mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-11 17:26:02 +00:00

* Refactor into automl subpackage Moved some of the packages into an automl subpackage to tidy before the task-based refactor. This is in response to discussions with the group and a comment on the first task-based PR. Only changes here are moving subpackages and modules into the new automl, fixing imports to work with this structure and fixing some dependencies in setup.py. * Fix doc building post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Remove vw from test deps as this is breaking the build * Move default back to the top-level I'd moved this to automl as that's where it's used internally, but had missed that this is actually part of the public interface so makes sense to live where it was. * Re-add top level modules with deprecation warnings flaml.data, flaml.ml and flaml.model are re-added to the top level, being re-exported from flaml.automl for backwards compatability. Adding a deprecation warning so that we can have a planned removal later. * Fix model.py line-endings * WIP * WIP - Notes below Got to the point where the methods from AutoML are pulled to GenericTask. Started removing private markers and removing the passing of automl to these methods. Done with decide_split_type, started on prepare_data. Need to do the others after * Re-add generic_task * Fix tests: add Task.__str__ * Fix tests: test for ray.ObjectRef * Hotwire TS_Sklearn wrapper to fix test fail * Remove unused data size field from Task * Fix import for CLASSIFICATION in notebook * Update flaml/automl/data.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Fix review comments * Fix task -> str in custom learner constructor * Remove unused CLASSIFICATION imports * Hotwire TS_Sklearn wrapper to fix test fail by setting optimizer_for_horizon == False * Revert changes to the automl_classification and pin FLAML version * Fix imports in reverted notebook * Fix FLAML version in automl notebooks * Fix ml.py line endings * Fix CLASSIFICATION task import in automl_classification notebook * Uncomment pip install in notebook and revert import Not convinced this will work because of installing an older version of the package into the environment in which we're running the tests, but let's see. * Revert c6a5dd1a0 * Revert "Revert c6a5dd1a0" This reverts commit e55e35adea03993de87b23f092b14c6af623d487. * Black format model.py * Bump version to 1.1.2 in automl_xgboost * Add docstrings to the Task ABC * Fix import in custom_learner * fix 'optimize_for_horizon' for ts_sklearn * remove debugging print statements * Check for is_forecast() before is_classification() in decide_split_type * Attempt to fix formatting fail * Another attempt to fix formatting fail * And another attempt to fix formatting fail * Add type annotations for task arg in signatures and docstrings * Fix formatting * Fix linting --------- Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Kevin Chen <chenkevin.8787@gmail.com>
430 lines
16 KiB
Python
430 lines
16 KiB
Python
import inspect
|
|
import time
|
|
from typing import Any, Optional
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from flaml import tune
|
|
from flaml.automl.logger import logger
|
|
from flaml.automl.ml import compute_estimator, train_estimator
|
|
from flaml.automl.task.task import TS_FORECAST
|
|
|
|
|
|
class SearchState:
|
|
@property
|
|
