141 lines
4.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Quickstart"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Via AgentChat, you can build applications quickly using preset agents.\n",
"To illustrate this, we will begin with creating a single agent that can\n",
"use tools.\n",
"\n",
"First, we need to install the AgentChat and Extension packages."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"pip install -U \"autogen-agentchat\" \"autogen-ext[openai,azure]\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This example uses an OpenAI model, however, you can use other models as well.\n",
"Simply update the `model_client` with the desired model or model client class.\n",
"\n",
"To use Azure OpenAI models and AAD authentication,\n",
"you can follow the instructions [here](./tutorial/models.ipynb#azure-openai).\n",
"To use other models, see [Models](./tutorial/models.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"---------- user ----------\n",
"What is the weather in New York?\n",
"---------- weather_agent ----------\n",
"[FunctionCall(id='call_bE5CYAwB7OlOdNAyPjwOkej1', arguments='{\"city\":\"New York\"}', name='get_weather')]\n",
"---------- weather_agent ----------\n",
"[FunctionExecutionResult(content='The weather in New York is 73 degrees and Sunny.', call_id='call_bE5CYAwB7OlOdNAyPjwOkej1', is_error=False)]\n",
"---------- weather_agent ----------\n",
"The current weather in New York is 73 degrees and sunny.\n"
]
}
],
"source": [
"from autogen_agentchat.agents import AssistantAgent\n",
"from autogen_agentchat.ui import Console\n",
"from autogen_ext.models.openai import OpenAIChatCompletionClient\n",
"\n",
"# Define a model client. You can use other model client that implements\n",
"# the `ChatCompletionClient` interface.\n",
"model_client = OpenAIChatCompletionClient(\n",
" model=\"gpt-4o\",\n",
" # api_key=\"YOUR_API_KEY\",\n",
")\n",
"\n",
"\n",
"# Define a simple function tool that the agent can use.\n",
"# For this example, we use a fake weather tool for demonstration purposes.\n",
"async def get_weather(city: str) -> str:\n",
" \"\"\"Get the weather for a given city.\"\"\"\n",
" return f\"The weather in {city} is 73 degrees and Sunny.\"\n",
"\n",
"\n",
"# Define an AssistantAgent with the model, tool, system message, and reflection enabled.\n",
"# The system message instructs the agent via natural language.\n",
"agent = AssistantAgent(\n",
" name=\"weather_agent\",\n",
" model_client=model_client,\n",
" tools=[get_weather],\n",
" system_message=\"You are a helpful assistant.\",\n",
" reflect_on_tool_use=True,\n",
" model_client_stream=True, # Enable streaming tokens from the model client.\n",
")\n",
"\n",
"\n",
"# Run the agent and stream the messages to the console.\n",
"async def main() -> None:\n",
" await Console(agent.run_stream(task=\"What is the weather in New York?\"))\n",
" # Close the connection to the model client.\n",
" await model_client.close()\n",
"\n",
"\n",
"# NOTE: if running this inside a Python script you'll need to use asyncio.run(main()).\n",
"await main()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## What's Next?\n",
"\n",
"Now that you have a basic understanding of how to use a single agent, consider following the [tutorial](./tutorial/index.md) for a walkthrough on other features of AgentChat."
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}