mirror of
https://github.com/microsoft/autogen.git
synced 2025-08-04 23:02:09 +00:00

* Change "content" type in Conversable Agent * content and system_message support str and List Update for all other agents * Content_str now also takes None as input * Group Chat now works with LMM too * Style: newline for import in Conversable Agentt * Add test for gourpchat + lmm * Resolve comments 1. Undo AssistantAgent changes 2. Modify the asserts and raises in `content_str` function and update test accordingly. * Undo AssistantAgent * Update comments and add assertion for LMM * Typo fix in docstring for content_str * Remove “None” out conversable_agent.py * Lint message to dict in multimodal_conversable_agent.py * Address lint issues * linting * Move lmm test into contrib test * Resolve 2 comments * Move img_utils into contrib folder * Resolve img_utils path issues
194 lines
7.3 KiB
Python
194 lines
7.3 KiB
Python
import base64
|
|
import os
|
|
import pdb
|
|
import unittest
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
import requests
|
|
|
|
try:
|
|
from PIL import Image
|
|
|
|
from autogen.agentchat.contrib.img_utils import extract_img_paths, get_image_data, gpt4v_formatter, llava_formater
|
|
except ImportError:
|
|
skip = True
|
|
else:
|
|
skip = False
|
|
|
|
|
|
base64_encoded_image = (
|
|
""
|
|
"//8/w38GIAXDIBKE0DHxgljNBAAO9TXL0Y4OHwAAAABJRU5ErkJggg=="
|
|
)
|
|
|
|
raw_encoded_image = (
|
|
"iVBORw0KGgoAAAANSUhEUgAAAAUAAAAFCAYAAACNbyblAAAAHElEQVQI12P4"
|
|
"//8/w38GIAXDIBKE0DHxgljNBAAO9TXL0Y4OHwAAAABJRU5ErkJggg=="
|
|
)
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="dependency is not installed")
|
|
class TestGetImageData(unittest.TestCase):
|
|
def test_http_image(self):
|
|
with patch("requests.get") as mock_get:
|
|
mock_response = requests.Response()
|
|
mock_response.status_code = 200
|
|
mock_response._content = b"fake image content"
|
|
mock_get.return_value = mock_response
|
|
|
|
result = get_image_data("http://example.com/image.png")
|
|
self.assertEqual(result, base64.b64encode(b"fake image content").decode("utf-8"))
|
|
|
|
def test_base64_encoded_image(self):
|
|
result = get_image_data(base64_encoded_image)
|
|
self.assertEqual(result, base64_encoded_image.split(",", 1)[1])
|
|
|
|
def test_local_image(self):
|
|
# Create a temporary file to simulate a local image file.
|
|
temp_file = "_temp.png"
|
|
|
|
image = Image.new("RGB", (60, 30), color=(73, 109, 137))
|
|
image.save(temp_file)
|
|
|
|
result = get_image_data(temp_file)
|
|
with open(temp_file, "rb") as temp_image_file:
|
|
temp_image_file.seek(0)
|
|
expected_content = base64.b64encode(temp_image_file.read()).decode("utf-8")
|
|
|
|
self.assertEqual(result, expected_content)
|
|
os.remove(temp_file)
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="dependency is not installed")
|
|
class TestLlavaFormater(unittest.TestCase):
|
|
def test_no_images(self):
|
|
"""
|
|
Test the llava_formater function with a prompt containing no images.
|
|
"""
|
|
prompt = "This is a test."
|
|
expected_output = (prompt, [])
|
|
result = llava_formater(prompt)
|
|
self.assertEqual(result, expected_output)
|
|
|
|
@patch("autogen.agentchat.contrib.img_utils.get_image_data")
|
|
def test_with_images(self, mock_get_image_data):
|
|
"""
|
|
Test the llava_formater function with a prompt containing images.
|
|
"""
|
|
# Mock the get_image_data function to return a fixed string.
|
|
mock_get_image_data.return_value = raw_encoded_image
|
|
|
|
prompt = "This is a test with an image <img http://example.com/image.png>."
|
|
expected_output = ("This is a test with an image <image>.", [raw_encoded_image])
|
|
result = llava_formater(prompt)
|
|
self.assertEqual(result, expected_output)
|
|
|
|
@patch("autogen.agentchat.contrib.img_utils.get_image_data")
|
|
def test_with_ordered_images(self, mock_get_image_data):
|
|
"""
|
|
Test the llava_formater function with ordered image tokens.
