autogen/test/agentchat/contrib/test_llava.py
Beibin Li b41b366549
Large Multimodal Models in AgentChat (#554)
* LMM Code added

* LLaVA notebook update

* Test cases and Notebook modified for OpenAI v1

* Move LMM into contrib
To resolve test issues and deploy issues
In the future, we can install pillow by default, and then move back
LMM agents into agentchat

* LMM test setup update

* try...except... clause for LMM tests

* disable patch for llava agent test
To resolve dependencies issue for build

* Add LMM Blog

* Change docstring for LMM agents

* Docstring update patch

* llava: insert reply at position 1 now
So, it can still handle human_input_mode
and max_consecutive_reply

* Resolve comments
Fixing: typos, blogs, yml, and add OpenAIWrapper

* Signature typo fix for LMM agent: system_message

* Update LMM "content" from latest OpenAI release
Reference  https://platform.openai.com/docs/guides/vision

* update LMM test according to latest OpenAI release

* Fully support GPT-4V now
1. Add a notebook for GPT-4V. LLava notebook also updated.
2. img_utils updated
3. GPT-4V formatter now return base64 image with mime type
4. Infer mime type directly from b64 image content (while loading
   without suffix)
5. Test cases modified according to all the related changes.

* GPT-4V link updated in blog

---------

Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2023-11-06 21:33:51 +00:00

130 lines
4.0 KiB
Python

import unittest
from unittest.mock import MagicMock, patch
import pytest
import autogen
try:
from autogen.agentchat.contrib.llava_agent import (
LLaVAAgent,
_llava_call_binary_with_config,
llava_call,
llava_call_binary,
)
except ImportError:
skip = True
else:
skip = False
@pytest.mark.skipif(skip, reason="dependency is not installed")
class TestLLaVAAgent(unittest.TestCase):
def setUp(self):
self.agent = LLaVAAgent(
name="TestAgent",
llm_config={
"timeout": 600,
"seed": 42,
"config_list": [{"model": "llava-fake", "base_url": "localhost:8000", "api_key": "Fake"}],
},
)
def test_init(self):
self.assertIsInstance(self.agent, LLaVAAgent)
@pytest.mark.skipif(skip, reason="dependency is not installed")
class TestLLavaCallBinaryWithConfig(unittest.TestCase):
@patch("requests.post")
def test_local_mode(self, mock_post):
# Mocking the response of requests.post
mock_response = MagicMock()
mock_response.iter_lines.return_value = [b'{"text":"response text"}']
mock_post.return_value = mock_response
# Calling the function
output = _llava_call_binary_with_config(
prompt="Test Prompt",
images=[],
config={"base_url": "http://0.0.0.0/api", "model": "test-model"},
max_new_tokens=1000,
temperature=0.5,
seed=1,
)
# Verifying the results
self.assertEqual(output, "response text")
mock_post.assert_called_once_with(
"http://0.0.0.0/api/worker_generate_stream",
headers={"User-Agent": "LLaVA Client"},
json={
"model": "test-model",
"prompt": "Test Prompt",
"max_new_tokens": 1000,
"temperature": 0.5,
"stop": "###",
"images": [],
},
stream=False,
)
@patch("replicate.run")
def test_remote_mode(self, mock_run):
# Mocking the response of replicate.run
mock_run.return_value = iter(["response ", "text"])
# Calling the function
output = _llava_call_binary_with_config(
prompt="Test Prompt",
images=["image_data"],
config={"base_url": "http://remote/api", "model": "test-model"},
max_new_tokens=1000,
temperature=0.5,
seed=1,
)
# Verifying the results
self.assertEqual(output, "response text")
mock_run.assert_called_once_with(
"http://remote/api",
input={"image": "_data", "prompt": "Test Prompt", "seed": 1},
)
@pytest.mark.skipif(skip, reason="dependency is not installed")
class TestLLavaCall(unittest.TestCase):
@patch("autogen.agentchat.contrib.llava_agent.llava_formater")
@patch("autogen.agentchat.contrib.llava_agent.llava_call_binary")
def test_llava_call(self, mock_llava_call_binary, mock_llava_formater):
# Set up the mocks
mock_llava_formater.return_value = ("formatted prompt", ["image1", "image2"])
mock_llava_call_binary.return_value = "Generated Text"
# Set up the llm_config dictionary
llm_config = {
"config_list": [{"api_key": "value", "base_url": "localhost:8000"}],
"max_new_tokens": 2000,
"temperature": 0.5,
"seed": 1,
}
# Call the function
result = llava_call("Test Prompt", llm_config)
# Check the results
mock_llava_formater.assert_called_once_with("Test Prompt", order_image_tokens=False)
mock_llava_call_binary.assert_called_once_with(
"formatted prompt",
["image1", "image2"],
config_list=llm_config["config_list"],
max_new_tokens=2000,
temperature=0.5,
seed=1,
)
self.assertEqual(result, "Generated Text")
if __name__ == "__main__":
unittest.main()