# Azure AI Search Tool Implementation
This PR adds a new tool for Azure AI Search integration to autogen-ext,
enabling agents to search and retrieve information from Azure AI Search
indexes.
## Why Are These Changes Needed?
AutoGen currently lacks native integration with Azure AI Search, which
is a powerful enterprise search service that supports semantic, vector,
and hybrid search capabilities. This integration enables agents to:
1. Retrieve relevant information from large document collections
2. Perform semantic search with AI-powered ranking
3. Execute vector similarity search using embeddings
4. Combine text and vector approaches for optimal results
This tool complements existing retrieval capabilities and provides a
seamless way to integrate with Azure's search infrastructure.
## Features
- **Multiple Search Types**: Support for text, semantic, vector, and
hybrid search
- **Flexible Configuration**: Customizable search parameters and fields
- **Robust Error Handling**: User-friendly error messages with
actionable guidance
- **Performance Optimizations**: Configurable caching and retry
mechanisms
- **Vector Search Support**: Built-in embedding generation with
extensibility
## Usage Example
```python
from autogen_ext.tools.azure import AzureAISearchTool
from azure.core.credentials import AzureKeyCredential
from autogen import AssistantAgent, UserProxyAgent
# Create the search tool
search_tool = AzureAISearchTool.load_component({
"provider": "autogen_ext.tools.azure.AzureAISearchTool",
"config": {
"name": "DocumentSearch",
"description": "Search for information in the knowledge base",
"endpoint": "https://your-service.search.windows.net",
"index_name": "your-index",
"credential": {"api_key": "your-api-key"},
"query_type": "semantic",
"semantic_config_name": "default"
}
})
# Create an agent with the search tool
assistant = AssistantAgent(
"assistant",
llm_config={"tools": [search_tool]}
)
# Create a user proxy agent
user_proxy = UserProxyAgent(
"user_proxy",
human_input_mode="TERMINATE",
max_consecutive_auto_reply=10,
code_execution_config={"work_dir": "coding"}
)
# Start the conversation
user_proxy.initiate_chat(
assistant,
message="What information do we have about quantum computing in our knowledge base?"
)
```
## Testing
- Added unit tests for all search types (text, semantic, vector, hybrid)
- Added tests for error handling and cancellation
- All tests pass locally
## Documentation
- Added comprehensive docstrings with examples
- Included warnings about placeholder embedding implementation
- Added links to Azure AI Search documentation
## Related issue number
Closes #5419
## Checks
- [x] I've included any doc changes needed for
<https://microsoft.github.io/autogen/>. See
<https://github.com/microsoft/autogen/blob/main/CONTRIBUTING.md> to
build and test documentation locally.
- [x] I've added tests (if relevant) corresponding to the changes
introduced in this PR.
- [x] I've made sure all auto checks have passed.
---------
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
Building the AutoGen Documentation
AutoGen documentation is based on the sphinx documentation system and uses the myst-parser to render markdown files. It uses the pydata-sphinx-theme to style the documentation.
Prerequisites
Ensure you have all of the dev dependencies for the autogen-core package installed. You can install them by running the following command from the root of the python repository:
uv sync
source .venv/bin/activate
Building Docs
To build the documentation, run the following command from the root of the python repository:
poe --directory ./packages/autogen-core/ docs-build
To serve the documentation locally, run the following command from the root of the python repository:
poe --directory ./packages/autogen-core/ docs-serve
[!NOTE]
Sphinx will only rebuild files that have changed since the last build. If you want to force a full rebuild, you can delete the ./packages/autogen-core/docs/build directory before running the docs-build command.
Versioning the Documentation
The current theme - pydata-sphinx-theme - supports switching between versions of the documentation.
To version the documentation, you need to create a new version of the documentation by copying the existing documentation to a new directory with the version number. For example, to create a new version of the documentation for version 0.1.0, you would run the following command:
How are various versions built? - TBD.