|
|
"""
|
|
# Mock the get_image_data function to return a fixed string.
|
|
mock_get_image_data.return_value = raw_encoded_image
|
|
|
|
prompt = "This is a test with an image <img http://example.com/image.png>."
|
|
expected_output = ("This is a test with an image <image 0>.", [raw_encoded_image])
|
|
result = llava_formater(prompt, order_image_tokens=True)
|
|
self.assertEqual(result, expected_output)
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="dependency is not installed")
|
|
class TestGpt4vFormatter(unittest.TestCase):
|
|
def test_no_images(self):
|
|
"""
|
|
Test the gpt4v_formatter function with a prompt containing no images.
|
|
"""
|
|
prompt = "This is a test."
|
|
expected_output = [{"type": "text", "text": prompt}]
|
|
result = gpt4v_formatter(prompt)
|
|
self.assertEqual(result, expected_output)
|
|
|
|
@patch("autogen.agentchat.contrib.img_utils.get_image_data")
|
|
def test_with_images(self, mock_get_image_data):
|
|
"""
|
|
Test the gpt4v_formatter function with a prompt containing images.
|
|
"""
|
|
# Mock the get_image_data function to return a fixed string.
|
|
mock_get_image_data.return_value = raw_encoded_image
|
|
|
|
prompt = "This is a test with an image <img http://example.com/image.png>."
|
|
expected_output = [
|
|
{"type": "text", "text": "This is a test with an image "},
|
|
{"type": "image_url", "image_url": {"url": base64_encoded_image}},
|
|
{"type": "text", "text": "."},
|
|
]
|
|
result = gpt4v_formatter(prompt)
|
|
self.assertEqual(result, expected_output)
|
|
|
|
@patch("autogen.agentchat.contrib.img_utils.get_image_data")
|
|
def test_multiple_images(self, mock_get_image_data):
|
|
"""
|
|
Test the gpt4v_formatter function with a prompt containing multiple images.
|
|
"""
|
|
# Mock the get_image_data function to return a fixed string.
|
|
mock_get_image_data.return_value = raw_encoded_image
|
|
|
|
prompt = (
|
|
"This is a test with images <img http://example.com/image1.png> and <img http://example.com/image2.png>."
|
|
)
|
|
expected_output = [
|
|
{"type": "text", "text": "This is a test with images "},
|
|
{"type": "image_url", "image_url": {"url": base64_encoded_image}},
|
|
{"type": "text", "text": " and "},
|
|
{"type": "image_url", "image_url": {"url": base64_encoded_image}},
|
|
{"type": "text", "text": "."},
|
|
]
|
|
result = gpt4v_formatter(prompt)
|
|
self.assertEqual(result, expected_output)
|
|
|
|
|
|
@pytest.mark.skipif(skip, reason="dependency is not installed")
|
|
class TestExtractImgPaths(unittest.TestCase):
|
|
def test_no_images(self):
|
|
"""
|
|
Test the extract_img_paths function with a paragraph containing no images.
|
|
"""
|
|
paragraph = "This is a test paragraph with no images."
|
|
expected_output = []
|
|
result = extract_img_paths(paragraph)
|
|
self.assertEqual(result, expected_output)
|
|
|
|
def test_with_images(self):
|
|
"""
|
|
Test the extract_img_paths function with a paragraph containing images.
|
|
"""
|
|
paragraph = (
|
|
"This is a test paragraph with images http://example.com/image1.jpg and http://example.com/image2.png."
|
|
)
|
|
expected_output = ["http://example.com/image1.jpg", "http://example.com/image2.png"]
|
|
result = extract_img_paths(paragraph)
|
|
self.assertEqual(result, expected_output)
|
|
|
|
def test_mixed_case(self):
|
|
"""
|
|
Test the extract_img_paths function with mixed case image extensions.
|
|
"""
|
|
paragraph = "Mixed case extensions http://example.com/image.JPG and http://example.com/image.Png."
|
|
expected_output = ["http://example.com/image.JPG", "http://example.com/image.Png"]
|
|
result = extract_img_paths(paragraph)
|
|
self.assertEqual(result, expected_output)
|
|
|
|
def test_local_paths(self):
|
|
"""
|
|
Test the extract_img_paths function with local file paths.
|
|
"""
|
|
paragraph = "Local paths image1.jpeg and image2.GIF."
|
|
expected_output = ["image1.jpeg", "image2.GIF"]
|
|
result = extract_img_paths(paragraph)
|
|
self.assertEqual(result, expected_output)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|