autogen/test/automl/test_warmstart.py
Qingyun Wu b7846048dc
Allow FLAML_sample_size in starting_points (#619)
* FLAML_sample_size

* clean up

* starting_points as a list

* catch AssertionError

* per estimator sample size

* import

* per estimator min_sample_size

* Update flaml/automl.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* Update test/automl/test_warmstart.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* add warnings

* adding more tests

* fix a bug in validating starting points

* improve test

* revise test

* revise test

* documentation about custom_hp

* doc and efficiency

* update test

Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2022-07-09 16:04:46 -04:00

225 lines
8.5 KiB
Python

import unittest
import numpy as np
from sklearn.datasets import load_iris
from flaml import AutoML
from flaml.model import LGBMEstimator
from flaml import tune
class TestWarmStart(unittest.TestCase):
def test_fit_w_freezinghp_starting_point(self, as_frame=True):
automl = AutoML()
automl_settings = {
"time_budget": 1,
"metric": "accuracy",
"task": "classification",
"estimator_list": ["lgbm"],
"log_file_name": "test/iris.log",
"log_training_metric": True,
"n_jobs": 1,
"model_history": True,
}
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
if as_frame:
# test drop column
X_train.columns = range(X_train.shape[1])
X_train[X_train.shape[1]] = np.zeros(len(y_train))
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
automl_val_accuracy = 1.0 - automl.best_loss
print("Best ML leaner:", automl.best_estimator)
print("Best hyperparmeter config:", automl.best_config)
print("Best accuracy on validation data: {0:.4g}".format(automl_val_accuracy))
print(
"Training duration of best run: {0:.4g} s".format(
automl.best_config_train_time
)
)
# 1. Get starting points from previous experiments.
starting_points = automl.best_config_per_estimator
print("starting_points", starting_points)
print("loss of the starting_points", automl.best_loss_per_estimator)
starting_point = starting_points["lgbm"]
hps_to_freeze = ["colsample_bytree", "reg_alpha", "reg_lambda", "log_max_bin"]
# 2. Constrct a new class:
# a. write the hps you want to freeze as hps with constant 'domain';
# b. specify the new search space of the other hps accrodingly.
class MyPartiallyFreezedLargeLGBM(LGBMEstimator):
@classmethod
def search_space(cls, **params):
# (1) Get the hps in the original search space
space = LGBMEstimator.search_space(**params)
# (2) Set up the fixed value from hps from the starting point
for hp_name in hps_to_freeze:
# if an hp is specifed to be freezed, use tine value provided in the starting_point
# otherwise use the setting from the original search space
if hp_name in starting_point:
space[hp_name] = {"domain": starting_point[hp_name]}
# (3.1) Configure the search space for hps that are in the original search space
# but you want to change something, for example the range.
revised_hps_to_search = {
"n_estimators": {
"domain": tune.lograndint(lower=10, upper=32768),
"init_value": starting_point.get("n_estimators")
or space["n_estimators"].get("init_value", 10),
"low_cost_init_value": space["n_estimators"].get(
"low_cost_init_value", 10
),
},
"num_leaves": {
"domain": tune.lograndint(lower=10, upper=3276),
"init_value": starting_point.get("num_leaves")
or space["num_leaves"].get("init_value", 10),
"low_cost_init_value": space["num_leaves"].get(
"low_cost_init_value", 10
),
},
# (3.2) Add a new hp which is not in the original search space
"subsample": {
"domain": tune.uniform(lower=0.1, upper=1.0),
"init_value": 0.1,
},
}
space.update(revised_hps_to_search)
return space
new_estimator_name = "large_lgbm"
new_automl = AutoML()
new_automl.add_learner(
learner_name=new_estimator_name, learner_class=MyPartiallyFreezedLargeLGBM
)
automl_settings_resume = {
"time_budget": 3,
"metric": "accuracy",
"task": "classification",
"estimator_list": [new_estimator_name],
"log_file_name": "test/iris_resume.log",
"log_training_metric": True,
"n_jobs": 1,
"model_history": True,
"log_type": "all",
"starting_points": {new_estimator_name: starting_point},
}
new_automl.fit(X_train=X_train, y_train=y_train, **automl_settings_resume)
new_automl_val_accuracy = 1.0 - new_automl.best_loss
print("Best ML leaner:", new_automl.best_estimator)
print("Best hyperparmeter config:", new_automl.best_config)
print(
"Best accuracy on validation data: {0:.4g}".format(new_automl_val_accuracy)
)
print(
"Training duration of best run: {0:.4g} s".format(
new_automl.best_config_train_time
)
)
def test_nobudget(self):
automl = AutoML()
X_train, y_train = load_iris(return_X_y=True)
automl.fit(X_train, y_train)
print(automl.best_config_per_estimator)
def test_FLAML_sample_size_in_starting_points(self):
from flaml.data import load_openml_dataset
from flaml import AutoML
X_train, X_test, y_train, y_test = load_openml_dataset(
dataset_id=1169, data_dir="./"
)
automl_settings = {
"time_budget": 3,
"task": "classification",
}
automl1 = AutoML()
print(len(y_train))
automl1.fit(X_train, y_train, **automl_settings)
print("automl1.best_config_per_estimator", automl1.best_config_per_estimator)
automl_settings["starting_points"] = automl1.best_config_per_estimator
automl2 = AutoML()
automl2.fit(X_train, y_train, **automl_settings)
automl_settings["starting_points"] = {
"xgboost": {
"n_estimators": 4,
"max_leaves": 4,
"min_child_weight": 0.26208115308159446,
"learning_rate": 0.25912534572860507,
"subsample": 0.9266743941610592,
"colsample_bylevel": 1.0,
"colsample_bytree": 1.0,
"reg_alpha": 0.0013933617380144255,
"reg_lambda": 0.18096917948292954,
"FLAML_sample_size": 20000,
},
"xgb_limitdepth": None,
"lrl1": None,
}
from flaml import tune
automl_settings["custom_hp"] = {
"xgboost": {
"n_estimators": {
"domain": tune.choice([10, 20]),
},
}
}
automl2 = AutoML()
automl2.fit(X_train, y_train, **automl_settings)
try:
import ray
automl_settings["n_concurrent_trials"] = 2
except ImportError:
automl_settings["n_concurrent_trials"] = 1
# setting different FLAML_sample_size
automl_settings["starting_points"] = {
"catboost": {
"early_stopping_rounds": 10,
"learning_rate": 0.09999999999999996,
"n_estimators": 1,
"FLAML_sample_size": 10000,
},
"xgboost": {
"n_estimators": 4,
"max_leaves": 4,
"min_child_weight": 0.26208115308159446,
"learning_rate": 0.25912534572860507,
"subsample": 0.9266743941610592,
"colsample_bylevel": 1.0,
"colsample_bytree": 1.0,
"reg_alpha": 0.0013933617380144255,
"reg_lambda": 0.18096917948292954,
"FLAML_sample_size": 20000,
},
"xgb_limitdepth": None,
"lrl1": None,
}
automl3 = AutoML()
automl3.fit(X_train, y_train, **automl_settings)
automl_settings["sample"] = False
automl4 = AutoML()
try:
automl4.fit(
X_train,
y_train,
**automl_settings,
)
raise RuntimeError(
"When sample=False and starting_points contain FLAML_sample_size, AssertionError is expected but not raised."
)
except AssertionError:
pass
if __name__ == "__main__":
unittest.main()