def search_space(self):
|
|
return self._search_space_domain
|
|
|
|
@property
|
|
def estimated_cost4improvement(self):
|
|
return max(
|
|
self.time_best_found - self.time_best_found_old,
|
|
self.total_time_used - self.time_best_found,
|
|
)
|
|
|
|
def valid_starting_point_one_dim(self, value_one_dim, domain_one_dim):
|
|
from flaml.tune.space import sample
|
|
|
|
"""
|
|
For each hp in the starting point, check the following 3 conditions:
|
|
(1) If the type of the starting point does not match the required type in search space, return false
|
|
(2) If the starting point is not in the required search space, return false
|
|
(3) If the search space is a value instead of domain, and the value is not equal to the starting point
|
|
Notice (2) include the case starting point not in user specified search space custom_hp
|
|
"""
|
|
if isinstance(domain_one_dim, sample.Domain):
|
|
renamed_type = list(
|
|
inspect.signature(domain_one_dim.is_valid).parameters.values()
|
|
)[0].annotation
|
|
type_match = (
|
|
renamed_type == Any
|
|
or isinstance(value_one_dim, renamed_type)
|
|
or isinstance(value_one_dim, int)
|
|
and renamed_type is float
|
|
)
|
|
if not (type_match and domain_one_dim.is_valid(value_one_dim)):
|
|
return False
|
|
elif value_one_dim != domain_one_dim:
|
|
return False
|
|
return True
|
|
|
|
def valid_starting_point(self, starting_point, search_space):
|
|
return all(
|
|
self.valid_starting_point_one_dim(value, search_space[name].get("domain"))
|
|
for name, value in starting_point.items()
|
|
if name != "FLAML_sample_size"
|
|
)
|
|
|
|
def __init__(
|
|
self,
|
|
learner_class,
|
|
data_size,
|
|
task,
|
|
starting_point=None,
|
|
period=None,
|
|
custom_hp=None,
|
|
max_iter=None,
|
|
budget=None,
|
|
):
|
|
self.init_eci = learner_class.cost_relative2lgbm() if budget >= 0 else 1
|
|
self._search_space_domain = {}
|
|
self.init_config = None
|
|
self.low_cost_partial_config = {}
|
|
self.cat_hp_cost = {}
|
|
self.data_size = data_size
|
|
self.ls_ever_converged = False
|
|
self.learner_class = learner_class
|
|
self._budget = budget
|
|
if task in TS_FORECAST:
|
|
search_space = learner_class.search_space(
|
|
data_size=data_size, task=task, pred_horizon=period
|
|
)
|
|
else:
|
|
search_space = learner_class.search_space(data_size=data_size, task=task)
|
|
|
|
if custom_hp is not None:
|
|
search_space.update(custom_hp)
|
|
|
|
if isinstance(starting_point, dict):
|
|
starting_point = AutoMLState.sanitize(starting_point)
|
|
if max_iter > 1 and not self.valid_starting_point(
|
|
starting_point, search_space
|
|
):
|
|
# If the number of iterations is larger than 1, remove invalid point
|
|
logger.warning(
|
|
"Starting point {} removed because it is outside of the search space".format(
|
|
starting_point
|
|
)
|
|
)
|
|
starting_point = None
|
|
elif isinstance(starting_point, list):
|
|
starting_point = [AutoMLState.sanitize(x) for x in starting_point]
|
|
if max_iter > len(starting_point):
|
|
# If the number of starting points is no smaller than max iter, avoid the checking
|
|
starting_point_len = len(starting_point)
|
|
starting_point = [
|
|
x
|
|
for x in starting_point
|
|
if self.valid_starting_point(x, search_space)
|
|
]
|
|
if starting_point_len > len(starting_point):
|
|
logger.warning(
|
|
"Starting points outside of the search space are removed. "
|
|
f"Remaining starting points for {learner_class}: {starting_point}"
