mirror of
https://github.com/microsoft/autogen.git
synced 2025-10-11 16:08:55 +00:00
107 lines
3.3 KiB
Python
107 lines
3.3 KiB
Python
import asyncio
|
|
import logging
|
|
|
|
# from typing import Any, Dict, List, Tuple, Union
|
|
|
|
from agnext.application import SingleThreadedAgentRuntime
|
|
from agnext.components.models import (
|
|
AzureOpenAIChatCompletionClient,
|
|
ModelCapabilities,
|
|
UserMessage,
|
|
)
|
|
from agnext.components.code_executor import LocalCommandLineCodeExecutor
|
|
from agnext.application.logging import EVENT_LOGGER_NAME
|
|
|
|
from team_one.agents.coder import Coder, Executor
|
|
from team_one.agents.orchestrator import RoundRobinOrchestrator
|
|
from team_one.messages import BroadcastMessage, OrchestrationEvent
|
|
|
|
|
|
async def main() -> None:
|
|
# Create the runtime.
|
|
runtime = SingleThreadedAgentRuntime()
|
|
|
|
# Create the AzureOpenAI client, with AAD auth
|
|
# token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")
|
|
client = AzureOpenAIChatCompletionClient(
|
|
api_version="2024-02-15-preview",
|
|
azure_endpoint="https://aif-complex-tasks-west-us-3.openai.azure.com/",
|
|
model="gpt-4o-2024-05-13",
|
|
model_capabilities=ModelCapabilities(
|
|
function_calling=True, json_output=True, vision=True
|
|
),
|
|
# azure_ad_token_provider=token_provider
|
|
)
|
|
|
|
# Register agents.
|
|
coder = await runtime.register_and_get_proxy(
|
|
"Coder",
|
|
lambda: Coder(model_client=client),
|
|
)
|
|
executor = await runtime.register_and_get_proxy(
|
|
"Executor",
|
|
lambda: Executor(
|
|
"A agent for executing code", executor=LocalCommandLineCodeExecutor()
|
|
),
|
|
)
|
|
|
|
await runtime.register("orchestrator", lambda: RoundRobinOrchestrator([coder, executor]))
|
|
|
|
prompt = ""
|
|
with open("prompt.txt", "rt") as fh:
|
|
prompt = fh.read()
|
|
|
|
entry_point = "__ENTRY_POINT__"
|
|
|
|
task = f"""
|
|
The following python code imports the `run_tests` function from unit_tests.py, and runs
|
|
it on the function `{entry_point}`. This will run a set of automated unit tests to verify the
|
|
correct implementation of `{entry_point}`. However, `{entry_point}` is only partially
|
|
implemented in the code below. Complete the implementation of `{entry_point}` and then execute
|
|
a new stand-alone code block that contains everything needed to run the tests, including: importing
|
|
`unit_tests`, calling `run_tests({entry_point})`, as well as {entry_point}'s complete definition,
|
|
such that this code block can be run directly in Python.
|
|
|
|
```python
|
|
from unit_tests import run_tests
|
|
|
|
{prompt}
|
|
|
|
# Run the unit tests
|
|
run_tests({entry_point})
|
|
```
|
|
""".strip()
|
|
|
|
run_context = runtime.start()
|
|
|
|
await runtime.publish_message(
|
|
BroadcastMessage(content=UserMessage(content=task, source="human")),
|
|
namespace="default",
|
|
)
|
|
|
|
await run_context.stop_when_idle()
|
|
|
|
|
|
class MyHandler(logging.Handler):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def emit(self, record: logging.LogRecord) -> None:
|
|
try:
|
|
if isinstance(record.msg, OrchestrationEvent):
|
|
print(f"""---------------------------------------------------------------------------
|
|
\033[91m{record.msg.source}:\033[0m
|
|
|
|
{record.msg.message}""", flush=True)
|
|
except Exception:
|
|
self.handleError(record)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
logger = logging.getLogger(EVENT_LOGGER_NAME)
|
|
logger.setLevel(logging.INFO)
|
|
my_handler = MyHandler()
|
|
logger.handlers = [my_handler]
|
|
asyncio.run(main())
|