autogen/test/test_training_log.py
Chi Wang e46573a01d
warmstart blendsearch (#186)
* increase test coverage

* use define by run only when needed

* warmstart bs

* classification -> binary, multi

* warm start with evaluated rewards

* data transformer; resource attr for gs

* BlendSearchTuner bug fix and unittest

* bug fix

* docstr and import

* task type
2021-09-04 01:42:21 -07:00

61 lines
2.1 KiB
Python

import os
import unittest
from tempfile import TemporaryDirectory
from sklearn.datasets import load_boston
from flaml import AutoML
from flaml.training_log import training_log_reader
class TestTrainingLog(unittest.TestCase):
def test_training_log(self, path='test_training_log.log'):
with TemporaryDirectory() as d:
filename = os.path.join(d, path)
# Run a simple job.
automl = AutoML()
automl_settings = {
"time_budget": 1,
"metric": 'mse',
"task": 'regression',
"log_file_name": filename,
"log_training_metric": True,
"mem_thres": 1024 * 1024,
"n_jobs": 1,
"model_history": True,
"train_time_limit": 0.01,
"verbose": 3,
"ensemble": True,
"keep_search_state": True,
}
X_train, y_train = load_boston(return_X_y=True)
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
automl._state._train_with_config(
automl.best_estimator, automl.best_config)
# Check if the training log file is populated.
self.assertTrue(os.path.exists(filename))
with training_log_reader(filename) as reader:
count = 0
for record in reader.records():
print(record)
count += 1
self.assertGreater(count, 0)
automl_settings["log_file_name"] = None
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
automl._selected.update(None, 0)
automl = AutoML()
automl.fit(X_train=X_train, y_train=y_train, max_iter=0)
def test_illfilename(self):
try:
self.test_training_log('/')
except IsADirectoryError:
print("IsADirectoryError happens as expected in linux.")
except PermissionError:
print("PermissionError happens as expected in windows.")