|
|
)
|
|
starting_point = starting_point or None
|
|
|
|
for name, space in search_space.items():
|
|
assert (
|
|
"domain" in space
|
|
), f"{name}'s domain is missing in the search space spec {space}"
|
|
if space["domain"] is None:
|
|
# don't search this hp
|
|
continue
|
|
self._search_space_domain[name] = space["domain"]
|
|
|
|
if "low_cost_init_value" in space:
|
|
self.low_cost_partial_config[name] = space["low_cost_init_value"]
|
|
if "cat_hp_cost" in space:
|
|
self.cat_hp_cost[name] = space["cat_hp_cost"]
|
|
# if a starting point is provided, set the init config to be
|
|
# the starting point provided
|
|
if (
|
|
isinstance(starting_point, dict)
|
|
and starting_point.get(name) is not None
|
|
):
|
|
if self.init_config is None:
|
|
self.init_config = {}
|
|
self.init_config[name] = starting_point[name]
|
|
elif (
|
|
not isinstance(starting_point, list)
|
|
and "init_value" in space
|
|
and self.valid_starting_point_one_dim(
|
|
space["init_value"], space["domain"]
|
|
)
|
|
):
|
|
if self.init_config is None:
|
|
self.init_config = {}
|
|
self.init_config[name] = space["init_value"]
|
|
|
|
if isinstance(starting_point, list):
|
|
self.init_config = starting_point
|
|
else:
|
|
self.init_config = [] if self.init_config is None else [self.init_config]
|
|
|
|
self._hp_names = list(self._search_space_domain.keys())
|
|
self.search_alg = None
|
|
self.best_config = None
|
|
self.best_result = None
|
|
self.best_loss = self.best_loss_old = np.inf
|
|
self.total_time_used = 0
|
|
self.total_iter = 0
|
|
self.base_eci = None
|
|
self.time_best_found = self.time_best_found_old = 0
|
|
self.time2eval_best = 0
|
|
self.time2eval_best_old = 0
|
|
self.trained_estimator = None
|
|
self.sample_size = None
|
|
self.trial_time = 0
|
|
|
|
def update(self, result, time_used):
|
|
if result:
|
|
config = result["config"]
|
|
if config and "FLAML_sample_size" in config:
|
|
self.sample_size = config["FLAML_sample_size"]
|
|
else:
|
|
self.sample_size = self.data_size[0]
|
|
obj = result["val_loss"]
|
|
metric_for_logging = result["metric_for_logging"]
|
|
time2eval = result["time_total_s"]
|
|
trained_estimator = result["trained_estimator"]
|
|
del result["trained_estimator"] # free up RAM
|
|
n_iter = (
|
|
trained_estimator
|
|
and hasattr(trained_estimator, "ITER_HP")
|
|
and trained_estimator.params.get(trained_estimator.ITER_HP)
|
|
)
|
|
if n_iter:
|
|
if "ml" in config:
|
|
config["ml"][trained_estimator.ITER_HP] = n_iter
|
|
else:
|
|
config[trained_estimator.ITER_HP] = n_iter
|
|
else:
|
|
obj, time2eval, trained_estimator = np.inf, 0.0, None
|
|
metric_for_logging = config = None
|
|
self.trial_time = time2eval
|
|
self.total_time_used += time_used if self._budget >= 0 else 1
|
|
self.total_iter += 1
|
|
|
|
if self.base_eci is None:
|
|
self.base_eci = time_used
|
|
if (obj is not None) and (obj < self.best_loss):
|
|
self.best_loss_old = self.best_loss if self.best_loss < np.inf else 2 * obj
|
|
self.best_loss = obj
|
|
self.best_result = result
|
|
self.time_best_found_old = self.time_best_found
|
|
self.time_best_found = self.total_time_used
|
|
self.iter_best_found = self.total_iter
|
|
self.best_config = config
|
|
self.best_config_sample_size = self.sample_size
|
|
self.best_config_train_time = time_used
|
|
if time2eval:
|
|
self.time2eval_best_old = self.time2eval_best
|
|
self.time2eval_best = time2eval
|
|
