructuredMessage with the correct content model
assert isinstance(message, StructuredMessage)
assert isinstance(message.content, AgentResponse) # type: ignore[reportUnknownMemberType]
assert message.content == expected
# Check that the format_string was applied correctly
assert message.to_model_text() == "foo - bar"
@pytest.mark.asyncio
async def test_tools_serialize_and_deserialize() -> None:
def test() -> str:
return "hello world"
client = OpenAIChatCompletionClient(
model="gpt-4o",
api_key="API_KEY",
)
agent = AssistantAgent(
name="test",
model_client=client,
tools=[test],
)
serialize = agent.dump_component()
deserialize = AssistantAgent.load_component(serialize)
assert deserialize.name == agent.name
assert await deserialize._workbench.list_tools() == await agent._workbench.list_tools() # type: ignore
@pytest.mark.asyncio
async def test_workbenchs_serialize_and_deserialize() -> None:
workbench = McpWorkbench(server_params=SseServerParams(url="http://test-url"))
client = OpenAIChatCompletionClient(
model="gpt-4o",
api_key="API_KEY",
)
agent = AssistantAgent(
name="test",
model_client=client,
workbench=workbench,
)
serialize = agent.dump_component()
deserialize = AssistantAgent.load_component(serialize)
assert deserialize.name == agent.name
assert deserialize._workbench._to_config() == agent._workbench._to_config() # type: ignore
@pytest.mark.asyncio
async def test_tools_deserialize_aware() -> None:
dump = """
{
"provider": "autogen_agentchat.agents.AssistantAgent",
"component_type": "agent",
"version": 1,
"component_version": 1,
"description": "An agent that provides assistance with tool use.",
"label": "AssistantAgent",
"config": {
"name": "TestAgent",
"model_client":{
"provider": "autogen_ext.models.replay.ReplayChatCompletionClient",
"component_type": "replay_chat_completion_client",
"version": 1,
"component_version": 1,
"description": "A mock chat completion client that replays predefined responses using an index-based approach.",
"label": "ReplayChatCompletionClient",
"config": {
"chat_completions": [
{
"finish_reason": "function_calls",
"content": [
{
"id": "hello",
"arguments": "{}",
"name": "hello"
}
],
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0
},
"cached": false
}
],
"model_info": {
"vision": false,
"function_calling": true,
"json_output": false,
"family": "unknown",
"structured_output": false
}
}
},
"tools": [
{
"provider": "autogen_core.tools.FunctionTool",
"component_type": "tool",
"version": 1,
"component_version": 1,
"description": "Create custom tools by wrapping standard Python functions.",
"label": "FunctionTool",
"config": {
"source_code": "def hello():\\n return 'Hello, World!'\\n",
"name": "hello",
"description": "",
"global_imports": [],
"has_cancellation_support": false
}
}
],
"model_context": {
"provider": "autogen_core.model_context.UnboundedChatCompletionContext",
"component_type": "chat_completion_context",
"version": 1,
"component_version": 1,
"description": "An unbounded chat completion context that keeps a view of the all the messages.",
"label": "UnboundedChatCompletionContext",
"config": {}
},
"description": "An agent that provides assistance with ability to use tools.",
"system_message": "You are a helpful assistant.",
"model_client_stream": false,
"reflect_on_tool_use": false,
"tool_call_summary_format": "{result}",
"metadata": {}
}
}
"""
agent = AssistantAgent.load_component(json.loads(dump))
result = await agent.run(task="hello")
assert len(result.messages) == 4
assert result.messages[-1].content == "Hello, World!" # type: ignore
assert result.messages[-1].type == "ToolCallSummaryMessage" # type: ignore
assert isinstance(result.messages[-1], ToolCallSummaryMessage) # type: ignore