if (
|
|
self.trained_estimator
|
|
and trained_estimator
|
|
and self.trained_estimator != trained_estimator
|
|
):
|
|
self.trained_estimator.cleanup()
|
|
if trained_estimator:
|
|
self.trained_estimator = trained_estimator
|
|
elif trained_estimator:
|
|
trained_estimator.cleanup()
|
|
self.metric_for_logging = metric_for_logging
|
|
self.val_loss, self.config = obj, config
|
|
|
|
def get_hist_config_sig(self, sample_size, config):
|
|
config_values = tuple([config[k] for k in self._hp_names if k in config])
|
|
config_sig = str(sample_size) + "_" + str(config_values)
|
|
return config_sig
|
|
|
|
def est_retrain_time(self, retrain_sample_size):
|
|
assert (
|
|
self.best_config_sample_size is not None
|
|
), "need to first get best_config_sample_size"
|
|
return self.time2eval_best * retrain_sample_size / self.best_config_sample_size
|
|
|
|
|
|
class AutoMLState:
|
|
def _prepare_sample_train_data(self, sample_size: int):
|
|
sampled_weight = groups = None
|
|
if sample_size <= self.data_size[0]:
|
|
if isinstance(self.X_train, pd.DataFrame):
|
|
sampled_X_train = self.X_train.iloc[:sample_size]
|
|
else:
|
|
sampled_X_train = self.X_train[:sample_size]
|
|
if isinstance(self.y_train, pd.Series):
|
|
sampled_y_train = self.y_train.iloc[:sample_size]
|
|
else:
|
|
sampled_y_train = self.y_train[:sample_size]
|
|
weight = self.fit_kwargs.get(
|
|
"sample_weight"
|
|
) # NOTE: _prepare_sample_train_data is before kwargs is updated to fit_kwargs_by_estimator
|
|
if weight is not None:
|
|
sampled_weight = (
|
|
weight.iloc[:sample_size]
|
|
if isinstance(weight, pd.Series)
|
|
else weight[:sample_size]
|
|
)
|
|
if self.groups is not None:
|
|
groups = (
|
|
self.groups.iloc[:sample_size]
|
|
if isinstance(self.groups, pd.Series)
|
|
else self.groups[:sample_size]
|
|
)
|
|
else:
|
|
sampled_X_train = self.X_train_all
|
|
sampled_y_train = self.y_train_all
|
|
if (
|
|
"sample_weight" in self.fit_kwargs
|
|
): # NOTE: _prepare_sample_train_data is before kwargs is updated to fit_kwargs_by_estimator
|
|
sampled_weight = self.sample_weight_all
|
|
if self.groups is not None:
|
|
groups = self.groups_all
|
|
return sampled_X_train, sampled_y_train, sampled_weight, groups
|
|
|
|
@staticmethod
|
|
def _compute_with_config_base(
|
|
config_w_resource: dict,
|
|
state: "AutoMLState",
|
|
estimator: str,
|
|
is_report: bool = True,
|
|
) -> dict:
|
|
if "FLAML_sample_size" in config_w_resource:
|
|
sample_size = int(config_w_resource["FLAML_sample_size"])
|
|
else:
|
|
sample_size = state.data_size[0]
|
|
|
|
this_estimator_kwargs = state.fit_kwargs_by_estimator.get(
|
|
estimator
|
|
).copy() # NOTE: _compute_with_config_base is after kwargs is updated to fit_kwargs_by_estimator
|
|
(
|
|
sampled_X_train,
|
|
sampled_y_train,
|
|
sampled_weight,
|
|
groups,
|
|
) = state._prepare_sample_train_data(sample_size)
|
|
if sampled_weight is not None:
|
|
weight = this_estimator_kwargs["sample_weight"]
|
|
this_estimator_kwargs["sample_weight"] = sampled_weight
|
|
if groups is not None:
|
|
this_estimator_kwargs["groups"] = groups
|
|
config = config_w_resource.copy()
|
|
if "FLAML_sample_size" in config:
|
|
del config["FLAML_sample_size"]
|
|
budget = (
|
|
None
|
|
if state.time_budget < 0
|
|
else state.time_budget - state.time_from_start
|
|
if sample_size == state.data_size[0]
|
|
else (state.time_budget - state.time_from_start)
|
|
/ 2
|
|
* sample_size
|
|
/ state.data_size[0]
|
|
)
|
|
|
|
(
|
|
trained_estimator,
|
|
val_loss,
|
|
metric_for_logging,
|
|
_,
|
|
pred_time,
|
|
) = compute_estimator(
|
|
sampled_X_train,
|
|
sampled_y_train,
|
|
state.X_val,
|
|
state.y_val,
|
|
state.weight_val,
|
|
state.groups_val,
|
|
state.train_time_limit
|
|
if budget is None
|
|
else min(budget, state.train_time_limit or np.inf),
|
|
state.kf,
|
|
config,
|
|
state.task,
|
|
estimator,
|
|
state.eval_method,
|
|
state.metric,
|
|
state.best_loss,
|
|
state.n_jobs,
|
|
state.learner_classes.get(estimator),
|
|
state.cv_score_agg_func,
|
|
state.log_training_metric,
|
|
this_estimator_kwargs,
|
|
state.free_mem_ratio,
|
|
)
|
|
if state.retrain_final and not state.model_history:
|
|
trained_estimator.cleanup()
|
|
|
|
result = {
|
|
"pred_time": pred_time,
|
|
"wall_clock_time": time.time() - state._start_time_flag,
|
|
"metric_for_logging": metric_for_logging,
|
|
"val_loss": val_loss,
|
|
"trained_estimator": trained_estimator,
|
|
}
|
|
if sampled_weight is not None:
|
|
this_estimator_kwargs["sample_weight"] = weight
|
|
if is_report is True:
|
|
tune.report(**result)
|
|
return result
|
|
|
|
@classmethod
|
|
def sanitize(cls, config: dict) -> dict:
|
|
"""Make a config ready for passing to estimator."""
|
|
config = config.get("ml", config).copy()
|
|
config.pop("FLAML_sample_size", None)
|
|
config.pop("learner", None)
|
|
config.pop("_choice_", None)
|
|
return config
|
|
|
|
def _train_with_config(
|
|
self,
|
|
estimator: str,
|
|
config_w_resource: dict,
|
|
sample_size: Optional[int] = None,
|
|
):
|
|
if not sample_size:
|
|
sample_size = config_w_resource.get(
|
|
"FLAML_sample_size", len(self.y_train_all)
|
|
)
|
|
config = AutoMLState.sanitize(config_w_resource)
|
|
|
|
this_estimator_kwargs = self.fit_kwargs_by_estimator.get(
|
|
estimator
|
|
).copy() # NOTE: _train_with_config is after kwargs is updated to fit_kwargs_by_estimator
|
|
(
|
|
sampled_X_train,
|
|
sampled_y_train,
|
|
sampled_weight,
|
|
groups,
|
|
) = self._prepare_sample_train_data(sample_size)
|
|
if sampled_weight is not None:
|
|
weight = this_estimator_kwargs[
|
|
"sample_weight"
|
|
] # NOTE: _train_with_config is after kwargs is updated to fit_kwargs_by_estimator
|
|
this_estimator_kwargs[
|
|
"sample_weight"
|
|
] = sampled_weight # NOTE: _train_with_config is after kwargs is updated to fit_kwargs_by_estimator
|
|
if groups is not None:
|
|
this_estimator_kwargs[
|
|
"groups"
|
|
] = groups # NOTE: _train_with_config is after kwargs is updated to fit_kwargs_by_estimator
|
|
|
|
budget = (
|
|
None if self.time_budget < 0 else self.time_budget - self.time_from_start
|
|
)
|
|
|
|
estimator, train_time = train_estimator(
|
|
X_train=sampled_X_train,
|
|
y_train=sampled_y_train,
|
|
config_dic=config,
|
|
task=self.task,
|
|
estimator_name=estimator,
|
|
n_jobs=self.n_jobs,
|
|
estimator_class=self.learner_classes.get(estimator),
|
|
budget=budget,
|
|
fit_kwargs=this_estimator_kwargs, # NOTE: _train_with_config is after kwargs is updated to fit_kwargs_by_estimator
|
|
eval_metric=self.metric if hasattr(self, "metric") else "train_time",
|
|
free_mem_ratio=self.free_mem_ratio,
|
|
)
|
|
|
|
if sampled_weight is not None:
|
|
this_estimator_kwargs[
|
|
"sample_weight"
|
|
] = weight # NOTE: _train_with_config is after kwargs is updated to fit_kwargs_by_estimator
|
|
|
|
return estimator, train_time
|